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Abstract
Given a directed graph G, the directed densest subgraph (DDS) problem refers to finding a subgraph from G, whose density
is the highest among all subgraphs of G. The DDS problem is fundamental to a wide range of applications, such as fake
follower detection and communitymining. Theoretically, theDDSproblem closely connects to other essential graph problems,
such as network flow and bipartite matching. However, existing DDS solutions suffer from efficiency and scalability issues.
In this paper, we develop a convex-programming-based solution by transforming the DDS problem into a set of linear
programs. Based on the duality of linear programs, we develop efficient exact and approximation algorithms. Particularly, our
approximation algorithm can support flexible parameterized approximation guarantees. We further investigate using GPU to
speed up the solution of convex programs in parallel and achieve hundreds of times speedup compared to the original Frank–
Wolfe computation. We have performed an extensive empirical evaluation of our approaches on eight real large datasets. The
results show that our proposed algorithms are up to five orders of magnitude faster than the state of the art.
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1 Introduction

As one of the most representative kinds of graph data [9,
21–24, 28, 36, 38], directed graphs have been widely used to
model complex relationships among objects [2, 9, 28]. For
example, in Twitter, a directed edge can represent the “fol-
lowing” relationship between two users [28]; the Wikipedia
article network can be modeled as a directed graph by map-
ping articles to vertices and links among articles to edges
[9]; the Web network can also be modeled as a vast directed
graph [2]; and in gene regulatory networks, a link from gene
A to gene B represents the regulatory relationship between
those genes [30].

In this work, we study efficient solutions of the directed
densest subgraph (DDS) problem, which aims to find the
subgraph of a given directed graph having the highest density.
This problem was first introduced by Kannan and Vinay [29]
and has since received significant research interest [4, 10,
19, 31, 40, 53]. Essentially, the DDS problem aims to find
two sets of vertices, S∗ and T ∗, from G, where (1) vertices
in S∗ have a large proportion of outgoing edges to those in
T ∗, and (2) vertices in T ∗ receive a large proportion of edges
from those in S∗ [29, 40]. The DDS has been widely used
in many real applications [19], such as echo chamber and
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Fig. 1 Illustration of echo chamber

filter bubble detection [34], fake follower detection [25, 49],
community mining [32], link spam detection [18], and graph
compression [8].

Figure 1 illustrates an echo chamber detected via finding
an approximate DDS from a dataset1 with 660,730 nodes and
835,193 edges extracted from around one million retweets
about Covid-19 [34]. From the figure, we can find that hun-
dreds of users are “influenced” by 15 “initiators.” Among
those 15 initiators, there are two users that are also influ-
enced by other initiators (marked as “Common”). The topics
with this echo chamber consist of vaccine side effects and
modes of transmission.

Figure 2 illustrates another application of fake follower
detection [25, 49], which aims to identify fraudulent actions
in amicrobloggingnetwork,with edges representing the “fol-
lowing” relationships among users. By issuing a DDS query,
we can find two sets of users S∗ and T ∗. Since compared
with other users, the user d (in T ∗) has unusually numerous
followers (i.e., a, e, f , g, h) in S∗, it may be worth inves-
tigating whether d has bribed the users in S∗ for following
him/her.

Given a directed graph G = (V , E) and two sets of
(not necessarily disjoint) vertices S, T ⊆ V , the density
of the directed subgraph induced by S and T is the num-
ber |E(S, T )| of edges linking vertices in S to vertices in
T over the square root of the product of their sizes, i.e.,
ρ(S, T ) = |E(S,T )|√|S||T | . Based on the density definition, theDDS
problem [4, 10, 29, 31, 40] is defined as finding two sets of
vertices, S∗ and T ∗, such that ρ(S∗, T ∗) is the largest among
all the possible choices of S, T ⊆ V . For example, for the
directed graph in Fig. 2, the DDS is the subgraph induced
by S∗ = {a, e, f , g, h} and T ∗ = {d}, whose density is
ρ∗ = 5√

5×1
= √

5, and there is no other subgraph whose

density is larger than
√
5.

1 The dataset is due to Dr. Saravanan Thirumuruganathan from QCRI,
HBKU.

Fig. 2 An example of fake follower detection [40]

In undirected graphs, the density of a graphG = (V , E) is
defined to be ρ(G) = |E |

|V | [20], which is different from that in
directed graphs. In other words, finding the densest subgraph
in undirected graphs (DS problem for short) amounts to find-
ing the subgraph with the highest average degree [20]. For
example, supposewe treat the graph in Fig. 2 as an undirected
graph by ignoring the directions of the edges. In that case, the
densest subgraphwill be the graph itself, with density 1, since
there is no subgraph with a higher density. Compared to the
DS problem, the DDS problem asks for two sets, S∗ and T ∗,
which provides the advantage to distinguish different roles
of vertices in the above application. On the other hand, if we
restrict S = T , the density of a directed graph reduces to the
classical notion of the density of undirected graphs. Hence,
it naturally generalizes the density of undirected graphs and
provides more information specific to directed graphs.

