Check for
Updates

A Similarity-based Approach for Efficient Large Quasi-clique

Detection

Jiayang Pang
The Chinese University of Hong
Kong, Shenzhen
Shenzhen, China
jlayangpang@link.cuhk.edu.cn

ABSTRACT

Identifying dense subgraphs called quasi-cliques is pivotal in vari-
ous graph mining tasks across domains like biology, social networks,
and e-commerce. However, recent algorithms still suffer from ef-
ficiency issues when mining large quasi-cliques in massive and
complex graphs. Our key insight is that vertices within a quasi-
clique exhibit similar neighborhoods to some extent. Based on this,
we introduce NBSim and FastNBSim, efficient algorithms that find
near-maximum quasi-cliques by exploiting vertex neighborhood
similarity. FastNBSim further uses MinHash approximations to re-
duce the time complexity for similarity computation. Empirical eval-
uation on 10 real-world graphs shows that our algorithms deliver
up to three orders of magnitude speedup versus the state-of-the-art
algorithms, while ensuring high-quality quasi-clique extraction.

CCS CONCEPTS

« Theory of computation — Graph algorithms analysis; «
Mathematics of computing — Graph algorithms.

KEYWORDS
Quasi-cliques, neighborhoods, similarity, MinHash

ACM Reference Format:

Jiayang Pang, Chenhao Ma, and Yixiang Fang. 2024. A Similarity-based Ap-
proach for Efficient Large Quasi-clique Detection. In Proceedings of the ACM
Web Conference 2024 (WWW °24), May 13-17, 2024, Singapore, Singapore.
ACM, New York, NY, USA, 9 pages. https://doi.org/10.1145/3589334.3645374

1 INTRODUCTION

Dense subgraph extraction from large graphs has emerged as a key
operation in graph mining. By identifying highly interconnected
groups of vertices, dense subgraphs enable the discovery of critical
components hidden in real-world networks. For example, dense
subgraph mining has been used to identify spam link farms in
web graphs [14, 34], discover regulatory motifs in genomic DNA
[13], compress graphs [3], and analyze social network [17, 41]. The

“Chenhao Ma is the corresponding author.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

WWW 24, May 13-17, 2024, Singapore, Singapore

© 2024 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 979-8-4007-0171-9/24/05...$15.00
https://doi.org/10.1145/3589334.3645374

Chenhao Ma*

The Chinese University of Hong
Kong, Shenzhen
Shenzhen, China

machenhao@cuhk.edu.cn

401

Yixiang Fang
The Chinese University of Hong
Kong, Shenzhen
Shenzhen, China
fangyixiang@cuhk.edu.cn

(a) A clique (b) A quasi-clique with o = 0.8

Figure 1: Illustrating clique and quasi-clique.

widespread utility of dense subgraphs underscores their importance
as a fundamental graph mining primitive.

Various formulations for extracting different classes of dense
subgraphs have been proposed based on different density metrics.
Clique is the most classic dense subgraph model, which requires
full connectivity between all vertices. While conceptually simple,
cliques are often unrealistic for noisy, incomplete real-world data.
This has motivated the development of various flexible dense sub-
graph formulations in the literature.

Quasi-cliques represent a relaxation of the clique concept to al-
low for real-world noise and missing edges. An a-quasi-clique is a
subgraph where the number of edges is at least & times the number
of edges in a clique of the same size, for some density parameter
a € (0,1). Figure 1 illustrates a clique, which is fully connected,
versus a quasi-clique which misses some edges. In the quasi-clique
shown, there are 15 possible edges but only 12 are present, giving
an edge-density of 12/15 = 0.8. Quasi-cliques provide a more flexi-
ble formulation by only requiring the subgraph to be nearly fully
connected based on the edge-density threshold . This makes them
better suited for real-world graphs compared to strict cliques.

Prior work. The maximum quasi-clique problem (MQCP) aims
to find the largest a-quasi-clique in a graph but is NP-hard to com-
pute [27]. Thus, several heuristic algorithms have been proposed.
Konar and Sidiropoulos [18] presented a polynomial-time algo-
rithm NB that mines large quasi-cliques from vertex neighborhoods
based on clustering coefficients. NB achieves the state-of-the-art
performance versus prior methods [25, 38] by refining well-chosen
neighborhoods.

However, as NB treats entire neighborhoods as quasi-cliques, it
risks overlooking dense subgraphs contained within larger neigh-
borhoods. Consider a vertex v where the neighborhood N(v) has
size 110 and edge-density 0.5. While N (v) may not be optimal as a
whole, it could contain a dense subset S of size 70 with edge-density
0.9 that meets the quasi-clique threshold, but S is missed by NB.

https://doi.org/10.1145/3589334.3645374
https://doi.org/10.1145/3589334.3645374
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3589334.3645374&domain=pdf&date_stamp=2024-05-13

WWW °24, May 13-17, 2024, Singapore, Singapore

Furthermore, NB has a high complexity of O(m®?) asit computes
the clustering coefficient for every vertex’s 1-hop neighbors via
triangle counting, including irrelevant ones. In summary, NB has
limitations in both accuracy and efficiency.

Our solution. To address the limitations of prior quasi-clique ex-
traction methods like NB, we propose NBSim and FastNBSim, novel
quasi-clique extraction algorithms based on similarity measures.

Different from NB, when checking each neighborhood (e.g., u’s
neighborhood), NBSim treats each neighbor o in the neighborhood
as a unit, instead of treating the entire neighborhood as a whole.
Specifically, NBSim decides whether to include each vertex v from
u’s neighborhood based on the similarity between the neighbor-
hoods of u and v, and has the ability to detect the dense quasi-clique
inside the whole neighborhood of u. This enables the extraction of
quasi-cliques missed by NB that are solely based on clustering coef-
ficients of whole neighborhoods. Theoretically, we prove that this
similarity-based algorithm provides a lower bound on edge-density
for extracted quasi-cliques. Besides, it avoids expensive cluster-
ing coefficient computations as NB needs. We have also devised
a new vertex ordering strategy to further enhance efficiency. By
pruning unpromising neighborhoods early, we significantly reduce
unnecessary computations on irrelevant vertices.

To further speed up the similarity computation, we propose an
algorithm FastNBSim that uses the MinHash technique to estimate
the similarity between two neighborhoods in constant time, rather
than the neighborhood size-dependent time of the exact compu-
tation. Experiments show that even using small-size signatures of
MinHash, we can achieve promising results compared to NBSim.

