
BIRD: 针对大规模数据库
的大型NL2SQL基准测试

马晨昊

数据科学学院

香港中文大学（深圳）



Content
• Graphix-T5 with history context

• BIRD: Real-world Text-to-SQL Bench

• Discussions

2



Text-to-SQL Parsing
• Text-to-SQL, which aims at converting natural language questions into executable SQL
queries, has garnered increasing attention, as it can assist end users in efficiently extracting
vital information from databases without need for the technical background.
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Unlocking Tech Growth by Valuable Benchmark
• Leveraging a valuable benchmark can significantly enhance technical growth in the realm of Text-to-SQL.
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In the past 5 years, more than 60 submissions for Spider have been made, driving the development of text-to-SQL approaches. 4



Text-to-SQL Model Evolution:
• Graph-based encoder with PLM shows the most effectiveness on Spider, which is a large-scale cross-
domain text-to-SQL benchmark, in recent years.
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Text-to-SQL Model Evolution:
• The Text-to-Text PLMs (i.e., T5, BART) recently demonstrate their portability and potency on text-to-
SQL missions by allowing for simple fine-tuning.
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Text-to-SQL Model Evolution:
• The Text-to-Text PLMs (i.e., T5, BART) recently demonstrate their portability and potency on text-to-
SQL missions by allowing for simple fine-tuning.

You have to summarize
grammar rules for each
dataset manually

Portable for different
dataset !!
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Challenges of T5 (Text-to-Text PLM):
• One of T5’s challenges for text-to-SQL tasks is the hallucinations, which results in incorrect SQLs, 
especially when dealing with challenging cases.
Hallucinations exist even 
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Method: Graphix-T5 (AAAI 2023 Oral)
Previous work & our method:
(a) RATSQL [pre-trained BERT-encoder → graph-based module → randomly initialized decoder]. 
(b) T5 [pre-trained T5-encoder → pre-trained T5-decoder] and the proposed variant 
(c) GNN- T5 [pre-trained T5-encoder → graph-based module → pre-trained T5-decoder] 
(d) GRAPHIX-T5 [semi-pre-trained graphix-module → pre-trained T5-decoder] via multi-hop reasoning. 
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Method: Graphix-T5
Inner Structure:

Graph Input

Semantic Encoding

Pre-LayerNorm Relational GAT

Graphix Output

Semantic Representations:

Structural Representations:
(Relational GAT)

Joint Representations:
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Method: Graphix-T5
Pre-defined Relations:

Bridge Node Mode:

N x M à N + M (neighbors)

database schema D as a joint sequence as shown:

x = [q1, ..., q|Q| | Dname |t1 : ct11 , ..., ct1|C||...|t|T | : c
t|T |
1 , ..., c

t|T |
|C| |⇤],

(1)
where qi is ith token in the question, tj represents jth table
in the D, and c

tj

k
refers to the kth column in the jth table.

⇤ is the special column token in the database. Dname is the
name of each database.

Encoder-Decoder Training Mechanism Following
(Shaw et al. 2021), T5 (Raffel et al. 2020) adopt an
encoder-decoder mechanism to generate SQLs. First, the
bi-directional encoder learns the hidden state h of input x,
then the decoder generates SQLs based on h as:

h = Enc⇥ (x) ; y = Dec⌥(h), (2)

where ⇥ and ⌥ refers to parameters of the encoder and de-
coder, and h connects the encoder and decoder. The model
is initialized with pretrained T5 parameters and optimized as
the following objective.

max
⇥,⌥

log p⇥,⌥(y | x) =

|y|X

i=1

log p⇥,⌥ (yi | y1:i�1, x) , (3)

where x, y indicates the input and output tokens respectively
and |y| is the max length of generation SQL.

3 Proposed Approach: GRAPHIX-T5
3.1 Model Inputs
Contextual Encoding We continue to take both questions
and database schemas as depicted in Eq. (1) to encode the
contextual information through the original T5.

Graph Construction The joint input questions and
schemas can be displayed as a heterogeneous graph G =
hV,Ri consisting of three types of nodes V = Q[C[T and
multiple types of relations R = r1, ..., r|R|, where each ri
refers to a one-hop relation between nodes and a multi-hop
relation rk is defined as a composition of one-hop relations:
rk = r1 �r2 · · ·�rI as shown in the Figure 1, where I refers
to the length of each rk. Inspired by (Wang et al. 2020a; Cao
et al. 2021; Qin et al. 2022b; Hui et al. 2022), we enumerated
a list of pre-defined relations to connect nodes. The relation
sets can be divided into three main categories:
• Schema relations: FOREIGN-KEY, PRIMARY-KEY, and

SAME-TABLE pertain to the particular explicit schema
relations that the original T5 cannot obtain from linear
inputs.

• Schema linking relations: EXACT-MATCH, PARTIAL-
MATCH, and VALUE-MATCH are implicit linking rela-
tions between question and schema nodes. A new type of
relation BRIDGE is introduced.

• Question relations: MODIFIER and ARGUMENT are im-
plicit dependency relations between tokens in a question.

NO-MATCH Mode vs. BRIDGE Mode Previous works
(Cao et al. 2021; Hui et al. 2022) through adding the dummy
edges called NO-MATCH indicate that the there are question
tokens and the schema tokens, which should be correlated
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Figure 3: Figure shows the circumstances when entities in
the question are hard to string-match the schema items. (a) is
the strategy to solve this case by NO-MATCH Mode, which
fully connects schema nodes with all token nodes. (b) is our
solution to add a bridge node to link the question and schema
nodes via less number of edges.

but cannot be linked due to existing string-matched rules.
However, as shown in the Figure 3, NO-MATCH may lead
to over-smoothing problem (Chen et al. 2020a) since they
bring out too many noisy neighbors to compute the attention
score. Suppose there exists A tokens for the question and B
schema items that are semantic relevant but not linked by the
rule, the number of edges need to be linked as NO-MATCH
is A ⇥ B. In contrast, we leverage the special token * as a
bridge node, allowing all schema nodes to be reached from
the question token nodes by decreasing the number of edges
drastically from A⇥B to A+B.

3.2 GRAPHIX-Layer
The GRAPHIX layer is designed to integrate semantic infor-
mation obtained from each transformer block with structural
information of a relational graph neural network (GNN)
block.

Semantic Representation The semantic representations
of hidden states are firstly encoded by a Transformer
(Vaswani et al. 2017) block, which contains two important
components, including Multi-head Self-attention Network
(MHA) and Fully-connected Forward Network (FFN). In
the lth GRAPHIX Layer, the hidden states represent Hl

S =n
h(l)
1 , . . . , h(l)

N

o
, N is the max length of the inputs. MHA

at first maps query matrix Q 2 Rm⇥dk , key and value ma-
trix K 2 Rn⇥dk , V 2 Rn⇥dv into an attention vector via
self-attention mechanism as Eq. (4)

Attn(Q,K,V) = softmax

✓
QKT

p
dk

◆
V, (4)

in which m is the number of query vectors and n is the
number of key or value vectors. MHA executes the self-
attention over h heads with each head i being indepen-
dently parameterized by W

Q

i
2 Rdm⇥dk , WK

i
2 Rdm⇥dk ,

W
V

i
2 Rdm⇥dv and mapping inputs into queries, key-value

pairs. Usually dk = dv = dm/h in the transformer blocks
of T5 and dm denotes the dimension of T5. Then MHA cal-
culates the attention outputs for each head and concatenate
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Experiments:
• Performance on 4 datasets and compositional
generalization:

MODEL EM EX

RAT-SQL + BERT ~ 69.7 -
RAT-SQL + Grappa ~ 73.9 -
GAZP + BERT 59.1 59.2
BRIDGE v2 + BERT 70.0 68.3
NatSQL+GAP 73.7 75.0
SMBOP + GRAPPA 74.7 75.0
LGESQL + ELECTRA ~ 75.1 -
S2SQL + ELECTRA ~ 76.4 -

T5-large 67.0 69.3
GRAPHIX-T5-large 72.7(" 5.7) 75.9(" 6.6)
T5-large + PICARD | 69.1 72.9
GRAPHIX-T5-large + PICARD | 76.6(" 7.5) 80.5(" 7.6)

T5-3B 71.5 74.4
GRAPHIX-T5-3B 75.6 (" 4.1) 78.2 (" 3.8)
T5-3B + PICARD | 75.5 79.3
GRAPHIX-T5-3B + PICARD | 77.1(" 1.6) 81.0(" 1.7)

Table 1: Exact match (EM) and execution (EX) accuracy (%)
on SPIDER development set. ~ means the model does not
predict SQL values. | means the model uses the constrained
decoding PICARD. " is an absolute improvement.

Implementation Details We implement our codes 2

mainly based on hugging-face transformers library (Wolf
et al. 2020) 3. We set the max input length as 1024, gen-
eration max length as 128, and batch size as 32. We also
adopt Adafactor (Shazeer and Stern 2018) as our primary
optimizer with a linear decayed learning rate of 5e-5. Dur-
ing the experiment, GRAPHIX layers are mainly injected
into the encoder to learn better representations for structural
generalization. We evaluate our effectiveness of GRAPHIX-
T5 across two main versions: T5-Large with approximately
800M parameters and T5-3B, with more than 3 Billion pa-
rameters literally. All experiments are conducted on one
NVIDIA Tesla A100, which is available for the most re-
search centers.

Compared Methods Our model are compared mainly to
mainstream strong baseline models such as GNNSQL (Bo-
gin, Berant, and Gardner 2019), RATSQL (Wang et al.
2020a), GAZP (Zhong et al. 2020), BRIDEGE (Chen et al.
2020b), SMBOP (Rubin and Berant 2021), NatSQL (Gan
et al. 2021b), LGESQL (Cao et al. 2021), S2SQL (Hui et al.
2022) and T5+PICARD (Scholak, Schucher, and Bahdanau
2021) across the disparate datasets and settings.

4.2 Overall Performance
Results on SPIDER Table 1 displays the performance
of GRAPHIX-T5 and other competitive baseline models
on official SPIDER benchmark. First, we demonstrate that
GRAPHIX-T5-3B with a constrained decoding module PI-
CARD (Scholak, Schucher, and Bahdanau 2021) achieves
the state-of-the-art on this challenging cross-domain text-
to-SQL benchmark. Also, it is evident that GRAPHIX-T5 is
vastly superior to the vanilla T5 on large and 3B scale with
a significant margin. This indicates that the structural gener-

2https://github.com/AlibabaResearch/DAMO-ConvAI/tree/
main/graphix

3https://huggingface.co/

MODEL SYN DK REALISTIC

GNN 23.6 26.0 -
IRNet 28.4 33.1 -
RAT-SQL 33.6 35.8 -
RAT-SQL + BERT 48.2 40.9 58.1
RAT-SQL + Grappa 49.1 38.5 59.3
LGESQL + ELECTRA 64.6 48.4 69.2

T5-large 53.6 40.0 58.5
GRAPHIX-T5-large 61.1 (" 7.5) 48.6 (" 8.6) 67.3 (" 8.8)

T5-3B 58.0 46.9 62.0
GRAPHIX-T5-3B 66.9 (" 8.9) 51.2 (" 4.3) 72.4 (" 10.4)

Table 2: Exact match (EM) accuracy (%) on SYN, DK and
REALISTIC benchmark.

