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Abstract
Abnormal behavior detection is crucial in many fields, such as social

networks, financial transactions, and cybersecurity. However, it

poses significant challenges due to the intricate structural evolution

of heterogeneous graphs. To address this issue, we propose a novel

method called Relational Evolution enhanced Anomaly Detection

in dynamic heterogeneous Graph (ReadGraph). ReadGraph fo-

cuses on tracing relation-based dynamic structural evolution to

comprehensively capture features related to abnormal behaviors

(edges) across different types of nodes. We conduct extensive ex-

periments to evaluate ReadGraph against advanced competitors. It

demonstrates that ReadGraph is 13.69% more effective than other

methods on average.

CCS Concepts
• Information systems → Spatial-temporal systems.
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1 Introduction
Anomaly detection is crucial in real-world applications such as iden-

tifying suspicious activities in social networks, detecting fraud in

financial transactions, and uncovering network intrusions in cyber-

security [1]. In particular, detecting anomalous behaviors (edges) is
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essential because it can uncover potentially harmful or fraudulent

activities that might otherwise go unnoticed [17]. For example, in

social networks, identifying anomalies in user interactions can ex-

pose malicious activities, such as behaviors aimed at manipulating

public opinion or spreading misinformation [26].

As anomalies may change over time, many methods propose to

detect anomalous behaviors in dynamic graphs [9, 20]. They em-

ploy both temporal and structural patterns to identify anomalous

edges in evolving graphs. However, they do not account for the het-

erogeneity of dynamic graphs, as the types of nodes and edges are

not the same for most scenarios [7, 15, 17, 19]. The state-of-the-art

(SOTA) method THGNN [17] further integrates the heterogeneous

information of the edges, as the types of nodes and edges are not

the same for most scenarios [19, 27]. Nevertheless, THGNN [17]

does not capture the dynamic structural evolution of relations in

the heterogeneous graph. It primarily focuses on single relation

representations and may overlook the temporal structural changes

in the relationships between nodes.

Figure 1: (a) Heterogeneous subgraphs for the target edge e
(in red); (b) Structural evolution of two relations r1 and r2.

In contrast, capturing the dynamic evolution of structural re-

lationships offers a more comprehensive understanding of how

relationships between nodes change over time, which is crucial for

accurate anomaly detection. Specifically, Figure 1 illustrates two
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types of relations in the heterogeneous subgraphs of the target edge

e (in red color at the snapshot t ): voting (r1) and following (r2). For

the voting (r1) relation in “user votes story”, the anomalous user (in

red) initially votes normally at the snapshot t − 2, continues with

normal voting at t − 1, finally, votes abnormally to one story at the

snapshot t , influencing other normal users to vote the same way.

For the following (r2) relation in “user follows user”, the anoma-

lous user follows normal users from t − 2 to t to disguise himself

gradually. We can see that the user camouflages himself through

normal voting and following before conducting abnormal behavior

at t . To fix this issue, we propose ReadGraph, a novel method that

captures the evolution of relational structures to reveal underlying

behaviors and detect anomalies effectively.

Our contributions. Our goal is to improve anomaly detection

for edges by leveraging relation-aware structural evolution for dy-

namic heterogeneous graphs. We start by sampling heterogeneous

subgraphs around each target edge using strategies that account

for types of nodes and edges. We then construct relation subgraphs

from these heterogeneous samples and perform relation-level mes-

sage passing to encode them. To capture dynamic structural changes

across different snapshots, we use Gated Recurrent Units (GRUs) for

sequential modeling. This approach enables us to detect changes in

relation-aware structures, thereby enhancing anomaly detection

in dynamic heterogeneous graphs. Finally, we perform extensive

evaluation using three real datasets against existing methods. Read-

Graph demonstrates a significant average increase of 13.69% in

effectiveness compared to the SOTA.

2 Related Work
We discuss related work on three categories: static heterogeneous

graphs [8, 16, 33, 35], dynamic homogeneous graphs [5, 11, 12,

18, 28], and dynamic heterogeneous graphs [6, 10, 21, 32, 34, 35].