Our principal contributions are summarized as follows:

e A similarity-based algorithm NBSim can efficiently detect
quasi-cliques inside the neighborhoods.

o A novel vertex ordering strategy prioritizes vertices whose
neighborhoods have a high potential to contain large quasi-
cliques first.

e A MinHash-based algorithm FastNBSim incorporates ap-
proximations with MinHash to reduce the overall time com-
plexity to linear.

o Comprehensive experiments on 10 real-world datasets demon-
strate that our solutions, especially FastNBSim, are up to
three orders of magnitude faster than state-of-the-art base-
lines while ensuring high-quality quasi-cliques extraction.

Outline. The rest of the paper is organized as follows. We review
the related work in Section 2. Section 3 gives the preliminaries and
the definition of the maximum quasi-clique problem. We present
our similarity-based algorithm NBSim in Section 4 and MinHash-
based fast algorithm FastNBSim in Section 5. Experimental results
are presented in Section 6. We conclude the paper in Section 7.

2 RELATED WORK

Finding dense subgraphs in large graphs is an important task in
graph mining. Among different dense subgraph models, Densest
Subgraph discovery problem [11, 14, 21, 22, 25, 37, 44] is one of the
focused areas, and clique is the archetypal one. Here, we review
related work on cliques and quasi-cliques.

Maximum Clique Finding. The maximum clique problem aims
to find a clique of maximum size in a given graph. This problem is

402

Jiayang Pang, Chenhao Ma, & Yixiang Fang

NP-hard. Branch-and-bound search methods have been extensively
studied for finding maximum cliques exactly [4, 5, 20, 26, 33, 42].
The key idea is to grow an initially empty clique by recursively
moving vertices from a candidate set to the clique, pruning branches
that cannot lead to a maximum clique. For sparse graphs, Chang
[6] proposes more efficient maximum clique finding algorithms.
The problem of enumerating maximal cliques has also been widely
investigated [2, 8, 9, 12, 16, 35, 45].

Maximum Quasi-Clique Problem. Another relaxation to cliques
is known as quasi-cliques. Given a threshold «, a a-quasi-clique is
a subgraph with edge density above a. The maximum quasi-clique
problem aims to find the largest a-quasi-clique in a graph. This
problem generalizes maximum clique finding and is NP-hard [27].

Algorithms for this problem can be classified as exact or heuristic.
Exact algorithms such as branch-and-bound can guarantee opti-
mality but have high runtime on large graphs [23, 24, 27, 30, 40].
Thus, many efficient heuristic algorithms have been developed.
Abello et al. [1] introduced an efficient semi-external memory algo-
rithm and relies on greedy randomized adaptive search procedures.
Tsourakakis et al. [38] studied the optimal-quasi-clique and de-
signed a greedy algorithm and a local-search algorithm for MQCP.
Pinto et al. [28, 29] proposed the biased random-key genetic algo-
rithm for the MQCP. Djeddi et al. [10] used an extension of adaptive
multi-start tabu search to approximate the MQCP solution. Konar
and Sidiropoulos [18] proposed an efficient algorithm for MQCP by
mining large quasi-cliques from vertex neighborhoods. Recently,
Chen et al. [7] developed an efficient local search algorithm by
taking a novel vertex selection strategy. However, state-of-the-art
heuristics remain inefficient on massive graphs. The algorithm in
[7] provides no polynomial time guarantees, while the polynomial
method in [18] has high runtimes on large graphs.

3 PRELIMINARIES

3.1 Problem Definition

We consider an unweighted and undirected graph G = (V, E), where
V and E are the sets of vertices and edges respectively. We denote
the numbers of vertices and edges in G by n and m respectively.
For a vertex u, the neighborhood N(u) consists of the set of nodes
that are neighbors of node u and u itself [46]. The degree of u
is defined as the number of neighbors of u, denoted as d(u), i.e.,
IN(u)| = d(u) + 1. Given a subset of vertices S C V, denote E(S)
as the subset of E containing edges only between the vertices in
S,ie., E(S) =EN(SxS). We use G[S] = (S, E(S)) to denote the
subgraph induced by S, and dg(u) to denote degree of u in G[S].

Definition 3.1 (Edge-density [7, 18]). Given a graph G = (V,E)
and its subgraph Gs = (S, E(S)) induced by S, its edge-density is
defined as:

[E(S)]

S

('3

5(8) = (1

A clique is a subset of vertices such that every two distinct
vertices in the clique are adjacent, i.e., §(S) = 1 when S is a clique.
Given a parameter @ € (0, 1], a subgraph G[S] is said to be a a-
quasi-clique if 5(S) > a, i.e., if the number of its edges is at least

a- (Igl).

A Similarity-based Approach for Efficient Large Quasi-clique Detection

Definition 3.2 (Maximum quasi-clique problem (MQCP)). Given a
graph G = (V, E) and density threshold « € (0, 1], the maximum
quasi-clique is an a-quasi-clique S C V' with maximum cardinality.

MQCP is proved to be an NP-hard problem [27]. Hence, we
will start by presenting an algorithm called NBSim that can find
approximate maximum quasi-cliques in polynomial time. We will
then improve this algorithm to a faster, linear time version called
FastNBSim, using minhash approximation.

Before we present our similarity-based algorithms, we first give
the definition of structure similarity. Given two neighboring ver-
tices u and v, the similarity o(u,v) between u and v is defined
as the set similarity between N(u) and N(v). In existing studies
[32, 46], Jaccard similarity is adopted to measure the similarity. The
definition of Jaccard similarity is as follows:

Definition 3.3 (Jaccard similarity [15]). Given two sets X and Y,
IXNY|
[XOY|"

the Jaccard similarity between these two sets is defined as

Based on Jaccard similarity, the similarity between two vertices
IN(u)NN(2)]
IN(u)UN (o)

4 NBSIM: A SIMILARITY-BASED ALGORITHM

In this section, we develop a novel polynomial-time algorithm
for finding near-maximum quasi-cliques. Our algorithm exploits
the existence of dense vertex neighborhoods of non-trivial sizes
in real-world graphs, as proven in Theorem 3.5 of [18]. This the-
orem demonstrates that large, high-quality quasi-cliques can be
extracted from neighborhoods with sufficiently high edge density.
Our algorithm has two key components. We first introduce our
similarity-based vertex selection strategy to extract high-quality
quasi-cliques from neighborhoods. We then speed up this algorithm
further by incorporating pruning techniques based on ordering and
bounds.

u and v is defined as o(u,v) =

4.1 Similarity-based Vertex Selection

In this subsection, we focus on extracting quasi-cliques from the
neighborhood of a single vertex. As the vertices within a quasi-
clique tend to exhibit a higher level of similarity between each
other compared to vertices outside the quasi-clique, a straightfor-
ward idea to extract quasi-cliques from the neighborhood of u is
to find neighbors with high similarities to u. However, the Jaccard
similarity is not very suitable for our case, while it was used in
many applications, such as graph clustering [36, 43, 46]. To find
large quasi-cliques from the neighborhood of u, our goal is to find
vertices {v|v € N(u)} such that N(u) is mostly contained by N (v),
instead of finding a vertex v with N (v) similar to N(u). Hence, we
propose a new metric, containment score, as the vertex selection
criterion.