MODEL TEMPLATE LENGTH TMCD

T5-base 59.3 49.0 60.9
T5-3B 64.8 56.7 69.6
NQG-T5-3B 64.7 56.7 69.5

GRAPHIX-T5-3B 70.1 (" 5.4) 60.6 (" 3.9) 73.8 (" 4.3)

Table 3: Exact match (EM) accuracy (%) on compositional
dataset SPIDER-SSP.

alization capability of the GRAPHIX layer is crucial for T5
such a text-to-text PLM to perform the text-to-SQL task.

Results on More Challenging and Realistic Settings As
shown in the Table 2, we further demonstrate the robustness
of GRAPHIX-T5 when it confronts with more challenging
and closer to realistic settings in SYN, DK, REALISTIC. First
of all, the results show that GRAPHIX-T5-3B outperforms
other baseline models across all three datasets. Furthermore,
we observe that GRAPHIX-T5-large and GRAPHIX-T5-3B
surpass the performance of vanilla T5-large and T5-3B with
a clear margin, respectively. This demonstrates that vanilla
T5 is hungry for structural reasoning when dealing with
more flexible and complicated questions for text-to-SQLs
from real-world scenarios. And GRAPHIX can mitigate this
problem.

Results on Compositional Generalization As shown in
Table 3, on SPIDER-SSP, the grammar-based inductive T5
model provided by (Shaw et al. 2021), named NQG-T5, has
no obvious advantages over vanilla T5, which indicates that
the grammar of natural language is not helpful to enhance T5
for compositional generation. However, GRAPHIX-T5 helps
the T5 gain the SQL knowledge and makes it less vulner-
able to these modifications through the effective fusion of
structural information.

Figure 4: Exact match (EM) (left) and execution (EX) (right)
accuracy (%) on SPIDER low-resource setting.

MODEL EM EX

RAT-SQL + BERT ~ 69.7 -
RAT-SQL + Grappa ~ 73.9 -
GAZP + BERT 59.1 59.2
BRIDGE v2 + BERT 70.0 68.3
NatSQL+GAP 73.7 75.0
SMBOP + GRAPPA 74.7 75.0
LGESQL + ELECTRA ~ 75.1 -
S2SQL + ELECTRA ~ 76.4 -

T5-large 67.0 69.3
GRAPHIX-T5-large 72.7(" 5.7) 75.9(" 6.6)
T5-large + PICARD | 69.1 72.9
GRAPHIX-T5-large + PICARD | 76.6(" 7.5) 80.5(" 7.6)

T5-3B 71.5 74.4
GRAPHIX-T5-3B 75.6 (" 4.1) 78.2 (" 3.8)
T5-3B + PICARD | 75.5 79.3
GRAPHIX-T5-3B + PICARD | 77.1(" 1.6) 81.0(" 1.7)

Table 1: Exact match (EM) and execution (EX) accuracy (%)
on SPIDER development set. ~ means the model does not
predict SQL values. | means the model uses the constrained
decoding PICARD. " is an absolute improvement.

Implementation Details We implement our codes 2

mainly based on hugging-face transformers library (Wolf
et al. 2020) 3. We set the max input length as 1024, gen-
eration max length as 128, and batch size as 32. We also
adopt Adafactor (Shazeer and Stern 2018) as our primary
optimizer with a linear decayed learning rate of 5e-5. Dur-
ing the experiment, GRAPHIX layers are mainly injected
into the encoder to learn better representations for structural
generalization. We evaluate our effectiveness of GRAPHIX-
T5 across two main versions: T5-Large with approximately
800M parameters and T5-3B, with more than 3 Billion pa-
rameters literally. All experiments are conducted on one
NVIDIA Tesla A100, which is available for the most re-
search centers.

Compared Methods Our model are compared mainly to
mainstream strong baseline models such as GNNSQL (Bo-
gin, Berant, and Gardner 2019), RATSQL (Wang et al.
2020a), GAZP (Zhong et al. 2020), BRIDEGE (Chen et al.
2020b), SMBOP (Rubin and Berant 2021), NatSQL (Gan
et al. 2021b), LGESQL (Cao et al. 2021), S2SQL (Hui et al.
2022) and T5+PICARD (Scholak, Schucher, and Bahdanau
2021) across the disparate datasets and settings.

4.2 Overall Performance
Results on SPIDER Table 1 displays the performance
of GRAPHIX-T5 and other competitive baseline models
on official SPIDER benchmark. First, we demonstrate that
GRAPHIX-T5-3B with a constrained decoding module PI-
CARD (Scholak, Schucher, and Bahdanau 2021) achieves
the state-of-the-art on this challenging cross-domain text-
to-SQL benchmark. Also, it is evident that GRAPHIX-T5 is
vastly superior to the vanilla T5 on large and 3B scale with
a significant margin. This indicates that the structural gener-

2https://github.com/AlibabaResearch/DAMO-ConvAI/tree/
main/graphix

3https://huggingface.co/

MODEL SYN DK REALISTIC

GNN 23.6 26.0 -
IRNet 28.4 33.1 -
RAT-SQL 33.6 35.8 -
RAT-SQL + BERT 48.2 40.9 58.1
RAT-SQL + Grappa 49.1 38.5 59.3
LGESQL + ELECTRA 64.6 48.4 69.2

T5-large 53.6 40.0 58.5
GRAPHIX-T5-large 61.1 (" 7.5) 48.6 (" 8.6) 67.3 (" 8.8)

T5-3B 58.0 46.9 62.0
GRAPHIX-T5-3B 66.9 (" 8.9) 51.2 (" 4.3) 72.4 (" 10.4)

Table 2: Exact match (EM) accuracy (%) on SYN, DK and
REALISTIC benchmark.

MODEL TEMPLATE LENGTH TMCD

T5-base 59.3 49.0 60.9
T5-3B 64.8 56.7 69.6
NQG-T5-3B 64.7 56.7 69.5

GRAPHIX-T5-3B 70.1 (" 5.4) 60.6 (" 3.9) 73.8 (" 4.3)

Table 3: Exact match (EM) accuracy (%) on compositional
dataset SPIDER-SSP.

alization capability of the GRAPHIX layer is crucial for T5
such a text-to-text PLM to perform the text-to-SQL task.

Results on More Challenging and Realistic Settings As
shown in the Table 2, we further demonstrate the robustness
of GRAPHIX-T5 when it confronts with more challenging
and closer to realistic settings in SYN, DK, REALISTIC. First
of all, the results show that GRAPHIX-T5-3B outperforms
other baseline models across all three datasets. Furthermore,
we observe that GRAPHIX-T5-large and GRAPHIX-T5-3B
surpass the performance of vanilla T5-large and T5-3B with
a clear margin, respectively. This demonstrates that vanilla
T5 is hungry for structural reasoning when dealing with
more flexible and complicated questions for text-to-SQLs
from real-world scenarios. And GRAPHIX can mitigate this
problem.

Results on Compositional Generalization As shown in
Table 3, on SPIDER-SSP, the grammar-based inductive T5
model provided by (Shaw et al. 2021), named NQG-T5, has
no obvious advantages over vanilla T5, which indicates that
the grammar of natural language is not helpful to enhance T5
for compositional generation. However, GRAPHIX-T5 helps
the T5 gain the SQL knowledge and makes it less vulner-
able to these modifications through the effective fusion of
structural information.

Figure 4: Exact match (EM) (left) and execution (EX) (right)
accuracy (%) on SPIDER low-resource setting.

Table 1: Exact match (EM) and execution (EX) accuracy (%) on SPIDER 
development set. 

Table 2: Exact match (EM) accuracy (%) on SYN, DK and REALISTIC benchmark. 

MODEL EM EX

RAT-SQL + BERT ~ 69.7 -
RAT-SQL + Grappa ~ 73.9 -
GAZP + BERT 59.1 59.2
BRIDGE v2 + BERT 70.0 68.3
NatSQL+GAP 73.7 75.0
SMBOP + GRAPPA 74.7 75.0
LGESQL + ELECTRA ~ 75.1 -
S2SQL + ELECTRA ~ 76.4 -

T5-large 67.0 69.3
GRAPHIX-T5-large 72.7(" 5.7) 75.9(" 6.6)
T5-large + PICARD | 69.1 72.9
GRAPHIX-T5-large + PICARD | 76.6(" 7.5) 80.5(" 7.6)

T5-3B 71.5 74.4
GRAPHIX-T5-3B 75.6 (" 4.1) 78.2 (" 3.8)
T5-3B + PICARD | 75.5 79.3
GRAPHIX-T5-3B + PICARD | 77.1(" 1.6) 81.0(" 1.7)

Table 1: Exact match (EM) and execution (EX) accuracy (%)
on SPIDER development set. ~ means the model does not
predict SQL values. | means the model uses the constrained
decoding PICARD. " is an absolute improvement.

Implementation Details We implement our codes 2

mainly based on hugging-face transformers library (Wolf
et al. 2020) 3. We set the max input length as 1024, gen-
eration max length as 128, and batch size as 32. We also
adopt Adafactor (Shazeer and Stern 2018) as our primary
optimizer with a linear decayed learning rate of 5e-5. Dur-
ing the experiment, GRAPHIX layers are mainly injected
into the encoder to learn better representations for structural
generalization. We evaluate our effectiveness of GRAPHIX-
T5 across two main versions: T5-Large with approximately
800M parameters and T5-3B, with more than 3 Billion pa-
rameters literally. All experiments are conducted on one
NVIDIA Tesla A100, which is available for the most re-
search centers.

Compared Methods Our model are compared mainly to
mainstream strong baseline models such as GNNSQL (Bo-
gin, Berant, and Gardner 2019), RATSQL (Wang et al.
2020a), GAZP (Zhong et al. 2020), BRIDEGE (Chen et al.
2020b), SMBOP (Rubin and Berant 2021), NatSQL (Gan
et al. 2021b), LGESQL (Cao et al. 2021), S2SQL (Hui et al.
2022) and T5+PICARD (Scholak, Schucher, and Bahdanau
2021) across the disparate datasets and settings.

4.2 Overall Performance
Results on SPIDER Table 1 displays the performance
of GRAPHIX-T5 and other competitive baseline models
on official SPIDER benchmark. First, we demonstrate that
GRAPHIX-T5-3B with a constrained decoding module PI-
CARD (Scholak, Schucher, and Bahdanau 2021) achieves
the state-of-the-art on this challenging cross-domain text-
to-SQL benchmark. Also, it is evident that GRAPHIX-T5 is
vastly superior to the vanilla T5 on large and 3B scale with
a significant margin. This indicates that the structural gener-

2https://github.com/AlibabaResearch/DAMO-ConvAI/tree/
main/graphix

3https://huggingface.co/

MODEL SYN DK REALISTIC

GNN 23.6 26.0 -
IRNet 28.4 33.1 -
RAT-SQL 33.6 35.8 -
RAT-SQL + BERT 48.2 40.9 58.1
RAT-SQL + Grappa 49.1 38.5 59.3
LGESQL + ELECTRA 64.6 48.4 69.2

T5-large 53.6 40.0 58.5
GRAPHIX-T5-large 61.1 (" 7.5) 48.6 (" 8.6) 67.3 (" 8.8)

T5-3B 58.0 46.9 62.0
GRAPHIX-T5-3B 66.9 (" 8.9) 51.2 (" 4.3) 72.4 (" 10.4)

Table 2: Exact match (EM) accuracy (%) on SYN, DK and
REALISTIC benchmark.