Prior works In the literature, both exact [10, 31, 40] and
approximation algorithms [4, 10, 29, 40, 53] have been devel-
oped for solving the DDS problem. The state-of-the-art exact
algorithm is DC-Exact [40], which improves the flow-
based algorithm proposed by Khuller and Saha [31] via the
divide-and-conquer strategy and elegant core-based pruning
techniques. Yet, DC-Exact [40] is still inefficient on large
datasets since it involves heavy cost of max-flow computa-
tion. For example, as we will show later, on a graph with
2.14M vertices and 17.6M edges, DC-Exact takes more
than eight days to find the DDS.

Among approximation algorithms, the most efficient one
is Core-Approx [40], which takes O(

√
m(n + m)) time,

where n and m denote the numbers of vertices and edges in
a directed graph G = (V , E). However, it can only achieve
a theoretical approximation ratio of 2, where the approxi-
mation ratio is the ratio of the density of the DDS to that
of the subgraph returned. As a result, it does not afford the
flexibility to control the approximation guarantee of the sub-
graph returned, e.g., to be better than 2. To alleviate this issue,
recently Sawlani et al. [53] and Chekuri et al. [11] have pre-
sented algorithms with approximation ratio of (1+ε), where
ε > 0. However, as shown by our experiments later, these
two algorithmsmay perform even slower than the exact algo-
rithms in some scenarios. Thus, the question of whether we
can design efficient algorithms that can provide an approxi-
mation guarantee that is parameterizable is open.
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Contributions Our contributions are summarized as fol-
lows:

1. An extended linear programming (LP) formulation of the
DDS problem.We present an extended LP formulation of
the DDS problem based on the LP formulation in [10],
in which the DDS problem is converted as a set of linear
programs. Based on convex programming, we derive the
dual program for each linear program. We further exploit
the duality of the primal and dual problems to avoid the
overhead of computing the max-flow of the whole graph
by leveraging the iterative Frank–Wolfe algorithm [16].

2. A divide-and-conquer algorithm framework. The above
LP formulation needs to solve O(n2) linear programs by
enumerating all O(n2) possible values of |S|

|T | , which is
impractical for large graphs. To address this issue, we
establish a connection between optimal values of LPs and
the density of the DDS. We use these results to develop
a divide-and-conquer strategy for reducing the number of
LPs to solve.

3. An efficient (1 + ε)-approximation algorithm. Based on
the framework above, we first develop an efficient approx-
imation algorithm, CP-Approx, which can produce a
(1 + ε)-approximate DDS by exploiting the duality gap
between the primal and dual programs, where ε > 0. In
particular, we devise an efficient strategy to extract the
approximate DDS candidate from the feasible solutions
of the LPs and evaluate whether the candidate satisfies the
approximation guarantee.

4. An efficient exact algorithm. We further develop an effi-
cient exact algorithm, CP-Exact, which extracts DDS
candidates similarly to CP-Approx. Given this, we
first present the approximation algorithm and then intro-
duce the exact algorithm. Besides, we introduce a novel
concept, namely stable subgraph, based on the feasible
solution of the dual program, which can help locate the
DDS candidate and reduce the computation cost of DDS
verification. We also propose a verification strategy based
on max-flow on the stable subgraph.

5. Parallel Frank–Wolfe computation on GPU. In our exper-
iments, we found that Frank–Wolfe computations can be
a bottleneck and usually take up most of the runtime.
To mitigate this, we can perform computations within
an iteration in parallel; however, large degree differences
between vertices can cause load imbalance. To compen-
sate for this imbalance, we propose an adaptive strategy to
efficiently perform Frank–Wolfe computations on GPUs,
which can further reduce the total runtime on billion-scale
graphs by over 70%.

6. Extensive experiments. We have experimentally com-
pared our proposed DDS algorithms with the state-of-
the-art algorithms on eight real large datasets, where the
largest one contains around two billion edges. The results

show that for exact DDS algorithms, CP-Exact is up
to three orders of magnitude faster than the state-of-the-
art exact algorithm. To our knowledge, CP-Exact is the
first exact algorithm that scales to billion-scale graphs.
Besides, for the (1 + ε)-approximation algorithms, our
proposed CP-Approx is up to five orders of magnitude
faster than the existing one [53]. Furthermore, our GPU-
based parallel strategy can further speed up Frank–Wolfe
computations by hundreds of times.

Outline The rest of the paper is organized as follows. We
review the related work in Sect. 2. In Sect. 3, we formally
present the DDS problem. Section4 discusses the linear pro-
gramming formulation of the DDS problem and its dual
program.Wepresent our exact and approximation algorithms
in Sect. 5. Section6 presents our GPU-based parallel strate-
gies for Frank–Wolfe computations. Experimental results are
presented in Sect. 7. Section8 concludes the paper.

2 Related work

Densest subgraph discovery is a fundamental problem in
network science [4, 6]. In the following, we mainly review
the works of the densest subgraph discovery on undirected
graphs and directed graphs, respectively. A more compre-
hensive survey can be found in [37].