Definition 4.1 (Containment score). Given two vertices u and v,
the containment score of u in v is defined as

IN(u) N N(0)|

1) = NG|

@

Compared to Jaccard similarity, the containment score is an
asymmetric definition, i.e., t(u, v) might not equal to (v, u), which
allows the scenario that only part of N(v) highly overlaps with

403

WWW ’24, May 13-17, 2024, Singapore, Singapore

Algorithm 1: Extract quasi-clique from N(u): QCextract
Input: vertex u, threshold y € (0,1], b € (0,1]
Output: a vertex set extracted from N (u)
15«0
2 for each vertexv in N(u) do
3 L if #(u,v) > y then S « SU {v}
o ISI-1
i NG
5 return S

<bthenS « 0

N (u). Assuming that N (u) induces the ideal quasi-clique, all ver-
tices in N'(u) can be selected based on the containment score, which
might not be achieved via Jaccard similarity. We further use the
following example to illustrate the advantage of containment score.

Figure 2: Subgraph induced by N(u) and N (v).

Example 4.2. Figure 2 depicts a subgraph induced by N(u) and
N(v). Suppose we want to extract a 0.8-quasi-clique from N (u).
Using Jaccard similarity, o(u,v) = % = % = 0.5. Based
on this, we may exclude v from the quasi-clique. However, the con-
INW)NN(0)| _ 4 _

IN(u)] 5
could be included. Importantly, a, b, u, v forms a clique in the sub-
graph. This validates the appropriateness of including v based on
the containment score.

tainment score gives t(u,v) = 0.8, suggesting v

Based on the above discussion, we present the algorithm to
extract quasi-cliques from neighborhoods, named QCextract, in
Algorithm 1. QCextract takes a vertex u and threshold values y
and b as input. It aims to extract a vertex set S from N (u), where
the edge-density of G[S] is controlled by y and b. It first initializes
an empty set S to store the result (line 1). Then it iterates over
each vertex v in the neighborhood N (u) of vertex u (line 2), checks
whether the containment score t(u, v) exceeds the threshold y, and
adds vertex v to the set S if the condition is fulfilled (line 3). If the
extracted set S is smaller than b|N(u)|, which implies only few
vertices of N(u) have highly overlapped neighbors with u, we will
set S to 0 (line 4). Finally, QCextract returns the extracted set S
(line 5).

If S is not empty, we show that the lower bound of the edge-
density of S is determined by y and b, as follows:

THEOREM 4.3 (LOWER BOUND OF EDGE-DENSITY OF QUASI-CLIQUE
RETURNED BY ALGORITHM 1). Given a graph G, a vertex u, and

WWW °24, May 13-17, 2024, Singapore, Singapore

threshold parameters y and b, the edge-density of the quasi-clique S
returned by Algorithm 1 is lower bounded by, if S is not empty:
1-—
58 =1-—1 ®)

PRrROOF. According to line 3 of Algorithm 1, each vertex v in
S satisfies that t(u,v) > y, which implies that |[N(u) N N(v)|
YIN(u)|. According to line 4 of Algorithm 1, we have |S| — 1
b|N(u)|.

For a specific v € S, denote t(u,0) =y’ and |S| — 1 = b’|N(u)|.
By defining S’ = S \ v, we have |S’| = '[N (uv)|.

>
>

N(u)N N(v) V(u) ngs'

. N(u)

N(u)N N(v) ns'

Figure 3: Illustrating the lower bound of ds(v).

By applying the inclusion-exclusion principle (ref. Figure 3), we
can infer that the degree of v in G[S] satisfies

ds(v) = INW) NN(@) NS'| = -1-y)INwW| @
Hence, we obtain
IN(u) " N(v) N S’| 1-y
s (-5 ©
1-y
> (1 - T) s (6)

which means that Vo € S, dg(v) > (- l;by) (|S| — 1). Hence, the
edge-density §(S) is at least 1 — 177)/, as |[E(S)| = M o

Effect of parameters. By increasing both y and b, the term
FTY approaches 0. Consequently, the value of §(S) approaches 1,
and Algorithm 1 tends to output near-cliques. Although high y
and b values may cause Algorithm 1 to return an empty set for
the neighborhoods of some specific nodes, we still have a high
probability of finding the large quasi-cliques from the whole graph,
because dense vertex neighborhoods of non-trivial sizes exist in
real-world graphs, according to Theorem 3.5 of [18].

To obtain an a-quasi-clique as in Lemma 4.3, we must set b and y
such that 1—- FTY > a.In particular, b controls the similarity require-
ment between S and N (u). Setting b close to 1 makes Algorithm 1
return almost the entire neighborhood itself.

4.2 Pruning via Ordering and Bound

In Section 4.1, we presented an algorithm to extract quasi-cliques
from a single vertex’s neighborhood. To find near-maximum quasi-
cliques across the full graph, an exhaustive approach is to extract
from every neighborhood. However, this involves significant unnec-
essary computation. To improve efficiency, we first derive the size
upper bound of quasi-cliques extractable from each neighborhood.

404

Jiayang Pang, Chenhao Ma, & Yixiang Fang

Algorithm 2: Find near-maximum quasi-clique: NBSim
Input: Graph G, threshold y € (0,1], b € (0,1]
Output: A near-maximum quasi-clique

15«0

2 for each vertex u in descending y-degree order do

3 if dy(u) < |S| then break

4 C « QCextract(u,y,b)

5 if |C| > |S| then S « C

6 return S

We then propose a vertex ordering strategy to prune unpromising
neighborhoods.

We first give a simple upper bound based on degree for Algo-
rithm 1, which is also an upper bound for maximum clique compu-
tation [31].

LEMMA 4.4 (DEGREE-BASED UPPER BoUND). For a graph G and
a vertex u in G, the size of the set returned by QCextract(u) is no
larger than d(u) + 1.

The lemma follows from that all vertices returned by QCextract(u)
are from the neighborhood of u. However, this upper bound is quite
loose.

Inspired by core numbers from k-core, a subgraph model where
each vertex has at least k neighbors within the subgraph, we pro-
pose a new concept y-degree, which is a tighter upper-bound for
the returned quasi-clique.