MODEL TEMPLATE LENGTH TMCD

T5-base 59.3 49.0 60.9
T5-3B 64.8 56.7 69.6
NQG-T5-3B 64.7 56.7 69.5

GRAPHIX-T5-3B 70.1 (" 5.4) 60.6 (" 3.9) 73.8 (" 4.3)

Table 3: Exact match (EM) accuracy (%) on compositional
dataset SPIDER-SSP.

alization capability of the GRAPHIX layer is crucial for T5
such a text-to-text PLM to perform the text-to-SQL task.

Results on More Challenging and Realistic Settings As
shown in the Table 2, we further demonstrate the robustness
of GRAPHIX-T5 when it confronts with more challenging
and closer to realistic settings in SYN, DK, REALISTIC. First
of all, the results show that GRAPHIX-T5-3B outperforms
other baseline models across all three datasets. Furthermore,
we observe that GRAPHIX-T5-large and GRAPHIX-T5-3B
surpass the performance of vanilla T5-large and T5-3B with
a clear margin, respectively. This demonstrates that vanilla
T5 is hungry for structural reasoning when dealing with
more flexible and complicated questions for text-to-SQLs
from real-world scenarios. And GRAPHIX can mitigate this
problem.

Results on Compositional Generalization As shown in
Table 3, on SPIDER-SSP, the grammar-based inductive T5
model provided by (Shaw et al. 2021), named NQG-T5, has
no obvious advantages over vanilla T5, which indicates that
the grammar of natural language is not helpful to enhance T5
for compositional generation. However, GRAPHIX-T5 helps
the T5 gain the SQL knowledge and makes it less vulner-
able to these modifications through the effective fusion of
structural information.

Figure 4: Exact match (EM) (left) and execution (EX) (right)
accuracy (%) on SPIDER low-resource setting.

Table 3: Exact match (EM) accuracy (%) on compositional dataset SPIDER-SSP. 

12



Experiments:
• Performance on 4 datasets and compositional
generalization:

MODEL EM EX

RAT-SQL + BERT ~ 69.7 -
RAT-SQL + Grappa ~ 73.9 -
GAZP + BERT 59.1 59.2
BRIDGE v2 + BERT 70.0 68.3
NatSQL+GAP 73.7 75.0
SMBOP + GRAPPA 74.7 75.0
LGESQL + ELECTRA ~ 75.1 -
S2SQL + ELECTRA ~ 76.4 -

T5-large 67.0 69.3
GRAPHIX-T5-large 72.7(" 5.7) 75.9(" 6.6)
T5-large + PICARD | 69.1 72.9
GRAPHIX-T5-large + PICARD | 76.6(" 7.5) 80.5(" 7.6)

T5-3B 71.5 74.4
GRAPHIX-T5-3B 75.6 (" 4.1) 78.2 (" 3.8)
T5-3B + PICARD | 75.5 79.3
GRAPHIX-T5-3B + PICARD | 77.1(" 1.6) 81.0(" 1.7)

Table 1: Exact match (EM) and execution (EX) accuracy (%)
on SPIDER development set. ~ means the model does not
predict SQL values. | means the model uses the constrained
decoding PICARD. " is an absolute improvement.

Implementation Details We implement our codes 2

mainly based on hugging-face transformers library (Wolf
et al. 2020) 3. We set the max input length as 1024, gen-
eration max length as 128, and batch size as 32. We also
adopt Adafactor (Shazeer and Stern 2018) as our primary
optimizer with a linear decayed learning rate of 5e-5. Dur-
ing the experiment, GRAPHIX layers are mainly injected
into the encoder to learn better representations for structural
generalization. We evaluate our effectiveness of GRAPHIX-
T5 across two main versions: T5-Large with approximately
800M parameters and T5-3B, with more than 3 Billion pa-
rameters literally. All experiments are conducted on one
NVIDIA Tesla A100, which is available for the most re-
search centers.

Compared Methods Our model are compared mainly to
mainstream strong baseline models such as GNNSQL (Bo-
gin, Berant, and Gardner 2019), RATSQL (Wang et al.
2020a), GAZP (Zhong et al. 2020), BRIDEGE (Chen et al.
2020b), SMBOP (Rubin and Berant 2021), NatSQL (Gan
et al. 2021b), LGESQL (Cao et al. 2021), S2SQL (Hui et al.
2022) and T5+PICARD (Scholak, Schucher, and Bahdanau
2021) across the disparate datasets and settings.

4.2 Overall Performance
Results on SPIDER Table 1 displays the performance
of GRAPHIX-T5 and other competitive baseline models
on official SPIDER benchmark. First, we demonstrate that
GRAPHIX-T5-3B with a constrained decoding module PI-
CARD (Scholak, Schucher, and Bahdanau 2021) achieves
the state-of-the-art on this challenging cross-domain text-
to-SQL benchmark. Also, it is evident that GRAPHIX-T5 is
vastly superior to the vanilla T5 on large and 3B scale with
a significant margin. This indicates that the structural gener-

2https://github.com/AlibabaResearch/DAMO-ConvAI/tree/
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dataset SPIDER-SSP.

alization capability of the GRAPHIX layer is crucial for T5
such a text-to-text PLM to perform the text-to-SQL task.

Results on More Challenging and Realistic Settings As
shown in the Table 2, we further demonstrate the robustness
of GRAPHIX-T5 when it confronts with more challenging
and closer to realistic settings in SYN, DK, REALISTIC. First
of all, the results show that GRAPHIX-T5-3B outperforms
other baseline models across all three datasets. Furthermore,
we observe that GRAPHIX-T5-large and GRAPHIX-T5-3B
surpass the performance of vanilla T5-large and T5-3B with
a clear margin, respectively. This demonstrates that vanilla
T5 is hungry for structural reasoning when dealing with
more flexible and complicated questions for text-to-SQLs
from real-world scenarios. And GRAPHIX can mitigate this
problem.

Results on Compositional Generalization As shown in
Table 3, on SPIDER-SSP, the grammar-based inductive T5
model provided by (Shaw et al. 2021), named NQG-T5, has
no obvious advantages over vanilla T5, which indicates that
the grammar of natural language is not helpful to enhance T5
for compositional generation. However, GRAPHIX-T5 helps
the T5 gain the SQL knowledge and makes it less vulner-
able to these modifications through the effective fusion of
structural information.

Figure 4: Exact match (EM) (left) and execution (EX) (right)
accuracy (%) on SPIDER low-resource setting.
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predict SQL values. | means the model uses the constrained
decoding PICARD. " is an absolute improvement.

Implementation Details We implement our codes 2

mainly based on hugging-face transformers library (Wolf
et al. 2020) 3. We set the max input length as 1024, gen-
eration max length as 128, and batch size as 32. We also
adopt Adafactor (Shazeer and Stern 2018) as our primary
optimizer with a linear decayed learning rate of 5e-5. Dur-
ing the experiment, GRAPHIX layers are mainly injected
into the encoder to learn better representations for structural
generalization. We evaluate our effectiveness of GRAPHIX-
T5 across two main versions: T5-Large with approximately
800M parameters and T5-3B, with more than 3 Billion pa-
rameters literally. All experiments are conducted on one
NVIDIA Tesla A100, which is available for the most re-
search centers.

Compared Methods Our model are compared mainly to
mainstream strong baseline models such as GNNSQL (Bo-
gin, Berant, and Gardner 2019), RATSQL (Wang et al.
2020a), GAZP (Zhong et al. 2020), BRIDEGE (Chen et al.
2020b), SMBOP (Rubin and Berant 2021), NatSQL (Gan
et al. 2021b), LGESQL (Cao et al. 2021), S2SQL (Hui et al.
2022) and T5+PICARD (Scholak, Schucher, and Bahdanau
2021) across the disparate datasets and settings.

4.2 Overall Performance
Results on SPIDER Table 1 displays the performance
of GRAPHIX-T5 and other competitive baseline models
on official SPIDER benchmark. First, we demonstrate that
GRAPHIX-T5-3B with a constrained decoding module PI-
CARD (Scholak, Schucher, and Bahdanau 2021) achieves
the state-of-the-art on this challenging cross-domain text-
to-SQL benchmark. Also, it is evident that GRAPHIX-T5 is
vastly superior to the vanilla T5 on large and 3B scale with
a significant margin. This indicates that the structural gener-

2https://github.com/AlibabaResearch/DAMO-ConvAI/tree/
main/graphix

3https://huggingface.co/

MODEL SYN DK REALISTIC

GNN 23.6 26.0 -
IRNet 28.4 33.1 -
RAT-SQL 33.6 35.8 -
RAT-SQL + BERT 48.2 40.9 58.1
RAT-SQL + Grappa 49.1 38.5 59.3
LGESQL + ELECTRA 64.6 48.4 69.2

T5-large 53.6 40.0 58.5
GRAPHIX-T5-large 61.1 (" 7.5) 48.6 (" 8.6) 67.3 (" 8.8)

T5-3B 58.0 46.9 62.0
GRAPHIX-T5-3B 66.9 (" 8.9) 51.2 (" 4.3) 72.4 (" 10.4)

Table 2: Exact match (EM) accuracy (%) on SYN, DK and
REALISTIC benchmark.

MODEL TEMPLATE LENGTH TMCD

T5-base 59.3 49.0 60.9
T5-3B 64.8 56.7 69.6
NQG-T5-3B 64.7 56.7 69.5

GRAPHIX-T5-3B 70.1 (" 5.4) 60.6 (" 3.9) 73.8 (" 4.3)

Table 3: Exact match (EM) accuracy (%) on compositional
dataset SPIDER-SSP.

alization capability of the GRAPHIX layer is crucial for T5
such a text-to-text PLM to perform the text-to-SQL task.

Results on More Challenging and Realistic Settings As
shown in the Table 2, we further demonstrate the robustness
of GRAPHIX-T5 when it confronts with more challenging
and closer to realistic settings in SYN, DK, REALISTIC. First
of all, the results show that GRAPHIX-T5-3B outperforms
other baseline models across all three datasets. Furthermore,
we observe that GRAPHIX-T5-large and GRAPHIX-T5-3B
surpass the performance of vanilla T5-large and T5-3B with
a clear margin, respectively. This demonstrates that vanilla
T5 is hungry for structural reasoning when dealing with
more flexible and complicated questions for text-to-SQLs
from real-world scenarios. And GRAPHIX can mitigate this
problem.