Besides, there is also some related work on static homogeneous

graphs [13, 14, 22–25, 30, 31], which will not be discussed further.

AnomalyDetection on StaticHeterogeneousGraphs.RGCN
[27] introduces graph convolutional networks to capture the fea-

tures behind the relational data. HAN [19] uses node and semantic

level attentions for heterogeneous graph representation.

Anomaly Detection on Dynamic Homogeneous Graphs. The
TADDY [20] utilizes Transformer to capture spatial-temporal pat-

terns in dynamic graphs for anomaly detection. MIDAS [2] detects

suddenly arriving groups of anomalous edges in edge streams for

real-time detection. AnoGraph [3] employs sketch data structure for

higher-order modeling of anomalies in temporal graphs. RustGraph

[9] learns structural-temporal dependency by a variational graph

auto-encoder for robust anomaly detection in temporal graphs.

AnomalyDetection onDynamicHeterogeneousGraphs. The
state-of-the-art (SOTA) method THGNN [17] utilizes heteroge-

neous encoders and dual-level distributive attention mechanisms

for anomalous behavior (edge) detection in dynamic heterogeneous

graphs. However, the state-of-the-art method does not fully capture

the relation-aware structural evolution during anomaly detection.

3 Preliminary
Definition 1 (Dynamic Heterogeneous Graphs [17]). It is

defined as G(V, E), where τ : V → A maps V to node types and

Table 1: Summary of Notations

Notations Descriptions
G(V, E) A dynamic heterogeneous graph.

A The set of node types in the graph.

R The set of edge types in the graph.

x(vti ) ∈ R
dv

Embedding representation of node vi at

time t .

x
′

ϕ(e)(v
t
i ) ∈ R

dv
Embedding representation of node vi at

time t under the relation ϕ(e).

mr t ∈ Rdv Embedding of the relational subgraph at

time t for relation r .

ht ∈ Rdu Embedding of the change trends for the

given relation subgraph.

H
′

∈ R |R |×du
Embedding of the change trends for all re-

lation subgraphs.

mp ∈ Rdp Relation-aware edge representation.

hr e ∈ Rdp Representation of the dynamic structural

evolution of edge e under relation r .
ŷe The abnormality score for edge e .

ϕ : E → R maps E to edge types (relations), with |A| > 1 or |R | > 1.
The edge set E is an evolving stream of edges E = ⟨e1, e2, · · · , e |E |⟩,
where each edge e ∈ E is represented by a 5-tuple (vs , r ,vд ,ae , t).
Here, vs ∈ V and vд ∈ V denote source node and target node, r is
the edge type, ae is the edge attribute (optional), and t is the time of
the edge e . Each edge type r ∈ R has a reverse edge type r−1 ∈ R,
with r = r−1 for symmetric edges.

Problem Definition: Anomalous Behavior Detection in Dy-
namic Heterogeneous Graphs [17].We frame the task of detect-

ing anomalous behavior as identifying anomalous edges within

dynamic heterogeneous graphs, as defined by [17]. Specifically, the

goal is to identify the subset of anomalous edges E
′

⊆ E inG(V, E).
We summarise the notations in Table 1.

4 The ReadGraph Model
Framework. Figure 2 illustrates the framework. It extracts edge-

centric heterogeneous subgraphs (module (a)) and encodes relation

subgraphs using relation-specific message passing (module (b)).

Sequential learning captures relation-aware structural evolution

(module (c)).

Edge-CentricHeterogeneous Subgraph Sampling. The idea
is that subgraphs around a particular edge tend to have a more di-

rect and localized effect on that edge than the overall structure

of the entire graph. This localized view is essential for capturing

the specific interactions and dependencies that influence the edge,

rather than just considering the broader network. To better capture

this influence, for each edge, we use three sampling strategies to ex-

tract its heterogeneous subgraphs for each snapshot of the dynamic

graph: meta-path, k-hop neighborhoods, and node-importance-

based sampling. For a target edge e = (vs1
,vs2

), meta-path-based

sampling explores nodes connected to both vs1
and vs2

through

specific meta-paths, while node-importance-based sampling uses

importance scores calculated by Personalized PageRank [20] as:

S = α(I − (1 − α)D−1/2AD−1/2)−1 , (1)
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Figure 2: The overall framework of our proposed ReadGraph model.

where A ∈ R |V |×|V |
denotes the adjacency matrix which repre-

sents the edge count over time,D ∈ R |V |×|V |
is the diagonal degree

matrix, S ∈ R |V |×|V |
, α ∈ (0, 1) denotes the teleport probability.