Definition 4.5 (y-degree). Given a graph G and a vertex u, we
define the y-degree of u as the number of neighbors of u with a
degree at least y - d(u), denote as dy (u).

dy(u) ={o € N(w) [IN(0)| 2y - [N(w)[}| ™)

Note that u is counted in its y-degree dy (u) but not in its original
degree d(u).

LEMMA 4.6 (y-DEGREE-BASED UPPER BOUND). For a graph G and
a vertex u in G, the size of the set returned by QCextract(u) is no
larger than dy (u).

Proor. In Algorithm 1, for a vertex v to fulfill the condition
t(u,v) >y, |N(v)| must be at least y - [N (u)|. Hence, the size of the
returned set is upper bounded by dy () via Definition 4.5. O

As dy(u) < d(u) + 1 holds for every u € V, the y degree-based
upper bound is tighter than the degree-based upper bound. Besides,
the y-degree for every vertex in G can be efficiently computed by
iterating over each vertex v € N(u) to check whether [N(v)| >
v - IN(u)| fulfills, in O(m) total time.

Based on the above discussions, we propose the algorithm NBSim
for computing near-maximum quasi-clique. The pseudocode is
shown in Algorithm 2. The algorithm initializes an empty set S
(line 1). Then, it iterates through each vertex u in descending order
with respect to the y-degree (line 2). It compares the y-degree of
vertex u with the size of S. If the y-degree is less than the size of
S, the loop breaks, as there is no possibility of forming a larger
quasi-clique via Lemma 4.6 (line 3). For each vertex u satisfying
the degree condition, the algorithm proceeds to construct a vertex

A Similarity-based Approach for Efficient Large Quasi-clique Detection

set C by invoking QCextract(u,r, b) (line 4). If the size of set C is
greater than the size of S, S is updated to C (line 5). Finally, S is
returned as the near-maximum quasi-clique.

Complexity. Let djqx denote the maximum degree of any ver-
tex in the graph. The time complexity of Algorithm 2 is O(m - dmax)
Because it calls QCextract for each vertex u, and QCextract(u)
will compute #(u,v) for [N(u)| times. In total, we need to com-
pute #(u, v) for each edge twice, and the cost to compute #(u, v) is
O(dmax)- Hence, the overall time complexity is O(m - dpmqax)

In NBSim, we need to choose two user-defined parameters y and
b, which will also affect the actual runtime of NBSim.

Effect of y: When y is set to a higher value, the size of the
set C returned by QCextract is smaller. As a result, the condition
in line 3 of Algorithm 2 is less likely to be satisfied, leading to
fewer opportunities to update the variable S. Consequently, fewer
branches are pruned, requiring more iterations to find the candidate
vertex. Thus, the runtime of NBSim may increase when y is set to a
higher value.

Effect of b:In QCextract, the parameter b determines the thresh-
old for the proportion of |S| occupied by |N(u)|. A higher value
of b results in a stricter condition for considering S as candidate
vertices. Consequently, the runtime of NBSim may increase when b
is set to a higher value because it could take more iterations to find
the near-maximum quasi-clique.

In Section 6, we present an empirical sensitivity analysis of
parameters y and b on the accuracy and runtime of the algorithm.

5 FASTNBSIM: A MINHASH-BASED
ALGORITHM

For real-world large graphs, some vertices can have a very high
degree, and their neighbors may need to be iterated repeatedly
when computing the containment scores. This can be quite time-
consuming with a time complexity of O(m - dpmax). To improve
efficiency, we propose approximating the containment score calcu-
lations via MinHash signatures.

To efficiently derive approximate similarity scores between adja-
cent vertex pairs, we adopt the k-MinHash technique proposed by
Tseng et al. [36]. The key idea is to represent each vertex’s neigh-
borhood using a MinHash signature, and then estimate similarity
by comparing signatures.

Specifically, we first assign a unique hash value to each vertex
u € V. For each u, we compute rpin (u), the minimum hash value
among all vertices in N(u). The Jaccard similarity o(u, v) between
vertices u and v can then be given as:

®

o(u,v) = Pr[rmin(u) = rmin(0)].

To better estimate the probability, i.e., the similarity, we generate
k min hashes for each vertex using k independent hash functions.
Let rrim.n(u) denote the minimum hash value among all vertices in
N (u) with respect to the i-th hash function. We can then estimate
o(u,v) as:

ilrl () =ri (0),1<i<k}
p .

©)

6(u,0) ~

405

WWW ’24, May 13-17, 2024, Singapore, Singapore

Algorithm 3: Extract quasi-clique by MinHash: QCMinHash

Input: vertex u, threshold y € (0,1], b € (0,1]
Output: a vertex set extracted from N (u)
1S<0
2 if the MinHash signature of u is not computed then
3 L Compute the signature of u, i.e., {rfnin(u) |1<i<k}

4 for each vertexv in N(u) do
5 if the MinHash signature of v is not computed then
6 L Compute the signature of v

7 Derive the estimated similarity 6 (u, v) with the
signatures of u and v via Equation (9)

8 Compute £(u, v) via Equation (10)

9 if #(u,0) > y then S « SU {0}

e |S]-1
if 1NGoT
1 return S

<bthen S« 0

=
=)

-

Next, the estimated Jaccard similarity needs to be converted to
the containment score to serve the quasi-clique extraction. Specif-
ically, we introduce a transformation function via the inclusion-
exclusion principle to compute the corresponding estimated con-
tainment score, f(u, 0):

d(v)+1
(d(u)+1

1+6(u,0)

X +1)-6(u,0)
t(u,0) =

(10)

Combining Equations (9) and (10), we can approximate the con-
tainment score for two neighborhoods by MinHash. This process to
estimate the containment score is further illustrated in the following
example.

Example 5.1. Consider the simple graph in Fig. 2. The neighbor-
hood of vertex u, denoted N (u), consists of the vertices {a, b, ¢, u, v},
while N(v) consists of {a,b,d, e, f,u,v}. The intersection N(u) N
N(v) yields {a, b, u, v}. By Eq. 2, the direct containment score ¢ (u, v)
is 0.8.

Now let’s approximate ¢(u,v) using MinHash with k = 4 func-
tions: y = (2x +3) mod 11,y = (3x +3) mod 11,y = (2x + 6)
mod 11,y = (4x+4) mod 11,andDs{a=1,b=2,c=3,d =4,e =
5, f = 6,u = 7,0 = 8}. The signatures are {rmin(u)} = {5,1,0,1} and
{rmin(w)} = {0, 2,0, 1}. With 6(u,v) = 0.5 based on Equation (9),
the estimated £(u,v) = 0.8, equal to the direct calculation. O

Based on the above discussion, we propose the MinHash-based
quasi-clique extraction algorithm from the neighborhood in Algo-
rithm 3, which follows a similar structure to Algorithm 1 but differs
in on-demand signature generation and score estimation, which
is shown in the shaded regions of the two algorithms. Specifically,
the MinHash signatures are computed on-demand when needed -
computing the signature for u if not done yet (lines 2-3), and com-
puting the signature for v if needed (lines 5-6). Then it derives the
estimated Jaccard similarity (u, v) and corresponding containment
score #(u, v) using the lazily computed signatures and Equations 9
and 10 (lines 7-8).