Densest subgraph on undirected graphs Given an undi-
rected graphG=(V , E), its density is defined as |E |

|V | . Goldberg
[20] first introduced the densest subgraph problem on undi-
rected graphs, which aims to find the subgraph with the
highest density among all the subgraphs, and designed a
max-flow-based exact algorithm. Later, more efficient exact
algorithms were developed [15, 44, 56, 58]. Generally, the
algorithms aboveworkwell on small ormoderate-size graphs
but are still inefficient to handle large graphs, as shown in
[15]. Thus, researchers turned to develop efficient approxi-
mation algorithms [4, 7, 10, 15, 59], which often run much
faster by sacrificing some accuracy.

Besides, many variants, such as densest k-subgraph prob-
lem [5], locally densest subgraph problem [39, 50], k-clique-
densest subgraph problem [15, 44, 56, 58], and density-based
graph decomposition [13, 57], have been extensively stud-
ied. Furthermore, some researchers studied how to efficiently
maintain the densest subgraph on dynamic graphs [3, 6, 14,
26, 52, 53], where graph edges are inserted and deleted fre-
quently. Among those, [53] also studied the densest subgraph
problem on directed graphs, which will be introduced later.
Nevertheless, the undirected solutions cannot be directly
applied to solving the DDS problem since the definitions
of density on undirected graphs and directed graphs are dif-
ferent.
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Densest subgraph on directed graphs (DDS problem)
Kannan and Vinay [29] were the first to define a notion
of density for directed graphs and propose the DDS prob-
lem. They also presented a polynomial-time algorithm based
on max-flow. Charikar [10] developed an exact polynomial-
time DDS algorithm by solving O(n2) linear programs. As a
preview, we would like to remark that its linear program for-
mulation is different from ours, and our formulation allows
us to reduce the number of linear programs to be solved.
Recently, Ma et al. [40] have introduced a novel exact algo-
rithm by introducing the notion of [x, y]-core and exploiting
a divide-and-conquer strategy.

Unfortunately, all the algorithms above are still inefficient,
so some efficient approximation algorithms were developed.
Kannan andVinay [29] proposed anO(log n)-approximation
algorithm. Charikar [10] designed a 2-approximation algo-
rithm taking time O(n2 · (n+m)). Khuller and Saha updated
their algorithm in [31] to a 2-approximation algorithm with
time complexity of O(n(n + m)) (see [40]). Bahmani et al.
[4] provided a 2(1 + ε)-approximation algorithm (ε > 0),
based on a streaming model. Ma et al. [40–42] developed
an [x, y]-core-based 2-approximation algorithm with a time
complexity of O(

√
m(n +m)). Sawlani and Wang [53] pro-

vided an algorithm formaintaining the (1+ε)-approximation
densest subgraphs over dynamic directed graphs and devel-
oped an approximation algorithm for static graphs with
complexity of O(log1+ε n · tLP), where tLP is the time com-
plexity for solving a linear program and ε > 0. Recently,
Chekuri et al. [11] proposed another (1 + ε)-approximation
algorithm, Flow-Approx, by performing a limited num-
ber of blocking flows on the flow networks. However, in
our experiments, we find that the flow-based approximation
algorithm is not efficient enough. Flow-Approx [11] and
the static version of [53] are the main competitors of our
approximation algorithm.

3 Preliminaries

3.1 Problem definition

Consider a directed graph G=(V , E) with vertex set V ,
|V | = n, and edge set E , |E | = m. Given two sets S, T ⊆ V
which are not necessarily disjoint, we use E(S, T ) to denote
the set of all edges from S to T , i.e., E(S, T )=E ∩ (S × T ).
The subgraph induced by vertices S, T , and edges E(S, T )

is called an (S, T )-induced subgraph, denoted by G[S, T ].
For each vertex v ∈ G, we use d+

G (v) and d−
G (v) to denote

its outdegree and indegree in G, respectively. Next, we for-
mally present the definitions of density and theDDSproblem.
Unless mentioned otherwise, all the graphs mentioned later
in this paper are directed graphs.

Definition 3.1 (DDS) Given a directed graph G=(V , E) and
vertices S, T ⊂ V , the density of the subgraph G[S, T ]
is defined as ρ(S, T ) = |E(S,T )|√|S||T | . A directed densest sub-

graph (DDS) of G is the (S∗, T ∗)-induced subgraph D =
G[S∗, T ∗], whose density ρ(S∗, T ∗) is the highest among
all possible (S, T )-induced subgraphs, for S, T ⊂ V . We use
ρ∗ = ρ(S∗, T ∗) to denote the density of the DDS.