Results on Compositional Generalization As shown in
Table 3, on SPIDER-SSP, the grammar-based inductive T5
model provided by (Shaw et al. 2021), named NQG-T5, has
no obvious advantages over vanilla T5, which indicates that
the grammar of natural language is not helpful to enhance T5
for compositional generation. However, GRAPHIX-T5 helps
the T5 gain the SQL knowledge and makes it less vulner-
able to these modifications through the effective fusion of
structural information.

Figure 4: Exact match (EM) (left) and execution (EX) (right)
accuracy (%) on SPIDER low-resource setting.

Table 3: Exact match (EM) accuracy (%) on compositional dataset SPIDER-SSP. 
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Figure 4: Exact match (EM) (left) and execution (EX) (right) accuracy (%) on SPIDER low-resource setting. 
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NatSQL+GAP 73.7 75.0
SMBOP + GRAPPA 74.7 75.0
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GRAPHIX-T5-3B + PICARD | 77.1(" 1.6) 81.0(" 1.7)

Table 1: Exact match (EM) and execution (EX) accuracy (%)
on SPIDER development set. ~ means the model does not
predict SQL values. | means the model uses the constrained
decoding PICARD. " is an absolute improvement.
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mainly based on hugging-face transformers library (Wolf
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optimizer with a linear decayed learning rate of 5e-5. Dur-
ing the experiment, GRAPHIX layers are mainly injected
into the encoder to learn better representations for structural
generalization. We evaluate our effectiveness of GRAPHIX-
T5 across two main versions: T5-Large with approximately
800M parameters and T5-3B, with more than 3 Billion pa-
rameters literally. All experiments are conducted on one
NVIDIA Tesla A100, which is available for the most re-
search centers.

Compared Methods Our model are compared mainly to
mainstream strong baseline models such as GNNSQL (Bo-
gin, Berant, and Gardner 2019), RATSQL (Wang et al.
2020a), GAZP (Zhong et al. 2020), BRIDEGE (Chen et al.
2020b), SMBOP (Rubin and Berant 2021), NatSQL (Gan
et al. 2021b), LGESQL (Cao et al. 2021), S2SQL (Hui et al.
2022) and T5+PICARD (Scholak, Schucher, and Bahdanau
2021) across the disparate datasets and settings.

4.2 Overall Performance
Results on SPIDER Table 1 displays the performance
of GRAPHIX-T5 and other competitive baseline models
on official SPIDER benchmark. First, we demonstrate that
GRAPHIX-T5-3B with a constrained decoding module PI-
CARD (Scholak, Schucher, and Bahdanau 2021) achieves
the state-of-the-art on this challenging cross-domain text-
to-SQL benchmark. Also, it is evident that GRAPHIX-T5 is
vastly superior to the vanilla T5 on large and 3B scale with
a significant margin. This indicates that the structural gener-
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Table 3: Exact match (EM) accuracy (%) on compositional
dataset SPIDER-SSP.

alization capability of the GRAPHIX layer is crucial for T5
such a text-to-text PLM to perform the text-to-SQL task.

Results on More Challenging and Realistic Settings As
shown in the Table 2, we further demonstrate the robustness
of GRAPHIX-T5 when it confronts with more challenging
and closer to realistic settings in SYN, DK, REALISTIC. First
of all, the results show that GRAPHIX-T5-3B outperforms
other baseline models across all three datasets. Furthermore,
we observe that GRAPHIX-T5-large and GRAPHIX-T5-3B
surpass the performance of vanilla T5-large and T5-3B with
a clear margin, respectively. This demonstrates that vanilla
T5 is hungry for structural reasoning when dealing with
more flexible and complicated questions for text-to-SQLs
from real-world scenarios. And GRAPHIX can mitigate this
problem.

Results on Compositional Generalization As shown in
Table 3, on SPIDER-SSP, the grammar-based inductive T5
model provided by (Shaw et al. 2021), named NQG-T5, has
no obvious advantages over vanilla T5, which indicates that
the grammar of natural language is not helpful to enhance T5
for compositional generation. However, GRAPHIX-T5 helps
the T5 gain the SQL knowledge and makes it less vulner-
able to these modifications through the effective fusion of
structural information.

Figure 4: Exact match (EM) (left) and execution (EX) (right)
accuracy (%) on SPIDER low-resource setting.
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Figure 4: Exact match (EM) (left) and execution (EX) (right) accuracy (%) on SPIDER low-resource setting. 
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Table 1: Exact match (EM) and execution (EX) accuracy (%)
on SPIDER development set. ~ means the model does not
predict SQL values. | means the model uses the constrained
decoding PICARD. " is an absolute improvement.
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mainly based on hugging-face transformers library (Wolf
et al. 2020) 3. We set the max input length as 1024, gen-
eration max length as 128, and batch size as 32. We also
adopt Adafactor (Shazeer and Stern 2018) as our primary
optimizer with a linear decayed learning rate of 5e-5. Dur-
ing the experiment, GRAPHIX layers are mainly injected
into the encoder to learn better representations for structural
generalization. We evaluate our effectiveness of GRAPHIX-
T5 across two main versions: T5-Large with approximately
800M parameters and T5-3B, with more than 3 Billion pa-
rameters literally. All experiments are conducted on one
NVIDIA Tesla A100, which is available for the most re-
search centers.

Compared Methods Our model are compared mainly to
mainstream strong baseline models such as GNNSQL (Bo-
gin, Berant, and Gardner 2019), RATSQL (Wang et al.
2020a), GAZP (Zhong et al. 2020), BRIDEGE (Chen et al.
2020b), SMBOP (Rubin and Berant 2021), NatSQL (Gan
et al. 2021b), LGESQL (Cao et al. 2021), S2SQL (Hui et al.
2022) and T5+PICARD (Scholak, Schucher, and Bahdanau
2021) across the disparate datasets and settings.

4.2 Overall Performance
Results on SPIDER Table 1 displays the performance
of GRAPHIX-T5 and other competitive baseline models
on official SPIDER benchmark. First, we demonstrate that
GRAPHIX-T5-3B with a constrained decoding module PI-
CARD (Scholak, Schucher, and Bahdanau 2021) achieves
the state-of-the-art on this challenging cross-domain text-
to-SQL benchmark. Also, it is evident that GRAPHIX-T5 is
vastly superior to the vanilla T5 on large and 3B scale with
a significant margin. This indicates that the structural gener-

2https://github.com/AlibabaResearch/DAMO-ConvAI/tree/
main/graphix

3https://huggingface.co/
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RAT-SQL + Grappa 49.1 38.5 59.3
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T5-3B 58.0 46.9 62.0
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REALISTIC benchmark.
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T5-3B 64.8 56.7 69.6
NQG-T5-3B 64.7 56.7 69.5

GRAPHIX-T5-3B 70.1 (" 5.4) 60.6 (" 3.9) 73.8 (" 4.3)

Table 3: Exact match (EM) accuracy (%) on compositional
dataset SPIDER-SSP.

alization capability of the GRAPHIX layer is crucial for T5
such a text-to-text PLM to perform the text-to-SQL task.

Results on More Challenging and Realistic Settings As
shown in the Table 2, we further demonstrate the robustness
of GRAPHIX-T5 when it confronts with more challenging
and closer to realistic settings in SYN, DK, REALISTIC. First
of all, the results show that GRAPHIX-T5-3B outperforms
other baseline models across all three datasets. Furthermore,
we observe that GRAPHIX-T5-large and GRAPHIX-T5-3B
surpass the performance of vanilla T5-large and T5-3B with
a clear margin, respectively. This demonstrates that vanilla
T5 is hungry for structural reasoning when dealing with
more flexible and complicated questions for text-to-SQLs
from real-world scenarios. And GRAPHIX can mitigate this
problem.

Results on Compositional Generalization As shown in
Table 3, on SPIDER-SSP, the grammar-based inductive T5
model provided by (Shaw et al. 2021), named NQG-T5, has
no obvious advantages over vanilla T5, which indicates that
the grammar of natural language is not helpful to enhance T5
for compositional generation. However, GRAPHIX-T5 helps
the T5 gain the SQL knowledge and makes it less vulner-
able to these modifications through the effective fusion of
structural information.

Figure 4: Exact match (EM) (left) and execution (EX) (right)
accuracy (%) on SPIDER low-resource setting.
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Table 5: Ablation Study of Graphix-T5

MODEL
SPIDER SYN DK REALISTIC

easy medium hard extra all easy medium hard extra all easy medium hard extra all easy medium hard extra all

T5-large 85.5 70.9 55.2 41.6 67.0 69.0 56.8 46.3 30.2 53.6 64.1 44.3 22.9 18.1 40.0 79.8 68.0 44.4 28.9 58.5
GRAPHIX-T5-large 89.9 78.7 59.8 44.0 72.6 75.8 67.5 50.6 33.1 61.1 63.6 54.5 33.8 29.5 48.6 88.1 77.3 50.5 40.2 67.3
T5-3B 89.5 78.3 58.6 40.4 71.6 74.2 64.5 48.0 27.8 58.0 69.9 53.5 24.3 24.8 46.9 85.3 73.4 46.5 27.8 62.0
GRAPHIX-T5-3B 91.9 81.6 61.5 50.0 75.6 80.6 73.1 52.9 44.6 66.9 69.1 55.3 39.2 31.4 51.2 93.6 85.7 52.5 41.2 72.4

Table 4: Exact matching (EM) accuracy by varying the levels of difficulty of the inference data on four benchmarks.

MODEL EM EX

(a) RAT-SQL + BERT 69.7 -

(b) T5-large 67.0 69.3

(c) GNN-T5-large 51.6 54.5

(d) GRAPHIX-T5-large
w/ BRIDGE Mode 72.7 75.9
w/ NO-MATCH Mode 71.1 74.2
w/ DOUBLE-GRAPH 72.0 74.7

Table 5: Ablation study for the variant GNN + PLM tactics
on cross-domain text-to-SQLs, echoing Figure 2, (a) is RAT-
SQL, (b) is vanilla T5, (c) is GNN-T5 and (d) is GRAPHIX.

Figure 5: The performance of the validation sets during the
convergence of GRAPHIX-T5 and GNN-T5 on SPIDER. It
can be clearly demonstrated that GNN-T5 has extremely un-
satisfactory performance, due to catastrophic forgetting.

Results on Low-resource Settings Figure 4 records the
performance of GRAPHIX-T5-large and T5-large on dif-
ferent low-resource settings. It displays 1) in each low-
resource setting, GRAPHIX-T5-large performs considerably
better than vanilla T5-large. It demonstrates that the struc-
tural knowledge created by humans can compensate for
the inadequate learning due to low-resource data (Ye et al.
2022); 2) notably, GRAPHIX-T5-large can perform obvi-
ously better than the vanilla T5-large trained on 100% data
even within just usage of 50% data. This further verifies the
strengths of GRAPHIX-T5 for training in the low-data re-
sources.

Results on Complex Queries As presented in Table 4,
we also compare the more precise performance results of
GRAPHIX-T5 to the vanilla T5 in four separate SQL diffi-
culty levels splitted by SPIDER officially, in order to bet-
ter comprehend the performance improvements. We observe
that GRAPHIX-T5 is more capable of handling harder text-
to-SQL cases, as illustrated in the Hard and Extra-hard ex-
amples, indicating that structural bias training is beneficial
to the text-to-text PLMs to reason over complex scenarios.