By computing signatures lazily and estimating scores via Min-
Hash, the algorithm aims to efficiently extract quasi-cliques without
expensive direct neighborhood comparisons.

WWW °24, May 13-17, 2024, Singapore, Singapore

Algorithm 4: Find large quasi-clique: FastNBSim
Input: Graph G, size k, threshold y, b
Output: A near-maximum quasi-clique

1 Construct k universal hash functions

2 S«0

3 for each vertex u in descending y-degree order do

4 if dy(u) < T then break

5 C « QCMinHash(u,y, b)

6 if |C| > |S| then S « C

7 return S

Effect of k. Larger MinHash signature size k leads to a better
approximation of the Jaccard similarity. However, bigger k also
increases the computation time for signature generation and simi-
larity estimation.

Theoretically, we can give the lower bound of the edge-density
of the subgraph returned by Algorithm 3 via the following lemma.

LEMMA 5.2. Given a graph G, an error parameter p a vertex u,

k > lnngm) and threshold parameters y and b, the edge-density of

the quasi-clique S returned by Algorithm 3 is lower bounded by, if S

is not empty:
’

1-
6(8)>1-—L (11)
where
Y > Bu - (Pu '_P_P'_Y_Y)’ (12)
Bu-p=p-y=Pu
and B, represents ili’z‘;’)‘:ll + 1 for the specific vertex u.

PRrOOF. By setting k > In(nm)/(2p?), we have &(u,v) € [o(u,0)—
p, o(u,0) + p] [36]. Given that £(u,v) is required to be larger than
¥, by applying Equation (10), we have

R _ p-6(u,0)
) =) 20 (13)
and
_ p-o(u,0) ,
t(u,v) = TTo(wo) >y, (14)
where f = Zéz)):i + 1. Combining Equations (13) and (14) and the

error bound of 6(u, v), we can derive:
o B Bp=py-v)
Yy =

B-p=p-y-F
Equation (15) exhibits a diminishing trend with increasing values

. _ d(v)+1 dmax+tl
of B. Since f = w1 d(u)+1
_ dmaxtl
Bu

= dtmat + 1, we can derive Equation (12).

(15)

+1 <

+ 1, by replacing f with

]

Examining Equation 12, we observe that y’ approximates y
closely when p is set to a small positive real number. This is be-
cause large quasi-cliques are typically extracted from high-degree
vertices, where d(u) is not very small compared to dp,qx. Thus, the
degree ratio f, remains low.

Empirically, we find that small k is sufficient for high-quality
quasi-clique extraction in many cases.

406

Jiayang Pang, Chenhao Ma, & Yixiang Fang

Algorithm 4 outlines FastNBSim, which modifies NBSim using
QCMinHash. The algorithm first constructs a set of k universal hash
functions upfront to enable later MinHash computations (line 1).
Within the loop, it applies QCMinHash to efficiently extract quasi-
cliques from each neighborhood using the MinHash signatures (line
5). The remaining loop order and candidate set updates are identical
to the original NBSim in Algorithm 2.

Complexity. FastNBSim adapts NBSim to leverage QCMinHash
for faster quasi-clique extraction via MinHash approximation. The
core steps of NBSimare preserved while substituting direct similarity
computations with efficient signatures. The time complexity is
improved to O(m - k).

6 EXPERIMENTS

We now present experimental results. We first discuss the setup
in Section 6.1, then describe the results of NBSim and FastNBSim
against the baseline algorithms. Then, we give some detailed analy-
sis of the effect of parameters and pruning techniques.

6.1 Setup

Datasets. We use ten real datasets from [19], and report the number
of vertices and edges of each dataset in Table 1. These graphs
cover various domains, including co-authorship graphs (e.g., Ca-
HepPh and Ca-AstroPh), social networks (e.g., Ego-Facebook and
Loc-Gowalla), and web graphs(e.g., Web-Stanford).

Algorithm. In our experiments, we employ our newly proposed
algorithms NBSim and FastNBSim to compute near-maximum quasi-
cliques. For NBSim, we set y = 0.9 and b = 0.6 , FastNBSim follows
NBSim with an additional setting k = 8. Unless otherwise specified,
we use these settings by default. In addition to our algorithms, we
also evaluate the performance of the following existing methods:

o NB [18]: This algorithm computes large quasi-cliques using
vertex neighborhoods. It can be refined through a straight-
forward local search method [38], offering state-of-the-art
performance with relatively low complexity. To compare the
sizes of quasi-cliques identified by the two algorithms that
have more similar densities, we extract quasi-cliques with
edge densities ranging from 0.95 to 0.999. The parameter
is set to 0.95.

NuQClq [7]: As a state-of-the-art algorithm, NuQC1q identifies
the maximum quasi-clique based on a pre-defined threshold
for the quasi-value and a specified cutoff time. The algo-
rithm will terminate when it reaches the cutoff time or the
respected result is found. For comparative purposes, we set
the quasi threshold to match the quasi-value derived from
NBSim and set the cutoff time as sufficiently large to achieve
near-optimal results.

All the algorithms above are implemented in C++. For NB, which
needs triangle counting, we follow [18] and employ the MAximal
Clique Enumerator (MACE) algorithm [39] to obtain triangle counts.
We run all the experiments on a machine equipped with an Intel(R)
CPU @ 1.4GHz processor and 256GB of memory. The source codes
of our algorithms are publicly available !.

!https://github.com/PJYasuna/LargeQCDetection.git

https://github.com/PJYasuna/LargeQCDetection.git

A Similarity-based Approach for Efficient Large Quasi-clique Detection

Table 1: Graphs used in our experiments.

Dataset ‘ Full name ‘ V] ‘ |E|
FB Ego-facebook 4,039 88,234
HP Ca-HepPh 12,008 118,521
CM Ca-CondMat 23,133 93,497
ER Email-Enron 36,692 183,831
GW Loc-Gowalla 196,591 950,327
SF Web-Stanford 281,903 2,312,497
BS Web-BerkStan 685,230 7,600,595
GG Web—Google 875,713 5,105,039
PK Soc-Pokec 1,632,803 | 30,622,564
TC Wiki-Topcats | 1,791,489 | 28,511,807

6.2 Main Results

We present the edge-density and size of the quasi-clique returned
by each algorithm in Table 2. We find that in most cases, NBSim
and FastNBSim can achieve comparable or even larger sizes with
similar edge-density compared with NB and NuQClgq.