In the heterogeneous subgraph induced by the node set sampled

using those three strategies, the node embedding is initially by

the attention function of its importance rank, spatial distance to

the target edge e = (vs1
,vs2

), temporal distance, and node type

information as:

x(v ti ) = att(ximp(v ti ) | |xspt(v
t
i ) | |xtmp(v ti ) | |xtyp(v

t
i ))

x(v ti ) = pooling(x(v ti )) ,
(2)

where the importance rank is ximp(v
t
i ) = linear(rank(sti,s1

+ sti,s2

)),

spatial distance is xspt(vti ) = linear(min(dist(vti ,v
t
s1

), dist(vti ,v
t
s2

))),

temporal distance between the occurring time t and the current time

to is xtmp(v
t
i ) = linear(| |to − t | |), and the node type is xtyp(vti ) =

linear(av ti
), av ti

is the type of node vti ; att(·) = softmax(
QvKv

⊤

√
dv

)Vv,

where Qv ∈ R4×dv
, Kv ∈ R4×dv

, and Vv ∈ R4×dv
are calculated by

multiplying learnable parameters with the concatenated vector, and

dv is the hidden dimension. Then we perform a pooling operation

to obtain the final node representation x(vti ) ∈ R
dv

.

Relation SubgraphRepresentation Learning. To better cap-
ture the varying representations of the same heterogeneous sub-

graph under different relational contexts, we introduce a Relation

Subgraph Representation Learningmodule. This module is designed

to explicitly account for the different types of relations that can in-

fluence the subgraph’s structure andmeaning. For each edge-centric

heterogeneous subgraph, we first construct its corresponding rela-

tion subgraphs, such as those in Figure 2 (b) with relations r1 (solid

arrow) and r2 (dashed arrow). Nodes connected by each relation

type are used to create relation subgraphs.

We propagate messages within each relation subgraph as follows:

x
′

ϕ(e )(v
t
i ) = σ

( ∑
j∈Nϕ(e )(v

t
i )

дϕ(e )i j · xϕ(e )(v tj )
)

дϕ(e )i j = softmax

(
w⊤
ϕ(e ) · [xϕ(e )(v

t
i ) | |xϕ(e )(v

t
j )]

)
,

(3)

where xϕ(e) ∈ Rdv , wϕ(e) ∈ R2dv
, and Nϕ(e)(v

t
i ) denotes the

neighboring nodes of the node vti for relation ϕ(e).

Next, relation-level messages are fused across subgraphs:

x
′
(v ti ) = σ

( ∑
r ∈R

softmax

(
q⊤ϕ(e )x

′

r (v
t
i )
)
· x

′

r (v
t
i )
)
, (4)

where qϕ(e) ∈ Rdv denotes trainable parameter.

Finally, the representation mr t ∈ Rdv of the relation subgraph

is calculated by average pooling among embeddings x
′

(vti ) ∈ R
dv

of all nodes in the relation subgraph.

Relation-Aware Structural Evolution. In order to capture

the relation-aware dynamic structural evolution over time, here we

use a sequential learning algorithm, whose fewer parameters allow

for more efficient training, especially when dealing with large-scale

dynamic graphs. For different relation subgraphs across snapshots,

we use Gated Recurrent Units (GRUs) [4] as:

ht = zt ◦ ht−1 + (1 − zt ) ◦ ¯ht
zt = σ (Wzmr t + Uzht−1)

¯ht = tanh(Whmr t + Uh (ct ◦ ht−1))

ct = σ (Wrmr t + Ur ht−1) ,

(5)

where ◦ denotes element-wise product operation, Wz ,Wh ,Wr ∈

Rdu×dv , Uz ,Uh ,Ur ∈ Rdu×du are learnable parameters, and du
denotes the hidden unit dimension. The GRU length is related to

the number of snapshots |T |, which is typically short.