4.3 Ablation Study
As shown in Table 5, to better validate the function of each
component of GRAPHIX-T5, ablation studies are performed
in large version and expected to answer the following ques-
tions.

[1] How effective is BRIDGE MODE ? GRAPHIX-T5-
large with BRIDGE MODE can achieve the better perfor-
mance than with NO-MATCH Mode. It indicates that NO-
MATCH mode will greatly increase the number of noisy
neighbors, resulting in higher risk of over-smoothing issues
(Chen et al. 2020a).

[2] Could GRAPHIX be incorporated into decoder ?
With DOUBLE-GRAPH means that GRAPHIX-T5 incorpo-
rate GRAPHIX layer into the both encoder and decoder. The
result reveals that adding GRAPHIX layers to the decoder
does not lead to any improvements. Since decoder is an auto-
regressive model, which only considers the history tokens
when generating the current token. However, GRAPHIX-
T5, which can forecast the information of future tokens by
global linking, may disrupt this characteristic leading to the
negative impact on the decoder. Therefore, we propose that
the best tactic is to only incorporate GRAPHIX layers into
the encoder.

[3] Is GRAPHIX superior than other architecture vari-
ants ? Echoing Figure 2, we access the performance of
4 categories of models using PLMs on SPIDER. According
to Table 5 (c), the performance of GNN-T5 has decreased
by roughly 20% when compared to GRAPHIX-T5, proving
GNN-T5 training strategy to be ineffective. Moreover, we
notice that such severed GNN-T5 encounters a catastrophic
forgetting problem (French 1999) during training. Since the
accuracy of the GNN-T5 continues to be 0 in the first thou-
sands of steps, as shown in Figure 5, it is evident that all pre-
trained knowledge from T5 would be forgotten. After con-
vergence, the GNN-T5 performance decreases significantly
from the GRAPHIX-T5, indicating that only a small portion
of the semantic information from T5 has been utilized. In
contrast, GRAPHIX-T5 can achieve almost 50% accuracy in-
side the first 1000 training steps and more than 20% im-
provement than GNN-T5 after convergence, which verifies
the advantages of GRAPHIX-T5 that can avoid catastrophic
forgetting and augment generalization capability.

4.4 Case Study
To illustrate the effectiveness of GRAPHIX qualitatively,
two examples are displayed in Figure 6, which are sam-
pled randomly from SYN. Figure 6 shows the compari-
son of predicted SQLs by vanilla T5-3B and GRAPHIX-
T5-3B. We can observe that GRAPHIX can generate correct

• Could Graphix be incorporated into
decoder?

•How effective is Bridge Mode?

Question:

• Is Graphix superior than other GNN
variants ?
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w/ BRIDGE Mode 72.7 75.9
w/ NO-MATCH Mode 71.1 74.2
w/ DOUBLE-GRAPH 72.0 74.7

Table 5: Ablation study for the variant GNN + PLM tactics
on cross-domain text-to-SQLs, echoing Figure 2, (a) is RAT-
SQL, (b) is vanilla T5, (c) is GNN-T5 and (d) is GRAPHIX.

Figure 5: The performance of the validation sets during the
convergence of GRAPHIX-T5 and GNN-T5 on SPIDER. It
can be clearly demonstrated that GNN-T5 has extremely un-
satisfactory performance, due to catastrophic forgetting.

Results on Low-resource Settings Figure 4 records the
performance of GRAPHIX-T5-large and T5-large on dif-
ferent low-resource settings. It displays 1) in each low-
resource setting, GRAPHIX-T5-large performs considerably
better than vanilla T5-large. It demonstrates that the struc-
tural knowledge created by humans can compensate for
the inadequate learning due to low-resource data (Ye et al.
2022); 2) notably, GRAPHIX-T5-large can perform obvi-
ously better than the vanilla T5-large trained on 100% data
even within just usage of 50% data. This further verifies the
strengths of GRAPHIX-T5 for training in the low-data re-
sources.

Results on Complex Queries As presented in Table 4,
we also compare the more precise performance results of
GRAPHIX-T5 to the vanilla T5 in four separate SQL diffi-
culty levels splitted by SPIDER officially, in order to bet-
ter comprehend the performance improvements. We observe
that GRAPHIX-T5 is more capable of handling harder text-
to-SQL cases, as illustrated in the Hard and Extra-hard ex-
amples, indicating that structural bias training is beneficial
to the text-to-text PLMs to reason over complex scenarios.

4.3 Ablation Study
As shown in Table 5, to better validate the function of each
component of GRAPHIX-T5, ablation studies are performed
in large version and expected to answer the following ques-
tions.

[1] How effective is BRIDGE MODE ? GRAPHIX-T5-
large with BRIDGE MODE can achieve the better perfor-
mance than with NO-MATCH Mode. It indicates that NO-
MATCH mode will greatly increase the number of noisy
neighbors, resulting in higher risk of over-smoothing issues
(Chen et al. 2020a).

[2] Could GRAPHIX be incorporated into decoder ?
With DOUBLE-GRAPH means that GRAPHIX-T5 incorpo-
rate GRAPHIX layer into the both encoder and decoder. The
result reveals that adding GRAPHIX layers to the decoder
does not lead to any improvements. Since decoder is an auto-
regressive model, which only considers the history tokens
when generating the current token. However, GRAPHIX-
T5, which can forecast the information of future tokens by
global linking, may disrupt this characteristic leading to the
negative impact on the decoder. Therefore, we propose that
the best tactic is to only incorporate GRAPHIX layers into
the encoder.

[3] Is GRAPHIX superior than other architecture vari-
ants ? Echoing Figure 2, we access the performance of
4 categories of models using PLMs on SPIDER. According
to Table 5 (c), the performance of GNN-T5 has decreased
by roughly 20% when compared to GRAPHIX-T5, proving
GNN-T5 training strategy to be ineffective. Moreover, we
notice that such severed GNN-T5 encounters a catastrophic
forgetting problem (French 1999) during training. Since the
accuracy of the GNN-T5 continues to be 0 in the first thou-
sands of steps, as shown in Figure 5, it is evident that all pre-
trained knowledge from T5 would be forgotten. After con-
vergence, the GNN-T5 performance decreases significantly
from the GRAPHIX-T5, indicating that only a small portion
of the semantic information from T5 has been utilized. In
contrast, GRAPHIX-T5 can achieve almost 50% accuracy in-
side the first 1000 training steps and more than 20% im-
provement than GNN-T5 after convergence, which verifies
the advantages of GRAPHIX-T5 that can avoid catastrophic
forgetting and augment generalization capability.

4.4 Case Study
To illustrate the effectiveness of GRAPHIX qualitatively,
two examples are displayed in Figure 6, which are sam-
pled randomly from SYN. Figure 6 shows the compari-
son of predicted SQLs by vanilla T5-3B and GRAPHIX-
T5-3B. We can observe that GRAPHIX can generate correct
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Table 5: Ablation Study of Graphix-T5
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GRAPHIX-T5-large 89.9 78.7 59.8 44.0 72.6 75.8 67.5 50.6 33.1 61.1 63.6 54.5 33.8 29.5 48.6 88.1 77.3 50.5 40.2 67.3
T5-3B 89.5 78.3 58.6 40.4 71.6 74.2 64.5 48.0 27.8 58.0 69.9 53.5 24.3 24.8 46.9 85.3 73.4 46.5 27.8 62.0
GRAPHIX-T5-3B 91.9 81.6 61.5 50.0 75.6 80.6 73.1 52.9 44.6 66.9 69.1 55.3 39.2 31.4 51.2 93.6 85.7 52.5 41.2 72.4

Table 4: Exact matching (EM) accuracy by varying the levels of difficulty of the inference data on four benchmarks.

MODEL EM EX

(a) RAT-SQL + BERT 69.7 -

(b) T5-large 67.0 69.3

(c) GNN-T5-large 51.6 54.5

(d) GRAPHIX-T5-large
w/ BRIDGE Mode 72.7 75.9
w/ NO-MATCH Mode 71.1 74.2
w/ DOUBLE-GRAPH 72.0 74.7

Table 5: Ablation study for the variant GNN + PLM tactics
on cross-domain text-to-SQLs, echoing Figure 2, (a) is RAT-
SQL, (b) is vanilla T5, (c) is GNN-T5 and (d) is GRAPHIX.

Figure 5: The performance of the validation sets during the
convergence of GRAPHIX-T5 and GNN-T5 on SPIDER. It
can be clearly demonstrated that GNN-T5 has extremely un-
satisfactory performance, due to catastrophic forgetting.

Results on Low-resource Settings Figure 4 records the
performance of GRAPHIX-T5-large and T5-large on dif-
ferent low-resource settings. It displays 1) in each low-
resource setting, GRAPHIX-T5-large performs considerably
better than vanilla T5-large. It demonstrates that the struc-
tural knowledge created by humans can compensate for
the inadequate learning due to low-resource data (Ye et al.
2022); 2) notably, GRAPHIX-T5-large can perform obvi-
ously better than the vanilla T5-large trained on 100% data
even within just usage of 50% data. This further verifies the
strengths of GRAPHIX-T5 for training in the low-data re-
sources.

Results on Complex Queries As presented in Table 4,
we also compare the more precise performance results of
GRAPHIX-T5 to the vanilla T5 in four separate SQL diffi-
culty levels splitted by SPIDER officially, in order to bet-
ter comprehend the performance improvements. We observe
that GRAPHIX-T5 is more capable of handling harder text-
to-SQL cases, as illustrated in the Hard and Extra-hard ex-
amples, indicating that structural bias training is beneficial
to the text-to-text PLMs to reason over complex scenarios.

4.3 Ablation Study
As shown in Table 5, to better validate the function of each
component of GRAPHIX-T5, ablation studies are performed
in large version and expected to answer the following ques-
tions.

[1] How effective is BRIDGE MODE ? GRAPHIX-T5-
large with BRIDGE MODE can achieve the better perfor-
mance than with NO-MATCH Mode. It indicates that NO-
MATCH mode will greatly increase the number of noisy
neighbors, resulting in higher risk of over-smoothing issues
(Chen et al. 2020a).

[2] Could GRAPHIX be incorporated into decoder ?
With DOUBLE-GRAPH means that GRAPHIX-T5 incorpo-
rate GRAPHIX layer into the both encoder and decoder. The
result reveals that adding GRAPHIX layers to the decoder
does not lead to any improvements. Since decoder is an auto-
regressive model, which only considers the history tokens
when generating the current token. However, GRAPHIX-
T5, which can forecast the information of future tokens by
global linking, may disrupt this characteristic leading to the
negative impact on the decoder. Therefore, we propose that
the best tactic is to only incorporate GRAPHIX layers into
the encoder.