Problem 3.1 (DDS problem [4, 10, 19, 29, 31, 40]) Given
a directed graph G=(V , E), return a DDS D=G[S∗, T ∗] of
G.2

3.2 GPU architecture

A GPU card is comprised of many streaming multiproces-
sors (SMs) and device memory. Each SM is an independent
hardware unit, which contains many cores and local fast-
access memory, i.e., shared memory. The device memory
(or GPU global memory) has longer latency but is acces-
sible to all threads with high bandwidth. CUDA (Compute
Unified Device Architecture) is the most popular GPU pro-
gramming language created by Nvidia. It uses block as the
programmable unit for programmers, which hasmanywarps.
A block will be assigned to only one SM in runtime. A
warp, consisting of 32 threads, is the minimum granular-
ity of instruction scheduling. Specifically, the scheduler can
issue an eligible warp to compute units for executing the
next instruction strictly following the lock-step rule. Hence
branches inside of it will lead to some threads to idle. This
phenomenon is called warp divergence, which is a major
concern of the performance optimization on GPUs [55]. In
Sect. 6, we propose an adaptive strategy to address the warp
divergence issue.

4 FromDDS to LP

In this section, we first introduce a linear programming (LP)
formulation of the DDS problem (Sect. 4.1), in which we for-
mulate the DDS problem as a set of LPs. Next, we present the
dual program (DP) of the LP formulation (Sect. 4.2). Finally,
we develop a Frank–Wolfe-based iterative algorithm to solve
the DP (Sect. 4.3).

4.1 An LP formulation of DDS

Recall that ρ∗ is the maximum value of ρ(S, T ) over all
subsets S, T of vertices. Inspired by the linear programming
(LP) relaxation in [10], we present another LP relaxation of
ρ∗. Specifically, we consider all the possible ratios of |S|

|T | ,

2 There might be several directed densest subgraphs of a graph, and our
algorithm will find one of them.
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and for each particular ratio |S|
|T |=c, we formulate an LP(c) as

follows:

LP(c) max xsum=
∑

(u,v)∈E
xu,v

s.t. xu,v ≥ 0, ∀(u, v) ∈ E

xu,v ≤ su , ∀(u, v) ∈ E

xu,v ≤ tv, ∀(u, v) ∈ E
∑

u∈V
su = a

√
c,

∑

v∈V
tv = b√

c
,

a + b = 2.

The LP formulation tries to maximize the total weight
of the edges subject to multiple constraints. The constraints
include: (a) nonnegativity, whereby all variables must be
nonnegative; (b) capacity constraints, which dictate that the
weight of an edge (u, v) cannot exceed the minimum of the
capacities of its endpoints, i.e., xu,v ≤ su and xu,v ≤ tv (c)
capacity sum constraints, which require that the sum of the
capacities of the vertices must be fixed at a value related to
the ratio of the sizes of two sets.

Our LP relaxation is similar to the LP relaxation in [10],
but they are different since we have an additional constraint
a + b = 2. When a = 1 and b = 1, our LP formulation
is exactly the same as the one in [10]. We will show later
that this additional constraint allows us to establish the con-
nection between the optimal value of the LP(c) for a fixed
c, denoted by OPT(LP(c)), and the density of the DDS, and
the connection will play a key role in reducing the number
of LPs examined. The variables su , tv , and xu,v indicate the
inclusion of a vertex u/vertex v/edge (u, v) in an optimal
densest subgraph according to whether the variable value is
larger than 0, when c = |S∗|

|T ∗| .
Next, we show that our LP relaxation is correct for the

DDS problem by establishing the lower and upper bounds of
OPT(LP(c)).

Lemma 4.1 (Lower bound of OPT(LP(c))) For a fixed c,
consider two arbitrary sets of vertices P, Q ⊆ V , and let

c′ = |P|
|Q| . Then, OPT(LP(c)) ≥ 2

√
c
√
c′

c+c′ ρ(P, Q).

By Lemma 4.1, it is easy to observe that if we set c =
c′ = |S∗|

|T ∗| , then we have OPT(LP(c)) ≥ ρ(S∗, T ∗).

Lemma 4.2 (Upper bound of OPT(LP(c))) Given a feasi-
ble solution (x, s, t, a, b) of LP(c) with value xsum, we can
construct an (S, T )-induced subgraph G[S, T ] such that√
abρ(S, T ) ≥ xsum.

Lemma4.2 implies that given afixed c,wehave a subgraph
satisfying

√
abρ(S, T ) ≥ OPT(LP(c)), where a, b are from

the optimal solution of LP(c).

The proofs of Lemmas 4.1,4.2 can be obtained by follow-
ing the proofs of Lemma 5 and 6 in [10], respectively. We
provide the detailed proofs in Appendix (Sect. 9).

Combining Lemmas 4.1,4.2, we get Theorem 4.1.

Theorem 4.1 ρ∗ = ρ(S∗, T ∗) = maxc{OPT(LP(c))}.
Proof According to Lemma 4.1, by setting c = c′ = |S∗|

|T ∗| , we
can get maxc{OPT(LP(c))} ≥ ρ(S∗, T ∗), From Lemma 4.2,
there exists an (S, T )-induced subgraph G[S, T ] such that√
abρ(S, T ) ≥ maxc{OPT(LP(c))}, where a and b are from

the optimal solution to LP(c∗) where c∗ is the value that
maximizes OPT(LP(c)). Since a + b = 2 and a, b ≥ 0,
we have

√
abρ(S, T ) ≤ ρ(S, T ) ≤ ρ(S∗, T ∗). Hence,

ρ(S∗, T ∗) = maxc{OPT(LP(c))}. �
Theorem 4.1 establishes the connection between the DDS

and the maximum value among the optimal values of all
linear programs, which means our LP formulation is correct
for the DDS problem.