The output of the last snapshot ht ∈ Rdu is utilized to encode the

change trends of the relation subgraph over time. For all relation

subgraphs, we form their sequential outputs as H
′

∈ R |R |×du
.Then,

We can obtain the relation-aware edge representation after a linear

transformation of H
′

, e.g., mp = linear(H
′

) .

Anomaly Prediction. The predicted anomaly score ŷe of the

target edge e is calculated as ŷe = σ (linear(mp )) ,where 0 ≤ ŷe ≤ 1.

A higher ŷe indicates a greater abnormality and σ is the sigmoid

activation function.

Optimization. We optimize this problem by minimizing the

loss function as follows:

L = Lreg + Lent (6)

whereLreg = ∥Ât
s1s2

−(1−ŷte )∥,Lent = ye log(ŷe )+ (1−ye )log(1−
ŷe ). The regularization loss Lreg aligns the node connectivity in
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Table 2: AUC values across three datasets, with bold indicating the highest values and underline marking the second highest.

Datasets Anomaly Ratio HAN RGCN TADDY MIDAS RustGraph THGNN ReadGraph

Digg 5% 0.5996 0.7406 0.7018 0.2614 0.7734 0.7073 0.7952
10% 0.5339 0.7587 0.7222 0.2802 0.7842 0.7084 0.8012

Yelp 5% 0.5033 0.6162 0.5178 0.5475 0.5179 0.5447 0.5683

10.27% 0.5048 0.5669 0.5163 0.5445 0.5146 0.5628 0.5909
Amazon 5% 0.6069 0.5775 0.5004 0.4949 0.6333 0.3908 0.7596

10% 0.6361 0.5945 0.5005 0.4879 0.6448 0.5655 0.7501

the reconstructed adjacency matrix Â = σ (XtXt⊤) with the value

1 − ŷe . For normal edges, where ŷe is 0, this value equals 1.

Theorem 4.1. The complexity of ReadGraph is dominated by
O
(
|E |(|Vh | + |Eh |)

)
, where |Vh | and |Eh | denote the number of

nodes and edges in the sampled subgraph for target edge e .

5 Experiments
Experimental Setup.Datasets: Weevaluate themodels on datasets

from three real-world platforms as in Table 3.

Table 3: The statistics of three datasets.

Digg Yelp Amazon

# Nodes 3,532,340 161,148 9,084,722

# Edges 4,748,185 359,052 34,686,770

% Anomalous Edges 10% 10.27% 10%

# Node Types 2 2 2

# Edge Types 4 2 2

• Digg Dataset [17]: It includes users and stories, with nodes

denoting both users and stories. Edges between users indicate the

‘following’ relations, while edges between users and stories repre-

sent ‘voting’ relations. The meta-paths are “USU”, and “UU”, where

‘U’ denotes a user and ‘S’ denotes a story. The relations include ‘fol-

lowing’ and ‘voting’, along with their respective inverse relations.

• Yelp Dataset
1
: It captures user reviews for various hotels.

Nodes represent users and hotels, and directed edges reflect user

reviews of hotels. Each edge is labeled as either normal or abnormal.

The meta-path selected is “UHU”, with ‘U’ indicating a user and

‘H’ indicating a hotel. The relations include ‘review’ and its inverse.

This dataset contains 10.27% of edges that are labeled as anomalous.

•Amazon Dataset
2
: It contains user reviews of items on Amazon.

Nodes represent users and items, while directed edges denote user

reviews of items. The meta-path is “UIU”, where ‘U’ denotes a user

and ‘I’ denotes an item. The relations are ‘review’ and its inverse.