[3] Is GRAPHIX superior than other architecture vari-
ants ? Echoing Figure 2, we access the performance of
4 categories of models using PLMs on SPIDER. According
to Table 5 (c), the performance of GNN-T5 has decreased
by roughly 20% when compared to GRAPHIX-T5, proving
GNN-T5 training strategy to be ineffective. Moreover, we
notice that such severed GNN-T5 encounters a catastrophic
forgetting problem (French 1999) during training. Since the
accuracy of the GNN-T5 continues to be 0 in the first thou-
sands of steps, as shown in Figure 5, it is evident that all pre-
trained knowledge from T5 would be forgotten. After con-
vergence, the GNN-T5 performance decreases significantly
from the GRAPHIX-T5, indicating that only a small portion
of the semantic information from T5 has been utilized. In
contrast, GRAPHIX-T5 can achieve almost 50% accuracy in-
side the first 1000 training steps and more than 20% im-
provement than GNN-T5 after convergence, which verifies
the advantages of GRAPHIX-T5 that can avoid catastrophic
forgetting and augment generalization capability.

4.4 Case Study
To illustrate the effectiveness of GRAPHIX qualitatively,
two examples are displayed in Figure 6, which are sam-
pled randomly from SYN. Figure 6 shows the compari-
son of predicted SQLs by vanilla T5-3B and GRAPHIX-
T5-3B. We can observe that GRAPHIX can generate correct

MODEL
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easy medium hard extra all easy medium hard extra all easy medium hard extra all easy medium hard extra all

T5-large 85.5 70.9 55.2 41.6 67.0 69.0 56.8 46.3 30.2 53.6 64.1 44.3 22.9 18.1 40.0 79.8 68.0 44.4 28.9 58.5
GRAPHIX-T5-large 89.9 78.7 59.8 44.0 72.6 75.8 67.5 50.6 33.1 61.1 63.6 54.5 33.8 29.5 48.6 88.1 77.3 50.5 40.2 67.3
T5-3B 89.5 78.3 58.6 40.4 71.6 74.2 64.5 48.0 27.8 58.0 69.9 53.5 24.3 24.8 46.9 85.3 73.4 46.5 27.8 62.0
GRAPHIX-T5-3B 91.9 81.6 61.5 50.0 75.6 80.6 73.1 52.9 44.6 66.9 69.1 55.3 39.2 31.4 51.2 93.6 85.7 52.5 41.2 72.4

Table 4: Exact matching (EM) accuracy by varying the levels of difficulty of the inference data on four benchmarks.

MODEL EM EX

(a) RAT-SQL + BERT 69.7 -

(b) T5-large 67.0 69.3

(c) GNN-T5-large 51.6 54.5

(d) GRAPHIX-T5-large
w/ BRIDGE Mode 72.7 75.9
w/ NO-MATCH Mode 71.1 74.2
w/ DOUBLE-GRAPH 72.0 74.7

Table 5: Ablation study for the variant GNN + PLM tactics
on cross-domain text-to-SQLs, echoing Figure 2, (a) is RAT-
SQL, (b) is vanilla T5, (c) is GNN-T5 and (d) is GRAPHIX.

Figure 5: The performance of the validation sets during the
convergence of GRAPHIX-T5 and GNN-T5 on SPIDER. It
can be clearly demonstrated that GNN-T5 has extremely un-
satisfactory performance, due to catastrophic forgetting.

Results on Low-resource Settings Figure 4 records the
performance of GRAPHIX-T5-large and T5-large on dif-
ferent low-resource settings. It displays 1) in each low-
resource setting, GRAPHIX-T5-large performs considerably
better than vanilla T5-large. It demonstrates that the struc-
tural knowledge created by humans can compensate for
the inadequate learning due to low-resource data (Ye et al.
2022); 2) notably, GRAPHIX-T5-large can perform obvi-
ously better than the vanilla T5-large trained on 100% data
even within just usage of 50% data. This further verifies the
strengths of GRAPHIX-T5 for training in the low-data re-
sources.

Results on Complex Queries As presented in Table 4,
we also compare the more precise performance results of
GRAPHIX-T5 to the vanilla T5 in four separate SQL diffi-
culty levels splitted by SPIDER officially, in order to bet-
ter comprehend the performance improvements. We observe
that GRAPHIX-T5 is more capable of handling harder text-
to-SQL cases, as illustrated in the Hard and Extra-hard ex-
amples, indicating that structural bias training is beneficial
to the text-to-text PLMs to reason over complex scenarios.

4.3 Ablation Study
As shown in Table 5, to better validate the function of each
component of GRAPHIX-T5, ablation studies are performed
in large version and expected to answer the following ques-
tions.

[1] How effective is BRIDGE MODE ? GRAPHIX-T5-
large with BRIDGE MODE can achieve the better perfor-
mance than with NO-MATCH Mode. It indicates that NO-
MATCH mode will greatly increase the number of noisy
neighbors, resulting in higher risk of over-smoothing issues
(Chen et al. 2020a).

[2] Could GRAPHIX be incorporated into decoder ?
With DOUBLE-GRAPH means that GRAPHIX-T5 incorpo-
rate GRAPHIX layer into the both encoder and decoder. The
result reveals that adding GRAPHIX layers to the decoder
does not lead to any improvements. Since decoder is an auto-
regressive model, which only considers the history tokens
when generating the current token. However, GRAPHIX-
T5, which can forecast the information of future tokens by
global linking, may disrupt this characteristic leading to the
negative impact on the decoder. Therefore, we propose that
the best tactic is to only incorporate GRAPHIX layers into
the encoder.

[3] Is GRAPHIX superior than other architecture vari-
ants ? Echoing Figure 2, we access the performance of
4 categories of models using PLMs on SPIDER. According
to Table 5 (c), the performance of GNN-T5 has decreased
by roughly 20% when compared to GRAPHIX-T5, proving
GNN-T5 training strategy to be ineffective. Moreover, we
notice that such severed GNN-T5 encounters a catastrophic
forgetting problem (French 1999) during training. Since the
accuracy of the GNN-T5 continues to be 0 in the first thou-
sands of steps, as shown in Figure 5, it is evident that all pre-
trained knowledge from T5 would be forgotten. After con-
vergence, the GNN-T5 performance decreases significantly
from the GRAPHIX-T5, indicating that only a small portion
of the semantic information from T5 has been utilized. In
contrast, GRAPHIX-T5 can achieve almost 50% accuracy in-
side the first 1000 training steps and more than 20% im-
provement than GNN-T5 after convergence, which verifies
the advantages of GRAPHIX-T5 that can avoid catastrophic
forgetting and augment generalization capability.

4.4 Case Study
To illustrate the effectiveness of GRAPHIX qualitatively,
two examples are displayed in Figure 6, which are sam-
pled randomly from SYN. Figure 6 shows the compari-
son of predicted SQLs by vanilla T5-3B and GRAPHIX-
T5-3B. We can observe that GRAPHIX can generate correct

• Could Graphix be incorporated into
decoder?

•How effective is Bridge Mode?

Question:

• Is Graphix superior to other GNN
variants ?

Bridge > No-Match

No, it will break the generation
capability

Yes, Graphix can inject structural bias
w / o catastrophic forgetting Catastrophic

forgetting
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Experiments:
• Qualitive & Difficulty Analysis:

Value-Match Belongs-To

ids

description

Documents
paper

name

document_name

document_id

document_description

Question：List paper IDs, paper names, and paper descriptions for all papers.
T5-3B：SELECT paper_id, paper_name, paper_description FROM documents

Graphix-T5-3B：SELECT document_id, document_name, document_description FROM documents

Muti-hop Path

paper ids document_id

paper description document_description

paper name document_name

Gold：SELECT document_id, document_name, document_description FROM documents

Question：How many French car manufacturers are there?
T5-3B：SELECT COUNT(*) FROM car_makers WHERE country = "France"

Graphix-T5-3B：

Gold：SELECT COUNT(*) FROM car_makers AS T1 JOIN countries AS T2 ON T1.country  
= T2.countryid WHERE T2.countryname = 'France';

French

car

manufacture

car_makers

countries

country

countryid

countryname

French countryname countries

French countryname country

Value-Match Foreign-Key
Muti-hop Path

SELECT COUNT(*) FROM car_makers AS T1 JOIN countries AS T2 ON T1.country  
= T2.countryid WHERE T2.countryname = "France"

countryid
Same-Table

Modifier

Modifier

Modifier

Partial-Match

Partial-Match

Partial-Match

Figure 6: Case study: two illustrative cases sampled randomly from SYN. It shows that multi-hop reasoning can help GRAPHIX-
T5 generate more correct SQLs in terms of semantic meanings and database schema structures.

SQLs even in the hard scenarios. That is because that, even
with a small number of keywords overlapped, GRAPHIX-
T5 can accurately identify counterpart column or table ob-
jects and generate a high-quality SQL through multi-hop
reasoning and structural grounding. For example, in the first
case, vanilla T5-3B picks the incorrect columns paper id,
paper name, and paper description, which even
don’t appear in the table documents. This implies that
vanilla T5-3B is unable to reach the target schema ele-
ments without the capability of structural grounding when
confronting challenging text-to-SQLs. Instead, GRAPHIX-
T5-3B can correspond the question entities to the correct
column names through multi-hop paths presented in the
Figure 6. In the second case, vanilla T5-3B misidentifies
the country as their target column, however, "France"
only appears in the column countryname of the table
countries. This suggests T5-3B is only able to generate
semantically valid SQLs, which fails to take into account
the real database structure. On contrary, GRAPHIX-T5 can
produce truly valid SQLs in terms of both questions and
databases via a successful mixture of semantic and structural
information during training.

5 Related Works
The basic principle of a cross-domain text-to-SQL parser
is to build an encoder to learn the representations of the
questions and schemas, while employing a decoder to gen-
erate SQLs with the information learnt in the encoder (Qin
et al. 2022a). In particular, IRNET (Guo et al. 2019) pro-
poses to design an encoder to learn the representations of
questions and schemas respectively via an attention-based
Bi-LSTM and a decoder to predict SQLs via encoded in-
termediate representations. Later, the graph-based encoders
have been successfully proved its effectiveness in text-to-
SQL tasks, for example, some works (Bogin, Berant, and
Gardner 2019; Chen et al. 2021) construct the schema graph
and enhance the representations of inputs. RATSQL (Wang
et al. 2020a), SDSQL (Hui et al. 2021b), LGESQL (Cao
et al. 2021), S2SQL (Hui et al. 2022) further improve struc-

tural reasoning through modelling relations between schema
and questions. R2SQL (Hui et al. 2021a), SCORE (Yu et al.
2021) and STAR (Cai et al. 2022) enhance structural reason-
ing for context-dependent text-to-SQL parsing. These works
are performed by the PLM independently building the se-
mantic features, followed by the graph-based module inject-
ing the structural information. However, such training strat-
egy is just effective to encoder-based PLMs (i.e. , BERT
(Devlin et al. 2019), ELECTRA (Clark et al. 2020), et al.).
Unlike these approaches, we are the first to focus on how to
inject structured information into an encoder-decoder based
PLMs, in particular T5.