4.2 The dual program

To solve LP(c) for a fixed c, we use the Frank–Wolfe method
[16], which is one of the simplest and earliest known iter-
ative optimizers. However, for LP(c), it is hard to derive
the gradient of all variables w.r.t.

∑
(u,v)∈E xu,v . Thus, we

resort to solving the dual program DP(c) of LP(c). Hence,
we first introduce the dual program DP(c) of LP(c). Then,
based on the duality of DP(c), we can figure out the con-
nection between the DDS and OPT(LP(c)) (which is also the
optimal value of DP(c), denoted by OPT(DP(c))) when c is
fixed. In the next section, we will further show that this con-
nection enables a divide-and-conquer strategy for reducing
the number of LPs to be solved.

Now, we present the Lagrangian dual DP(c) of LP(c),

DP(c) minφ

s.t. αu,v + βv,u ≥ 1, ∀(u, v) ∈ E

ζ ≥
∑

(u,v)∈E
αu,v, ∀u ∈ V

η ≥
∑

(u,v)∈E
βv,u , ∀v ∈ V

φ ≥ 2
√
cζ,

φ ≥ 2√
c
η,

αu,v, βv,u ≥ 0. ∀(u, v) ∈ E

Before analyzing the properties of DP(c), we propose a
novel concept called c-biased density and the correspond-
ing c-biased DDS to facilitate the following derivation of
OPT(DP(c)).
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Definition 4.1 (c-biased density) Given a directed graph
G = (V , E), a fixed c ∈ R+, and two sets of vertices
P, Q ⊆ V , the c-biased density of the (P, Q)-induced sub-
graph G[P, Q] is defined as

ρc(P, Q) = 2
√
c
√
c′

c + c′ ρ(P, Q) = 2
√
c
√
c′

c + c′
|E(P, Q)|√|P| · |Q| ,

(4.1)

where c′ = |P|
|Q| . Note when c′ = c, ρc(P, Q) = ρ(P, Q).

Definition 4.2 (c-biased DDS) Given a directed graph G =
(V , E) and a fixed c, the c-biased directed densest sub-
graph (c-biased DDS) is the (S∗

c , T
∗
c )-induced subgraph, i.e.,

G[S∗
c , T

∗
c ], whose c-biased density is the highest among all

the possible (S, T )-induced subgraphs. Let ρ∗
c = ρc(S∗

c , T
∗
c )

be the density of the c-biased DDS.

Example 4.1 For the directed graph G shown in Fig. 3a, if c
is fixed to 2, the 2-biased DDS will be the subgraph induced
by (S∗

2 = {u1, u2}, T ∗
2 = {u3, u4}). Its 2-biased density is

2
√
2
√
c′

2+c′ ρ(S∗
2 , T

∗
2 ) = 4

√
2

3 , where c′ = |S∗
2 |

|T ∗
2 | = 1.

By analyzing the feasible solution ofDP(c), we can derive
an upper bound of OPT(LP(c)), by exploiting the weak dual-
ity.

Lemma 4.3 (Upper bound of OPT(DP(c))) For a fixed c,
let S∗

c , T
∗
c be the two subsets that maximize ρc(S, T ) (i.e.,

G[S∗
c , T

∗
c ] is the c-biased DDS). Then, there exists a feasible

solution to DP(c) whose value is ρc(S∗
c , T

∗
c ).

To facilitate the proof of Lemma 4.3, we introduce an
auxiliary bipartite graph B and propagable paths defined on
B.

Definition 4.3 (Auxiliary bipartite graph) Given a directed
graph G = (V , E), its auxiliary bipartite graph B is a triplet,
i.e., B = (L, R, EB), where L = {uL |u ∈ V }, R = {uR |u ∈
V }, EB = {(uL , vR)| (u, v) ∈ E} ⊆ L × R.

Figure 3 shows an auxiliary bipartite graph of a directed
graph. Note that the auxiliary bipartite is only used to explain
the design; it is not materialized in the implementation.

Definition 4.4 (Propagable path) Given a feasible solution
(α, β, ζ, η, φ) of DP(c), which satisfies that ∀(u, v) ∈
E, αu,v + βv,u = 1. A path uI0 → uI1 → · · · → uIk in
B is called a propagable path, denoted as PuI0�uIk

, where I
is a binary variable and can be L or R indicating that the
corresponding vertex belongs to L or R, respectively, if the
following conditions are fulfilled,

1. αui ,ui+1 > 0, 0 ≤ i < k, if uIi ∈ L ,
2. βui ,ui+1 > 0, 0 ≤ i < k, if uIi ∈ R.

Fig. 3 A directed graph and its auxiliary bipartite graph

The weight of the propagable path is defined as,

w(PuI0�uIk
) = min({αui ,ui+1 |uIi ∈ L} ∪ {βui ,ui+1 |uIi ∈ R}).