Table 2: Quasi-clique returned by each method.

- | NBSim [FastNBSim | NB | NuQClg

Dataset | S| | 8(S) | IS| | 8(S) | ISI 18(S) | IS] | 8(S)
FB 71 [099 [103] 0.94 | 20 | 0.99 | 92 | 0.99
HP [239] 1 [237] 1 [239] 1 [239] 1
CM 26 | 1 | 26 1 23| 1 |26 1
ER 10 [098] 17 | 094 | 10 [098 | 23 | 0.98
GW | 31 [099] 28 [098 [31 | 099 | 31 | 0.99
SF 67 | 099 | 65 | 0.94 | 68 | 0.99 | 66 | 0.99
BS [202] 099 [201 0.99 [109 | 0.99 | 144 | 0.99
GG 48 [099 | 48 [099 [49 | 0.99 | 48 | 0.99
PK 32 [098 | 31 | 098 | 29 | 099 | 31 | 0.98
TC 40 [099 | 41 [099 | 27 [099 | 29 | 0.99
10\ [FastNBSim l

. [NBSim I

£ | == B

%10/ EEE NuQClq

I

g

e

E 102

FB HP CM ER GW SF BS GG PK TC

dataset

Figure 4: Efficiency of all algorithms.

In Figure 4, we detail the efficiency of all tested algorithms.
FastNBSim stands out by markedly enhancing computational effi-
ciency. It achieves speeds up to two orders of magnitude faster than

407

WWW ’24, May 13-17, 2024, Singapore, Singapore

NBSim by utilizing MinHash to estimate similarity. Furthermore,
when compared to NB and NuQClq, FastNBSim outperforms them,
being quicker by up to three orders of magnitude. This pronounced
efficiency of FastNBSim can be attributed to its adoption of the Min-
Hash approximation combined with a bound and ordering-based
pruning strategy. Conversely, NB necessitates the calculation of
the local clustering coefficient for every vertex, leading to a more
computationally intensive process.

Turning our attention to NBSim and NB, their performance varies,
each surpassing the other in specific datasets. The reason is NBSim
has O(mdmqax) complexity versus NB’s O(m?/2). Relative speed de-
pends on O(dmax) vs. O(ml/z), influenced by the global coefficient
and other graph characteristics.

6.3 Effect of Parameters

200 (ay=0.9 200 (b)b=0.6
g
& 100 ._.\\' 100
0 0
05 06 07 08 09 05 06 07 08 09
b 12
10w -(c)yjo.Q' — 10 (db=0.6
2
205 0.5
)
a
000506 07 08 09 %05 06 07 08 09
b Y
3 () y=0.9 3 Hb=0.6
=2 2
()
=1 1 /
0 0=
05 06 07 08 09 05 06 07 08 09
b 12

Figure 5: The accuracy and runtime of NBSim on graph FB for
different y and b. (a), (c), (e) is the result for different b with y
fixed to 0.9. (b), (d), (f) is the result for different y with b fixed
to 0.6.

6.3.1 Effect of y and b. From Figure 5, in cases (a), (c), and (e),
holding y constant and increasing b shrinks the quasi-clique’s size
but augments its density for b values between 0.6 and 0.9, aligning
with findings in Section 4. Additionally, a rise in b escalates extrac-
tion time due to stricter constraints and more candidate clusters,
as detailed in Section 4.2. Similarly, cases (b), (d), and (f) illustrate
that increasing y with a fixed b mirrors the effects of increasing b
with a fixed y.

6.3.2 Effect of varying k. In Figure 6, we report the performance
of FastNBSim on datasets HP, ER, GG, and BS varying k from 4 to
128 while fixing y = 0.9 and b = 0.6. The result of NBSim is marked
as “base” in Figure 6 for comparison. Remarkably, HP, GG and BS

WWW °24, May 13-17, 2024, Singapore, Singapore

—e— HP —e— ER GG —e&— BS
300 The size of QC The density of QC
>
SN A SS i N anunb
3200 SJ
@ 100 &0'5
=]
gF—e—e—e—e—9e o[
4 16 32 64 128base 4 8 16 32 64 128base

k k

Figure 6: The quality of QC w.r.t different value of k.

all exhibit edge densities that are close to 1 for different k values.
Overall, both algorithms yield similar and high-quality outcomes.
For smaller k values, inaccuracies arise in approximations, yielding
larger quasi-clique sizes and decreased edge-densities, especially in
ER. Such inaccuracies are attributed to the potential of MinHash to
overestimate or underestimate vertex similarities for smaller k, as
evident in the GG and BS datasets for k = 4. However, as k grows,
the approximation becomes more accurate.

6.4 Effect of Pruning Techniques

Table 3: Proportion of neighborhoods examined from the
total.

Dataset FB HP CM ER | GW
Proportion | 2.8% 0.8% 0.039% | 6.9% | 2.1%
Dataset SF BS GG PK | TC
Proportion | 0.18% | 0.0001% | 0.01% | 12% | 4.9%

6.4.1 Effect of bound and ordering. Here we show the effective-

ness of the bound and ordering pruning technique proposed in
Section 4.2. In Table 3, the proportion of executed branches relative
to the total is presented. The total branches equate to the vertex
count, indicating that without our pruning strategy, an iteration
through every vertex would be necessary. Our findings are drawn
from an analysis of ten datasets, all of which consistently exhibit
proportion results significantly below 12%. In specific cases, such
as CM, GG, and BS, these values are exceptionally low. This under-
scores the substantial reduction in branches achieved through our
pruning approach.

Table 4: Ratio of signature building time to the overall.

Dataset FB HP CM ER GW
Proportion | 63.8% | 49.4% | 15.8% | 71.0% | 68.4%
Dataset SF BS GG PK TC

Proportion | 33.2% | 12.5% | 14.4% | 64.7% | 71.2%

6.4.2 Proportion of signature building time. In Table 4, we show-
case the proportions of the signature-building phase as a part of
the overall running time for the FastNBSim algorithm across ten
datasets when k = 8. The high proportions for most datasets un-
derscore that the similarity computation time for FastNBSimis a

408

Jiayang Pang, Chenhao Ma, & Yixiang Fang

minimal fraction of the total runtime after signatures are built. In
cases where the proportions are relatively low, such as CM, BS, and
GG, this is mainly due to the fact that sorting operations occupy
the majority of the overall time. For CM, the sort time ratio stands
at 79.3%, while for BS, it sits at 75.9%, and for GG, it reaches 84.8%.