Recently, the text-to-text PLM T5 has been proven effec-
tiveness in text-to-SQL (Shaw et al. 2021; Qin et al. 2022c).
Besides, (Scholak, Schucher, and Bahdanau 2021) designs
a constrained decoding process, namely PICARD, to detect
and refuse erroneous tokens during the beam-search phase.
Xie et al. (2022) further injects the knowledge from other
structural knowledge grounding tasks into T5 with multi-
task to boost performance on text-to-SQL. Despite effec-
tiveness, these methods still struggle to generate SQLs in
the more challenging and complex scenarios without explicit
and implicit structural information. However, GRAPHIX-T5
can overcome this issue by an argument of graph represen-
tation learning in the encoder.

6 Conclusion

In this paper, we proposed an effective architecture to boost
the capability of structural encoding of T5 cohesively while
keeping the pretrained T5’s potent contextual encoding abil-
ity. In order to achieve this goal, we designed a Graph-Aware
semi-pretrained text-to-text PLM, namely GRAPHIX-T5, to
augment the multi-hop reasoning for the challenging text-
to-SQL task. The results under the extensive experiments
demonstrate the effectiveness of GRAPHIX-T5, proving that
structural information is crucial for the current text-to-text
PLMs for complicated text-to-SQL cases.

MODEL
SPIDER SYN DK REALISTIC

easy medium hard extra all easy medium hard extra all easy medium hard extra all easy medium hard extra all

T5-large 85.5 70.9 55.2 41.6 67.0 69.0 56.8 46.3 30.2 53.6 64.1 44.3 22.9 18.1 40.0 79.8 68.0 44.4 28.9 58.5
GRAPHIX-T5-large 89.9 78.7 59.8 44.0 72.6 75.8 67.5 50.6 33.1 61.1 63.6 54.5 33.8 29.5 48.6 88.1 77.3 50.5 40.2 67.3
T5-3B 89.5 78.3 58.6 40.4 71.6 74.2 64.5 48.0 27.8 58.0 69.9 53.5 24.3 24.8 46.9 85.3 73.4 46.5 27.8 62.0
GRAPHIX-T5-3B 91.9 81.6 61.5 50.0 75.6 80.6 73.1 52.9 44.6 66.9 69.1 55.3 39.2 31.4 51.2 93.6 85.7 52.5 41.2 72.4

Table 4: Exact matching (EM) accuracy by varying the levels of difficulty of the inference data on four benchmarks.

MODEL EM EX

(a) RAT-SQL + BERT 69.7 -

(b) T5-large 67.0 69.3

(c) GNN-T5-large 51.6 54.5

(d) GRAPHIX-T5-large
w/ BRIDGE Mode 72.7 75.9
w/ NO-MATCH Mode 71.1 74.2
w/ DOUBLE-GRAPH 72.0 74.7

Table 5: Ablation study for the variant GNN + PLM tactics
on cross-domain text-to-SQLs, echoing Figure 2, (a) is RAT-
SQL, (b) is vanilla T5, (c) is GNN-T5 and (d) is GRAPHIX.

Figure 5: The performance of the validation sets during the
convergence of GRAPHIX-T5 and GNN-T5 on SPIDER. It
can be clearly demonstrated that GNN-T5 has extremely un-
satisfactory performance, due to catastrophic forgetting.

Results on Low-resource Settings Figure 4 records the
performance of GRAPHIX-T5-large and T5-large on dif-
ferent low-resource settings. It displays 1) in each low-
resource setting, GRAPHIX-T5-large performs considerably
better than vanilla T5-large. It demonstrates that the struc-
tural knowledge created by humans can compensate for
the inadequate learning due to low-resource data (Ye et al.
2022); 2) notably, GRAPHIX-T5-large can perform obvi-
ously better than the vanilla T5-large trained on 100% data
even within just usage of 50% data. This further verifies the
strengths of GRAPHIX-T5 for training in the low-data re-
sources.

Results on Complex Queries As presented in Table 4,
we also compare the more precise performance results of
GRAPHIX-T5 to the vanilla T5 in four separate SQL diffi-
culty levels splitted by SPIDER officially, in order to bet-
ter comprehend the performance improvements. We observe
that GRAPHIX-T5 is more capable of handling harder text-
to-SQL cases, as illustrated in the Hard and Extra-hard ex-
amples, indicating that structural bias training is beneficial
to the text-to-text PLMs to reason over complex scenarios.

4.3 Ablation Study
As shown in Table 5, to better validate the function of each
component of GRAPHIX-T5, ablation studies are performed
in large version and expected to answer the following ques-
tions.

[1] How effective is BRIDGE MODE ? GRAPHIX-T5-
large with BRIDGE MODE can achieve the better perfor-
mance than with NO-MATCH Mode. It indicates that NO-
MATCH mode will greatly increase the number of noisy
neighbors, resulting in higher risk of over-smoothing issues
(Chen et al. 2020a).

[2] Could GRAPHIX be incorporated into decoder ?
With DOUBLE-GRAPH means that GRAPHIX-T5 incorpo-
rate GRAPHIX layer into the both encoder and decoder. The
result reveals that adding GRAPHIX layers to the decoder
does not lead to any improvements. Since decoder is an auto-
regressive model, which only considers the history tokens
when generating the current token. However, GRAPHIX-
T5, which can forecast the information of future tokens by
global linking, may disrupt this characteristic leading to the
negative impact on the decoder. Therefore, we propose that
the best tactic is to only incorporate GRAPHIX layers into
the encoder.

[3] Is GRAPHIX superior than other architecture vari-
ants ? Echoing Figure 2, we access the performance of
4 categories of models using PLMs on SPIDER. According
to Table 5 (c), the performance of GNN-T5 has decreased
by roughly 20% when compared to GRAPHIX-T5, proving
GNN-T5 training strategy to be ineffective. Moreover, we
notice that such severed GNN-T5 encounters a catastrophic
forgetting problem (French 1999) during training. Since the
accuracy of the GNN-T5 continues to be 0 in the first thou-
sands of steps, as shown in Figure 5, it is evident that all pre-
trained knowledge from T5 would be forgotten. After con-
vergence, the GNN-T5 performance decreases significantly
from the GRAPHIX-T5, indicating that only a small portion
of the semantic information from T5 has been utilized. In
contrast, GRAPHIX-T5 can achieve almost 50% accuracy in-
side the first 1000 training steps and more than 20% im-
provement than GNN-T5 after convergence, which verifies
the advantages of GRAPHIX-T5 that can avoid catastrophic
forgetting and augment generalization capability.

4.4 Case Study
To illustrate the effectiveness of GRAPHIX qualitatively,
two examples are displayed in Figure 6, which are sam-
pled randomly from SYN. Figure 6 shows the compari-
son of predicted SQLs by vanilla T5-3B and GRAPHIX-
T5-3B. We can observe that GRAPHIX can generate correct

Observation:

•Graphix can make T5 aware of
structure of databases to generate
more structure-rich SQLs in terms of
both semantics & structures.

•Graphix-T5 can deal with more
complicated text-to-SQL scenarios
than vanilla T5.

• Structural Grounding is beneficial to
text-to-text PLM especially in the
harder but real text-to-SQLs.
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Summary of Graphix-T5:
• We proposed an effective architecture to boost the capability of structural
encoding of T5 cohesively while keeping the pre-trained T5’s potent
contextual encoding ability.

• In order to achieve this goal, we designed a Graph-Aware semi-pretrained
text-to-text PLM, namely Graphix-T5 to augment the multi-hop reasoning for
the challenging text-to-SQL tasks

• The results under the extensive experiments demonstrate the effectiveness of
Graphix-T5, proving that structural bias is crucial for the current text-to-text
PLMs for especially complicated text-to-SQL cases.
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What’s next?:

🤔

Recent SOTA models on previous benchmark

are dominated by GPT-4

So, can LLM already serve as a database interface?
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What’s next?:
• The previous benchmarks have mostly focused on database schema, ignoring the importance of big
/ dirty database values (or records).

As most database contents in the Spider are minimal and tidy, this produces a discrepancy between
idealized and real-world scenarios.
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Can LLM Already Serve as A Database Interface? 

BIRD: A BIg Bench for Large-Scale Database Grounded Text-to-SQLs 

https://bird-bench.github.io/

External Knowledge ReasoningLarge and Realistic Database Values SQL Execution Efficiency

What is the winning rate of Boston Celtics in 2000?

SELECT COUNT(won) / ((COUNT(won) + COUNT(lose)) 
FROM teams WHERE team_name = ‘Boston Celtics’ 
AND year = 2000;

External Knowledge:

winning rate = # won / (# won + # lose)

What is the average salary of the worst performing managers?

SELECT AVG(CAST(REPLACE(SUBSTR(T1.salary, 4), ',', '') AS REAL)) FROM

last_name

Milgrom

… …

em_id

0000

… …

Employees

US$57,500.00

first_name salary

2222

6543

Adams

Wood

Milgrom

Sandy

Emily

… …

US$19,500.00

US$69,000.00

… …

Reasoned Database:

employee AS T1 JOIN position AS T2 ON T1.positionID = T2.positionID 
WHERE T1.performance = 'Poor' AND T2.positiontitle = 'Manager'

Among the coaches who have served more than 2 NBA teams, during 
which coach‘s period of coaching, a team has the least numbers of 
games lost in the post-season games?

SELECT coachID FROM coaches WHERE lgID='NBA’ AND post_wins !=0

SQL1: normal semantic parser 

AND post_losses !=0 AND coachID IN 
(SELECT coachID FROM coaches WHERE lgID='NBA’ GROUP BY coachID 
HAVING COUNT(tmID)>=2) ORDER BY post_losses ASC LIMIT 1 ;

Run time: 22.4s

What is the average salary of the worst performing managers?

SELECT AVG(CAST(REPLACE(SUBSTR(T1.salary, 4), ',', '') AS REAL)) FROM

last_name

Milgrom

… …

em_id

0000

… …

Employees

US$57,500.00

first_name salary

2222

6543

Adams

Wood

Santa

Sandy

Emily

… …

US$19,500.00

US$69,000.00

… …

Reasoned Database:

employee AS T1 JOIN position AS T2 ON T1.positionID = T2.positionID 
WHERE T1.performance = 'Poor' AND T2.positiontitle = 'Manager'

SQL2: efficient semantic parser
SELECT coachID FROM coaches WHERE lgID=‘NBA’ AND post_wins !=0 
AND post_losses !=0 AND EXISTS (SELECT 1 FROM coaches AS coaches1 
WHERE (coaches1.lgID=‘NBA’) AND (coaches.coachID=coaches1.coachID)
GROUP BY coaches1.coachID HAVING count(coaches1.tmID) >= 2

ORDER BY NULL ) ORDER BY coaches.post_losses ASC LIMIT 1 

Run time: 4.0s
How many accounts are eligible for loans in New York City?

The condition of loans is that 
the type of the account should 
be “OWNER”.

SELECT COUNT(*) FROM account WHERE account.type 

= ‘OWNER’ AND city = ‘NY’;

External Knowledge:

(a). (b).

(c).How many accounts are eligible for loans in New York City?

The condition of loans is that 
the type of the account should 
be “OWNER”.

SELECT COUNT(*) FROM account WHERE account.type 

= ‘OWNER’ AND disp_id = ‘NY’;

External Knowledge:

List account id who chooses weekly issue issuance statement?

‘POPLATEK TYDNE’ stands 
for weekly issuance.