(4.2)

Proof of Lemma 4.3 Weclaim that there exists a feasible solu-
tion (α, β, ζ, η, φ) toDP(c)with objective value ρc(S∗

c , T
∗
c ),

where ζ = 1
2
√
c
ρc(S∗

c , T
∗
c ), η =

√
c
2 ρc(S∗

c , T
∗
c ). We prove

the claim by contradiction.
Suppose there were no feasible α and β which satisfy the

first three conditions in DP(c). In other words, for any α and
β satisfying ∀(u, v) ∈ E, αu,v + βu,v = 1, there exists a
vertex u ∈ V such that

∑
v∈V αu,v > ζ or a vertex v ∈ V

such that
∑

u∈V βu,v > η. Without loss of generality, we
assume

∑
v∈V αu0,v > ζ . Meanwhile, none of the following

cases exists,

1. ∃PuL0 �uRk
∈ B and

∑
v βuk ,v < η,

2. ∃PuL0 �uLk
∈ B and

∑
v αuk ,v < ζ .

Otherwise, assuming that case (1) exists, we can propagate
the value ofmin{∑v∈V αu,v −ζ,w(PuL0 �uRk

), η−∑
v βuk ,v}

from
∑

v∈V αu,v to
∑

v βuk ,v by changing the α and β values
along the propagable path, until no such case exists.

For u0 such that
∑

v∈V αu0,v > ζ , we construct two sets
Sc = {v|∃PuL0 �vL ∈ B}∪{u0} and Tc = {v|∃PuL0 �vR ∈ B}.
Thus,

|E(Sc, Tc)| =
∑

(u,v)∈E(Sc,Tc)

(αu,v + βv,u)

> ζ |Sc| + η|Tc|
=

( |Sc|√
c

+ √
c|Tc|

)
ρc(S∗

c , T
∗
c )

2
.

(4.3)

Further, we have

|E(Sc, Tc)| =
( |Sc|√

c
+ √

c|Tc|
)

ρc(Sc, Tc)

2
. (4.4)
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Combining Equation (4.3) and Equation (4.4), we have
ρc(Sc, Tc) > ρc(S∗

c , T
∗
c ),which contradictswith the assump-

tion made in Lemma 4.3 thatG[S∗
c , T

∗
c ] is the c-biased DDS.

Hence, the lemma holds. �
Combining Lemmas 4.1,4.3, we can establish a con-

nection between the c-biased DDS and OPT(LP(c)) by
Theorem 4.2.

Theorem 4.2 For a fixed c, let G[S∗
c , T

∗
c ] be the c-biased

DDS. We have OPT(LP(c)) = OPT(DP(c)) = ρc(S∗
c , T

∗
c ).

Proof We have OPT(LP(c)) ≥ ρc(S∗
c , T

∗
c ) by Lemma 4.1,

andOPT(LP(c)) ≤ ρc(S∗
c , T

∗
c ) byLemma4.3 andweak dual-

ity. Thus, Theorem 4.2 holds by strong duality. �
Here, we use an example to illustrate further the correct-

ness of Theorem 4.2.

Example 4.2 For c = 2, we can construct the optimal solu-
tions for LP(c) andDP(c), whose value is exactly the c-biased
density of c-biased DDS discussed in Example 4.1.

For LP(c), by setting a = 2
3 and b = 4

3 , we can get

s1 = s2 =
√
2
3 and t3 = t4 =

√
2
3 . Then, xu1,u3 = xu1,u4 =

xu2,u3 = xu2,u4 =
√
2
3 . Hence, the value of this solution is

4
√
2

3 . (ref. the proof of Lemma 4.1)
For DP(c), by setting ∀(u, v) ∈ E, αu,v = 1

3 , ∀(u, v) ∈
E, βv,u = 2

3 , we can get ζ = 2
3 , η = 4

3 , and φ = 4
√
2

3 .
Because both LP(2) and DP(2) have solutions with value

of 4
√
2

3 , OPT(LP(2)) = OPT(DP(2)) = 4
√
2

3 = ρc(S∗
2 , T

∗
2 ).

Comparison with the LP formulation in [10] After a
detailed analysis of our LP(c) and DP(c), we provide an in-
depth comparisonbetween the twoLP formulations (i.e., ours
and the one in [10]) from two perspectives:

1. From the perspective of LP(c). When a = 1 and b = 1,
our LP formulation (LP(c)) is the same as the one in [10].
Hence, a + b = 2 is a relaxation, which allows slightly
larger search space for a fixed c = |S|

|T | . Intuitively, because
the search space of LP(c) is enlarged, it is quite possible
that the subgraph corresponding to the optimal value for a
fixed c has a different |S|

|T | ratio from c.We can observe this
difference from Example 4.2; when c = 2, the c-biased
DDS is the subgraph induced by (S∗

2 = {u1, u2}, T ∗
2 =

{u3, u4}), whose |S|
|T | ratio is actually 1. In the next section,

we will show how to use this difference to reduce the
number of c values to be examined.