Table 5: Speedup ratio of lazy signature approach compared
to calculating all signatures upfront.

Dataset | FB HP | CM | ER | GW
Speedup | 3.8X | 21.9x | 7.3X | 1.4X | 1.6X
Dataset SF BS GG | PK TC
Speedup | 7.9x | 13x | 8.1x | 1.1x | 1.1X

6.4.3 Effect of lazy signature construction. Table 5 presents the
speedup ratio of using a lazy signature construction approach
versus calculating all signatures upfront for the FastNBSim algo-
rithm. We observe that computing signatures on-demand based
on y-degree ordering accelerates the runtime since not all vertex
signatures need to be computed. On the HP dataset, the speedup
ratio is particularly pronounced, demonstrating the efficacy of the
proposed lazy signature technique.

7 CONCLUSION

In this study, we delved into the maximum quasi-clique problem.
We initiated our discussion by reviewing existing algorithms, high-
lighting their constraints and areas of inefficacy. To enhance the
efficiency of the MQC discovery process, we introduced an efficient
approximation algorithm, NBSim, and established lower bounds
on quasi-clique edge-density. Our efforts further led to the devel-
opment of an innovative pruning strategy, effectively minimizing
redundant computations. Additionally, we integrated an estimation
approach for similarity computation using MinHash, culminating in
the proposal of the FastNBSim algorithm. This algorithm stands out
as it drastically reduces the time complexity associated with similar-
ity score computations to constant time. Through comprehensive
experiments on ten real, large-scale datasets, we demonstrated that
FastNBSim outpaces existing methods, clocking speeds up to three
orders of magnitude faster than state-of-the-art solutions.

In the future, we will explore efficient methods for identifying
large quasi-cliques in dynamic graphs, and investigate how to dy-
namically maintain the MinHash signatures.

ACKNOWLEDGMENTS

This work was supported in part by NSFC under Grants 62302421,
62102341, Guangdong Talent Program under Grant 2021QN02X826,
Basic and Applied Basic Research Fund in Guangdong Province
under Grant 2023A1515011280, Shenzhen Science and Technol-
ogy Program under Grants JCYJ20220530143602006 and ZDSYS
20211021111415025 and Guangdong Key Lab of Mathematical Foun-
dations for Artificial Intelligence. This paper was also supported
by the URA Committee of The Chinese University of Hong Kong,
Shenzhen.

A Similarity-based Approach for Efficient Large Quasi-clique Detection

REFERENCES

[1] James Abello, Mauricio GC Resende, and Sandra Sudarsky. 2002. Massive quasi-

[2

[3

[10

[11

[12

(13

[16

[17
[18

[19

[20

[21

[22

[23

]

]

]

]

1
]

]

]

clique detection. In LATIN 2002: Theoretical Informatics: 5th Latin American Sym-
posium Cancun, Mexico, April 3—6, 2002 Proceedings 5. Springer, 598—612.

Coen Bron and Joep Kerbosch. 1973. Algorithm 457: finding all cliques of an
undirected graph. Commun. ACM 16, 9 (1973), 575-577.

Gregory Buehrer and Kumar Chellapilla. 2008. A scalable pattern mining ap-
proach to web graph compression with communities. In Proceedings of the 2008
international conference on web search and data mining. 95-106.

Renato Carmo and Alexandre Ziige. 2012. Branch and bound algorithms for the
maximum clique problem under a unified framework. Journal of the Brazilian
Computer Society 18 (2012), 137-151.

Randy Carraghan and Panos M Pardalos. 1990. An exact algorithm for the
maximum clique problem. Operations Research Letters 9, 6 (1990), 375-382.
Lijun Chang. 2019. Efficient maximum clique computation over large sparse
graphs. In Proceedings of the 25th ACM SIGKDD International Conference on
Knowledge Discovery & Data Mining. 529-538.

Jiejiang Chen, Shaowei Cai, Shiwei Pan, Yiyuan Wang, Qingwei Lin, Mengyu
Zhao, and Minghao Yin. 2021. NuQClgq: an effective local search algorithm
for maximum quasi-clique problem. In Proceedings of the AAAI Conference on
Artificial Intelligence, Vol. 35. 12258-12266.

James Cheng, Linhong Zhu, Yiping Ke, and Shumo Chu. 2012. Fast algorithms
for maximal clique enumeration with limited memory. In Proceedings of the 18th
ACM SIGKDD international conference on Knowledge discovery and data mining.
1240-1248.

Apurba Das, Seyed-Vahid Sanei-Mehri, and Srikanta Tirthapura. 2018. Shared-
memory parallel maximal clique enumeration. In 2018 IEEE 25th International
Conference on High Performance Computing (HiPC). IEEE, 62-71.

Youcef Djeddi, Hacene Ait Haddadene, and Nabil Belacel. 2019. An extension of
adaptive multi-start tabu search for the maximum quasi-clique problem. Com-
puters & Industrial Engineering 132 (2019), 280-292.

Alessandro Epasto, Silvio Lattanzi, and Mauro Sozio. 2015. Efficient densest
subgraph computation in evolving graphs. In Proceedings of the 24th international
conference on world wide web. 300-310.

David Eppstein, Maarten Léffler, and Darren Strash. 2013. Listing all maximal
cliques in large sparse real-world graphs. journal of Experimental Algorithmics
(JEA) 18 (2013), 3-1.

Giorgio Gallo, Michael D Grigoriadis, and Robert E Tarjan. 1989. A fast parametric
maximum flow algorithm and applications. SIAM J. Comput. 18, 1 (1989), 30-55.
Andrew V Goldberg. 1984. Finding a maximum density subgraph. (1984).

Paul Jaccard. 1912. The distribution of the flora in the alpine zone. 1. New
phytologist 11, 2 (1912), 37-50.

Shweta Jain and C Seshadhri. 2017. A fast and provable method for estimating
clique counts using turan’s theorem. In Proceedings of the 26th international
conference on world wide web. 441-449.

David Knoke and Song Yang. 2019. Social network analysis. SAGE publications.
Aritra Konar and Nicholas D Sidiropoulos. 2020. Mining large quasi-cliques
with quality guarantees from vertex neighborhoods. In Proceedings of the 26th
ACM SIGKDD International Conference on Knowledge Discovery & Data Mining.
577-587.

Jure Leskovec and Andrej Krevl. 2014. SNAP Datasets: Stanford large network
dataset collection.