SELECT account_id FROM account WHERE account.frequency

= ‘POPLATEK TYDNE‘;

External Knowledge:

How many accounts are eligible for loans in New York City?

The condition of loans is that 
the type of the account should 
be “OWNER”.

SELECT COUNT(*) FROM account WHERE account.type 

= ‘OWNER’ AND disp_id = ‘NY’;

External Knowledge:

List account id who chooses weekly issue issuance statement?

‘POPLATEK TYDNE’ stands 
for weekly issuance.

SELECT account_id FROM account WHERE account.frequency

= ‘POPLATEK TYDNE‘;

External Knowledge:

What is the average salary of the worst performing managers?
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Can LLM Already Serve as A Database Interface? NeurIPS 2023 Spotlight 

BIRD: A BIg Bench for Large-Scale Database Grounded Text-to-SQLs 

https://bird-bench.github.io/

Dev set reached 50K+ downloads
Mainly supported for Industries (20 +):
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Can LLM Already Serve as A Database Interface? 

https://bird-bench.github.io/

Mainly supported for Universities (10 +):

Stanford CS 224V SLIDES & HW MIT newest paper about code gen Tsinghua University (Prof. Jie Tang)à ChatGLM 3.0

BIRD: A BIg Bench for Large-Scale Database Grounded Text-to-SQLs 
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Dataset Construction

How many bioassay signatures … …

What is percentage of male who … …

What is the tag of the album … …

… …
… …

SELECT COUNT(T1.signature_id)FROM … …

SELECT CAST(SUM(CASE WHEN gender … …

… …
… …

SELECT T2.tag FROM torrents FROM … …

experts

Annotation
Question Crowd

SQL Crowd

4

3

4

Annotation

Annotation

1

Supervision

Supervision

Training & Test

2

3

8 / 10

9 / 10

enroll

enroll

Original Column Name Column Name Data Type Value DescriptionColumn Description

account_id

district_id

frequency

date
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Dataset Construction
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Step 1: Experts assemble and produce databases and description files. 
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(a) Annotation Workflow

(b) Double-blind Annotation

(c) Database Description

Step 2: Experts teach and evaluate crowdsourcing people. 
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Dataset Construction
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Step 3: Question annotators create a corpus of questions using 
databases and their corresponding description files. 29



Dataset Construction
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(a) Annotation Workflow
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Step 4: SQL annotators produce SQL files, equipped with 
databases, descriptions, and questions 30



Can LLM Already Serve as A Database Interface? 
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Can LLM Already Serve as A Database Interface? 
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BIRD: A BIg Bench for Large-Scale Database Grounded Text-to-SQLs 

12,751 text-to-SQL pairs
over 95 big databases 
with a total size of 33.4 GB 
spanning 37 domains

80 open-source relational 
databases for training

15 additional relational 
databases for evaluation
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Data Statistics

An overview comparison between BIRD and other cross-domain text-to-SQL benchmarks.

A comparative statistical analysis of SQL queries in the BIRD dataset and other benchmarks

No. Toks / SQL No. of Keywords No. n-grams / SQL (n=3) No. JOINs / SQL

WikiSQL Spider KaggleDBQA Bird
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Data Statistics

An overview comparison between BIRD and other cross-domain text-to-SQL benchmarks.

A comparative statistical analysis of SQL queries in the BIRD dataset and other benchmarks

No. Toks / SQL No. of Keywords No. n-grams / SQL (n=3) No. JOINs / SQL

WikiSQL Spider KaggleDBQA Bird

• Window Functions, i.e., OVER()

• Date Functions, i.e., JULIANDAY()

• Conversion Functions, i.e., CAST()

• Math Functions, i.e., ROUND()

• String Functions, i.e., SUBSTR()

34



Data Statistics

An overview comparison between BIRD and other cross-domain text-to-SQL benchmarks.

A comparative statistical analysis of SQL queries in the BIRD dataset and other benchmarks

No. Toks / SQL No. of Keywords No. n-grams / SQL (n=3) No. JOINs / SQL

WikiSQL Spider KaggleDBQA Bird

• External Knowledge

winning rate = #won / #games

• Self-contained Value Knowledge

POPLAKE TYDNE refers to 
weekly issuance
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Data Statistics

An overview comparison between BIRD and other cross-domain text-to-SQL benchmarks.

A comparative statistical analysis of SQL queries in the BIRD dataset and other benchmarks

No. Toks / SQL No. of Keywords No. n-grams / SQL (n=3) No. JOINs / SQL

WikiSQL Spider KaggleDBQA Bird

SQL Execution
Efficiency:

24s vs 4s
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Question Statistics
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Question Statistics

Examples of two main question types in the BIRD
38



Question Statistics
Execution Accuracy (EX) is defined as 
the proportion of examples in the 
evaluation set for which the executed 
results of both the predicted and ground
truth SQLs are identical, relative to the
overall number of SQLs

Valid Efficiency Score (VES) is 
designed to measure the efficiency of 
valid SQLs generated by models

https://bird-bench.github.io/
39
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Experimental Results

The Execution Accuracy (EX) 
of SOTA text-to-SQL models in BIRD

The Valid Efficiency Score (VES)
of SOTA text-to-SQL models in BIRD

The Execution Accuracy (EX) of other powerful LLMs in BIRD 40



Experimental Results

The Execution Accuracy (EX) 
of SOTA text-to-SQL models in BIRD

The Valid Efficiency Score (VES)
of SOTA text-to-SQL models in BIRD

The Execution Accuracy (EX) of other powerful LLMs in BIRD 41



Experimental Results

Error Analysis: 4 major types of error cases are presented 42



Experimental Results

Fine-grained dev EX results of GPT-4 w/ knowledge

\

Interesting Story About Values
Interaction with GPT4-32K

• GPT4-32k fails to consider the tied results in a joined 
tables correctly

SELECT T1.first_name, T1.last_name, T2.source  
FROM member AS T1  
INNER JOIN income AS T2 ON T1.member_id = T2.link_to_member  
WHERE T2.amount = (  
    SELECT MAX(amount)  
    FROM income  
)  
ORDER BY T2.amount DESC

SELECT T1.first_name, T1.last_name, T2.source
FROM member AS T1
INNER JOIN income AS T2 ON T1.member_id = T2.link_to_member
WHERE T2.amount = (
    SELECT MAX(T4.amount)
    FROM member AS T3
    INNER JOIN income AS T4
    ON T3.member_id = T4.link_to_member
    )
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Experimental Results

Fine-grained dev EX results of GPT-4 w/ knowledge

\

Interesting Story About Values
Interaction with GPT4-32K

• GPT4-32k fails to consider the tied results in a 
joined tables correctly

• GPT4 struggles to perform well in addressing 
numeric computation problems in text-to-SQL
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Experimental Results

Fine-grained dev EX results of GPT-4 w/ knowledge

\

Interesting Story About Values
Interaction with GPT4-32K

• GPT4-32k fails to consider the tied results in a 
joined tables correctly

• GPT4 struggles to perform well in addressing 
numeric computation problems in text-to-SQL

• GPT4 still lacks the capacity to comprehend 
complicated values and suffers hallucinations.

We hypothesize that GPT-4 is pre-trained based on 
semantic parsing objectiveness, losing the enough 
attention on values.
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Conclusion:
• We introduce BIRD, an English large-scale cross-domain, text-to-SQL benchmark with a 

particular focus on large database contents.

• BIRD mitigates the gap between text-to-SQL research and real-world applications by 
exploring three additional challenges:

o Handling large and dirty database values
o External knowledge reasoning
o Optimizing SQL execution efficiency

• Our experimental results demonstrate that BIRD presents a more daunting challenge
and leaves plenty of room for improvement and innovation in the text-to-SQL tasks.

• Our thorough efficiency and error analyses provide valuable insights and directions for 
future research.
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High-Quality Benchmark Construction Suggestions:

• Recruit Reliable People directly!

Bachelor degree

Correct value

Good understanding

Knowledgeable Much Better Than Normal or Unknown People
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High-Quality Benchmark Construction Suggestions:

• Recruit Reliable People directly!

• Taxonomy Before Annotations!
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High-Quality Benchmark Construction Suggestions:

• Recruit reliable people directly!

• Taxonomy Before Annotations!

• First Annotation w/o Fixing can be considered as human
performance

• Can Double-Blind Annotations be cheaper?

• Interactive Environment Setting is quite realistic!
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Task Alignment: A Novel and Effective Strategy for Mitigating
Hallucinations in Text-to-SQL Generation

Primary Hallucinations in Current Text-to-SQL Framework

Hallucination: The generation of content that is irrelevant, erroneous, or
inconsistent with user intents.

Why Hallucinations?

• Insufficient generalization capabilities of LLM
• Arises when models misinterpret tasks as

entirely new challenges in which they lack
prior training

Task Alignment

• Align novel tasks to pretrained tasks
• Explicitly guides LLMs to approach unfamiliar 

tasks from the perspective of more familiar 
ones, alleviating the burden of from-scratch 
generalization

How do humans deal with it?

Draw on familiar situations
↓

Analogy
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TA-SQL
TASQL: Task-Aligned Schema Linking Module (TASL) (B) + Task-Aligned Logical Synthesis Module (TALOG) (C)
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Experimental Results
Results on BIRD

In the setting with oracle knowledge
• TA-SQL effectively mitigates hallucinations in the GPT4 baseline, resulting 

in a relative improvement of 21.23% in EX on the development set and 
7.74% on the test set.

• Surprisingly, TA-SQL equipped with GPT4 outperforms the SOTA ICL-based 
method by 2.61% even without the application of self-consistency or re-
modification mechanisms

In the setting without oracle knowledge
• TA-SQL achieves performance comparable to the GPT4 baseline equipped 

with oracle external knowledge

• addressing hallucinations within the existing knowledge
  vs

the addition of manually extracted external knowledge 
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New Updates & Next
• Mini-dev (Lite version of development dataset)

• 500 high-quality text2sql pairs derived from 11 distinct databases

• Available in MySQL and PostgreSQL
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New Updates & Next
• New evaluation metrics (beta versions~) for the Mini-Dev dataset: 

• the Reward-based Valid Efficiency Score (R-VES)
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New Updates & Next
• New evaluation metrics (beta versions~) for the Mini-Dev dataset: 

• the Reward-based Valid Efficiency Score (R-VES)
• the Soft F1-Score

• measuring the similarity between the tables produced by predicted SQL queries 
and those from the ground truth.

Row

1 'Apple' 325

2 'Orange'

3 'Banana' 119

Row

1 325 'Apple'

2 191 'Orange'

3 'Banana'

Ground truth Predicted

Matched Pred_only Gold_only

Row 1 2 0 0

Row 2 1 1 0

Row 3 1 0 1

•tp = SUM(Matched) = 4
•fp = SUM(Pred_only) = 1
•fn = SUM(Gold_only) = 1
•Precision = tp / (tp + fp) = 4 / 5 = 0.8
•Recall = tp / (tp + fn) = 4 / 5 = 0.8
•F1 = 0.8 55



Thank you!

More details and updates at
https://bird-bench.github.io/

Any suggestions or feedback are welcome~
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