Preprocessing: Since the Digg and Amazon datasets lack labels

for anomalous edges, we follow [17] and randomly assign anoma-

lous labels to 10% of the edges in the training set. The remaining

edges are treated as normal. The Yelp dataset already contains la-

beled anomalous edges, so no injection was needed. For evaluation,

we retain the original anomalies in the training set and set the

anomaly percentage to 5% in the testing set by randomly removing

some anomalous edges in the Yelp dataset as [17].

Competitors:We compare ReadGraphwithHAN [29] andRGCN
[27] designed for static heterogeneous graphs, TADDY [20],

1
https://www.kaggle.com/datasets/abidmeeraj/yelp-labelled-dataset/code

2
https://snap.stanford.edu/data/web-Amazon-links.html

MIDAS [2] and RustGraph [9] designed for dynamic homoge-
neous graphs, and THGNN [17] (SOTA) designed for dynamic
heterogeneous graphs. More details can be found in Section 2.

Hyperparameter Settings:Hyperparameter tuning is performed

via Bayesian optimization with the following ranges: snapshot size

|Es | {500, 1000, 1500, 2000, 2500}, which refers to the number of

edges used to construct a snapshot as [9, 20], number of nodes |Vh |

in the sampled heterogeneous graphs {5, 7, 9, 11, 13, 15}, and the

number of snapshots |T | {2, 3, 4, 5, 6}.

Performance Metrics:We use AUC (area under the ROC curve)

as the performance metric, following [17]. AUC ranges from 0 to

1, with higher values indicating better performance. This metric is

effective for anomaly detection, as it measures accuracy even when

the number of anomalies is unknown.

Effectiveness Evaluation. Table 2 shows the effectiveness re-

sults of all models. Our observations are as follows:

(1) The ReadGraph model consistently achieves the highest AUC

values on the Digg, Yelp, and Amazon datasets when the percentage

of anomalous edges is 10% or 10.27%. In particular, on the real-

world Yelp dataset with labeled anomalies, the ReadGraph model

outperforms all other models by 4.15%, highlighting its superior

anomaly detection capability. It can be seen that capturing the

dynamic structural evolution of relationships in heterogeneous

graphs plays an important role.

(2) When the anomaly ratio is reduced to 5%, the ReadGraph

model maintains the best and most stable performance on the Digg

and Amazon datasets. On the Yelp dataset, it achieves the second-

best AUC value.

(3) Among the baseline models in the first category, RGCN

demonstrates the best performance on both Digg and Yelp datasets.

It even achieves the highest AUC among all models for the Yelp

dataset when the anomalous edge percentage is 5%. This under-

scores the effectiveness of relational learning in detecting anoma-

lous edges and its critical role in edge anomaly detection.

Ablation Study. We conduct an ablation study to assess the

impact of key components in ReadGraph. The first variant ignores

the meta-path enhanced modeling, denoted as ReadGraphnm. The

second variant retains only the cross-entropy loss, denoted as

ReadGraph
nl
. The last one ignores the dynamic structural evolution,

denoted as ReadGraphne. From Figure 3, we observe:

(1) ReadGraph is significantly more effective than ReadGraphnm

on both datasets. It shows that the modeling of the meta-paths is

necessary in the model.

(2) ReadGraph shows superior performance compared to ReadGraph
nl

on the Yelp dataset and performs comparably to ReadGraph
nl
on

the Amazon dataset. This indicates that including additional losses

enhances anomaly detection.
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(3) ReadGraph has better performance than ReadGraphne and

has a significant effect on the Yelp dataset. It shows that the dynamic

structural evolution plays an important role.

 0.52

 0.56

 0.6

ReadGraph
ReadGraphnm

ReadGraphnl
ReadGraphne

A
U

C

(a) AUC on Yelp

 0.6

 0.7

 0.8

A
U

C

(b) AUC on Amazon

Figure 3: The ablation experiments of theReadGraphmodel.

6 Conclusions
In this paper, we address the challenge in anomalous behavior

(edge) detection for dynamic heterogeneous graphs. We introduce

ReadGraph, which is a novel model that tracks relation-aware struc-

tural evolution to thoroughly capture the features associated with

behaviors. Our evaluation results indicate that our proposed model

outperforms SOTA w.r.t. effectiveness.
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