Chu-Min Li, Zhiwen Fang, and Ke Xu. 2013. Combining MaxSAT reasoning and
incremental upper bound for the maximum clique problem. In 2013 IEEE 25th
International Conference on Tools with Artificial Intelligence. IEEE, 939-946.
Chenhao Ma, Yixiang Fang, Reynold Cheng, Laks VS Lakshmanan, and Xiaolin
Han. 2022. A convex-programming approach for efficient directed densest sub-
graph discovery. In Proceedings of the 2022 International Conference on Manage-
ment of Data. 845-859.

Chenhao Ma, Yixiang Fang, Reynold Cheng, Laks VS Lakshmanan, Wenjie Zhang,
and Xuemin Lin. 2020. Efficient algorithms for densest subgraph discovery on
large directed graphs. In Proceedings of the 2020 ACM SIGMOD International
Conference on Management of Data. 1051-1066.

Fabrizio Marinelli, Andrea Pizzuti, and Fabrizio Rossi. 2021. LP-based dual bounds
for the maximum quasi-clique problem. Discrete Applied Mathematics 296 (2021),

409

[24]

[25

&
=

™
0,

[30

(31]

[32

[33

&
=)

[35

[36]

[37

[38

%
0,

[40

[41

[42

[43

=
&

[45

[46

WWW ’24, May 13-17, 2024, Singapore, Singapore

118-140.

Zhuqi Miao and Balabhaskar Balasundaram. 2020. An ellipsoidal bounding
scheme for the quasi-clique number of a graph. INFORMS Journal on Computing
32, 3 (2020), 763-778.

Michael Mitzenmacher, Jakub Pachocki, Richard Peng, Charalampos Tsourakakis,
and Shen Chen Xu. 2015. Scalable large near-clique detection in large-scale
networks via sampling. In Proceedings of the 21th ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining. 815-824.

Panos M Pardalos and Jue Xue. 1994. The maximum clique problem. Journal of
global Optimization 4 (1994), 301-328.

Jeffrey Pattillo, Alexander Veremyev, Sergiy Butenko, and Vladimir Boginski.
2013. On the maximum quasi-clique problem. Discrete Applied Mathematics 161,
1-2 (2013), 244-257.

Bruno Q Pinto, Celso C Ribeiro, José A Riveaux, and Isabel Rosseti. 2021. A
BRKGA-based matheuristic for the maximum quasi-clique problem with an exact
local search strategy. RAIRO-Operations Research 55 (2021), S741-S763.

Bruno Q Pinto, Celso C Ribeiro, Isabel Rosseti, and Alexandre Plastino. 2018. A
biased random-key genetic algorithm for the maximum quasi-clique problem.
European Journal of Operational Research 271, 3 (2018), 849-865.

Celso C Ribeiro and José A Riveaux. 2019. An exact algorithm for the maximum
quasi-clique problem. International Transactions in Operational Research 26, 6
(2019), 2199-2229.

Ryan A Rossi, David F Gleich, and Assefaw H Gebremedhin. 2015. Parallel
maximum clique algorithms with applications to network analysis. SIAM Journal
on Scientific Computing 37, 5 (2015), C589-C616.

Boyu Ruan, Junhao Gan, Hao Wu, and Anthony Wirth. 2021. Dynamic struc-
tural clustering on graphs. In Proceedings of the 2021 International Conference on
Management of Data. 1491-1503.

Pablo San Segundo, Alvaro Lopez, and Panos M Pardalos. 2016. A new exact
maximum clique algorithm for large and massive sparse graphs. Computers &
Operations Research 66 (2016), 81-94.

Nikita Spirin and Jiawei Han. 2012. Survey on web spam detection: principles
and algorithms. ACM SIGKDD explorations newsletter 13, 2 (2012), 50-64.

Etsuji Tomita, Akira Tanaka, and Haruhisa Takahashi. 2006. The worst-case time
complexity for generating all maximal cliques and computational experiments.
Theoretical computer science 363, 1 (2006), 28—42.

Tom Tseng, Laxman Dhulipala, and Julian Shun. 2021. Parallel index-based
structural graph clustering and its approximation. In Proceedings of the 2021
International Conference on Management of Data. 1851-1864.

Charalampos Tsourakakis. 2015. The k-clique densest subgraph problem. In
Proceedings of the 24th international conference on world wide web. 1122-1132.
Charalampos Tsourakakis, Francesco Bonchi, Aristides Gionis, Francesco Gullo,
and Maria Tsiarli. 2013. Denser than the densest subgraph: extracting optimal
quasi-cliques with quality guarantees. In Proceedings of the 19th ACM SIGKDD
international conference on Knowledge discovery and data mining. 104-112.
Takeaki Uno. 2005. Maximal Clique Enumerator (MACE). http://research.nii.ac.
jp/~uno/codes.htm.

Alexander Veremyev, Oleg A Prokopyev, Sergiy Butenko, and Eduardo L Pasiliao.
2016. Exact MIP-based approaches for finding maximum quasi-cliques and dense
subgraphs. Computational Optimization and Applications 64, 1 (2016), 177-214.
Stanley Wasserman and Katherine Faust. 1994. Social network analysis: Methods
and applications. (1994).

David R Wood. 1997. An algorithm for finding a maximum clique in a graph.
Operations Research Letters 21, 5 (1997), 211-217.

Xiaowei Xu, Nurcan Yuruk, Zhidan Feng, and Thomas AJ Schweiger. 2007. Scan:
a structural clustering algorithm for networks. In Proceedings of the 13th ACM
SIGKDD international conference on Knowledge discovery and data mining. 824
833.

Yichen Xu, Chenhao Ma, Yixiang Fang, and Zhifeng Bao. 2023. Efficient and
Effective Algorithms for Generalized Densest Subgraph Discovery. Proceedings
of the ACM on Management of Data 1, 2 (2023), 1-27.

Long Yuan, Lu Qin, Xuemin Lin, Lijun Chang, and Wenjie Zhang. 2016. Diversified
top-k clique search. The VLDB Journal 25, 2 (2016), 171-196.

Fangyuan Zhang and Sibo Wang. 2022. Effective indexing for dynamic structural
graph clustering. Proceedings of the VLDB Endowment 15, 11 (2022), 2908-2920.

http://research.nii.ac.jp/~uno/codes.htm
http://research.nii.ac.jp/~uno/codes.htm

	Abstract
	1 Introduction
	2 RELATED WORK
	3 PRELIMINARIES
	3.1 Problem Definition

	4 NBSim: A Similarity-based Algorithm
	4.1 Similarity-based Vertex Selection
	4.2 Pruning via Ordering and Bound

	5 FastNBSim: A Minhash-based Algorithm
	6 EXPERIMENTS
	6.1 Setup
	6.2 Main Results
	6.3 Effect of Parameters
	6.4 Effect of Pruning Techniques

	7 Conclusion
	Acknowledgments
	References