2. From the perspective of DP(c). The dual program in [10]
minimizes 2

√
cζ + 2√

c
η, while our DP(c) minimizes

max(2
√
cζ, 2√

c
η). Hence, it can be treated that our DP(c)

is equivalent to the dual program in [10] with one more
constraint that 2

√
cζ = 2√

c
η, because our DP(c) reaches

the optimal when 2
√
cζ = 2√

c
η according to Lemma 4.3

and its proof.Meanwhile, this constraint helps us to derive
the equivalence between the optimal value of DP and the
density the c-biased DDS via the propagable path.

4.3 Solving the dual programDP(c)

In this subsection, we introduce the Frank–Wolfe-based
method for solving DP(c), when c is fixed. To do this, we
first simplify the DP(c) as follows:

1. φ = max

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

max
u∈V {2√c

∑

(u,v)∈E
αu,v},

max
v∈V { 2√

c

∑

(u,v)∈E
βv,u}.

2. ∀(u, v) ∈ E, αu,v + βv,u = 1.

The second item holds, because we are trying to minimize φ,
and if there exist an edge (u, v) such that αu,v + βv,u > 1,
then we might further minimize φ by decreasing the value of
αu,v or βv,u .

Next, we introduce a new vector r:

r = 〈rα(1), rα(2), . . . , rα(n), rβ(1), rβ(2), . . . , rβ(n)〉,
(4.5)

where rα(u) = 2
√
c
∑

(u,v)∈E αu,v denotes the outgoing

weight defined on u and rβ(v) = 2√
c

∑
(u,v)∈E βv,u denotes

the incoming weight defined on v. As a result, the dual pro-
gram DP(c) can be rewritten as

DP(c) min ‖r‖∞
s.t. αu,v + βv,u = 1, ∀(u, v) ∈ E

2
√
c

∑

(u,v)∈E
αu,v = rα(u), ∀u ∈ V

2√
c

∑

(u,v)∈E
βv,u = rβ(v), ∀v ∈ V

αu,v, βv,u ≥ 0. ∀(u, v) ∈ E

(4.6)

Notice that ‖r‖∞ = maxu∈V {|rα(u)|, |rβ(u)|}.
Combining Theorems 4.2 and (4.6), we can claim that it is

possible to distribute the weight of each edge such that there
exist two vertex sets S∗

c and T ∗
c satisfying that the outgoing

weight of each vertex u in S∗
c and the incomingweight of each

vertex v in T ∗
c are exactly the c-biased density of the c-biased

DDS, i.e., rα(u) = rβ(v) = ρc(S∗
c , T

∗
c ). After solving the

DP(c) and getting r, we can get G[S∗
c , T

∗
c ] by the following

c-biased DDS construction method: (1) select the vertices of
r with the same highest values; (2) let S∗

c include vertices
with the highest outgoing weights; and (3) let T ∗

c include
vertices with the highest incoming weights.
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We then adopt the Frank–Wolfe method to solve DP(c)
above in an iterative manner. In each iteration, the algorithm
considers the linearization of the objective function at the cur-
rent position and moves toward a minimizer of this function
[27]. To linearize ‖r‖∞ at (α, β), we need the subgradient of
‖r‖∞, as ‖r‖∞ is convex but not differentiable. (4.7) gives a
subgradient of ‖r‖∞.

∂‖r‖∞
∂αu,v

= 2
√
c

|M | · 1rα(u)=‖r‖∞ , ∀(u, v) ∈ E;
∂‖r‖∞
∂βv,u

= 2√
c · |M | · 1rβ(v)=‖r‖∞ , ∀(u, v) ∈ E;

(4.7)

where M = {u|rα(u) = ‖r‖∞} ∪ {v|rβ(v) = ‖r‖∞}, 1expr

is the indicator function. More precisely, 1expr = 1 if the
condition expr is satisfied; otherwise, 1expr = 0.

α̂u,v = 1rα(u)<rβ(v)∨rα(u)=rβ(v)∧c<1, ∀(u, v) ∈ E;
β̂u,v = 1rα(u)>rβ(v)∨rα(u)=rβ(v)∧c≥1, ∀(u, v) ∈ E .

(4.8)

(4.8) gives (̂α, β̂), which is the minimizer of the linear func-
tion given by ∂‖r‖∞ among the feasible area of DP(c).

Basedon (4.7),(4.8),we candevelopFrank-Wolfe-DDS,
a variant of the Frank–Wolfe method [27], to optimize DP(c)
in (4.6). Algorithm 1 presents the details, which takes input
a directed graph G, the number of iterations N , and the ratio
c, and outputs (r(N ), α(N ), β(N )) after N iterations. First, it
initializes α(0), β(0), and r(0) (lines 2–4). Then, it repeats N
iterations to update α, β, and r (lines 5–12). In detail, the
minimizer of the linearization of ‖r‖∞ at (α(i−1), β(i−1)),
denoted as (̂α, β̂), is computed via (4.8) (lines 7–8); α(i)

(resp. β(i)) is calculated based on α(i−1) (resp. β(i−1)) and
α̂ (resp. β̂) in line 9 (resp. line 10); the algorithm aggregates
α(i) and β(i) to obtain r(i) (lines 11–12).

Algorithm 1: A Frank-Wolfe-based algorithm.

1 Function Frank-Wolfe-DDS(G = (V , E), N ∈ Z+, c):
2 foreach (u, v) ∈ E do α

(0)
u,v ← 1

2 , β
(0)
v,u ← 1

2 ;

3 foreach u ∈ V do r (0)
α (u) ← 2

√
c
∑

(u,v)∈E α
(0)
u,v ;

4 foreach v ∈ V do r (0)
β (v) ← 2√

c

∑
(u,v)∈E β

(0)
v,u ;

5 for i = 1, . . . , N do
6 γi ← 2

i+2 ;
7 foreach (u, v) ∈ E do
8 compute α̂u,v, β̂v,u via (4.8);

9 α(i) ← (1 − γi ) · α(i−1) + γi · α̂;
10 β(i) ← (1 − γi ) · β(i−1) + γi · β̂;

11 foreach u ∈ V do r (i)
α (u) ← 2

√
c
∑

(u,v)∈E α
(i)
u,v ;

12 foreach v ∈ V do r (i)
β (v) ← 2√

c

∑
(u,v)∈E β

(i)
v,u ;

13 return (r(N ), α(N ), β(N ));

Fig. 4 Our algorithm framework

Theorem 4.3 (Convergence of Algorithm 1) Suppose d+
max

(resp. d−
max) is the maximum outdegree (resp. indegree)

of G and c is fixed. In Algorithm 1, for i > 16(
√
c +

1√
c
)
|E |max{√cd+

max,
1√
c
d−
max)}

ε2
, we have ‖r(i)‖∞ − ρ∗

c ≤ ε.

Proof For lack of space, we present the detailed proof in
Appendix (Sect. 9). �

5 Fast LP solutions for DDS

In Sect. 4, we transform the DDS problem into a set of LPs
LP(c), w.r.t. different values of c = |S|

|T | , and develop a Frank–
Wolfe-based algorithm to optimize LP(c) via solving its dual
DP(c) when c is fixed. However, the straightforward method
to find theDDSneeds to solve all linear programs LP(c), w.r.t.
O(n2) possible c values, which is prohibitively expensive. To
reduce the number of LPs to be solved, we build the connec-
tion between the c-biased DDS and the DDS and develop
a convex-programming-based algorithm framework accord-
ing to the connection we establish in Sect. 5.1. Under this
framework, we design approximation and exact algorithms
in Sects. 5.2,5.3, respectively.

5.1 Algorithm framework

Our proposed approximation and exact algorithms share the
same framework, as depicted in Fig. 4. Specifically, given
a fixed c, we first optimize the dual program DP(c) via
the Frank–Wolfe-based algorithm (Algorithm 1). Then, we
extract the c-biased DDS from the near-optimal solution of
DP(c) (briefed in Sect. 4.3). Afterward, we establish the con-
nection between the c-biased DDS and the DDS and use it to
devise a divide-and-conquer strategy to reduce the number
of different c values to be examined.

To reduce the number of c values to be examined, we
derive the following lemmas to compute (co, cp).

Lemma 5.1 For a fixed c, let G[S∗
c , T

∗
c ] be the c-biasedDDS.

Let co = |S∗
c |

|T ∗
c | and cp = c2

co
. For any (S, T )-induced subgraph

G[S, T ] of G, if min{co, cp} ≤ |S|
|T | ≤ max{co, cp}, we have

ρ(S, T ) ≤ ρ(S∗
c , T

∗
c ).
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Proof The proof is similar to the proof of Lemma 4.7 in [40].

We prove the lemma by contradiction. Let hc(x) = 2
√
c
√
x

c+x ,
which is a concave function, and its maximum value can
be obtained by setting x to c. Assume that there exists an
[Sx , Tx ]-induced subgraph, which satisfies min{co, cp} ≤
x = |Sx |

|Tx | ≤ max{co, cp}, but it has ρ(Sx , Tx ) > ρ(S∗
c , T

∗
c ).

Since hc(x) ≥ hc(co) and ρ(Sx , Tx ) > ρ(S∗
c , T

∗
c ), we will

have hc(x)ρ(Sx , Tx ) > hc(co)ρ(S∗
c , T

∗
c ). This gives a con-

tradiction to our assumption that S∗
c , T

∗
c are the two subsets

which maximize 2
√
c
√
c′

c+c′ ρ(S, T ), where c′ = |S|
|T | . �

We illustrate Lemma 5.1 by Example 5.1.

Example 5.1 Reconsider Example 4.1. If we fix c = 2, co =
|S∗

c |
|T ∗

c | = 1 and cp = c2
co

= 4, then for any (S, T )-induced

subgraph G[S, T ] satisfying 1 ≤ |S|
|T | ≤ 4, its density will

be at most ρ(S∗
c , T

∗
c ). This implies if we first compute the

c-biased DDS for c = 2, then the values of c in [1, 4] can be
skipped safely by Lemma 5.1.

According to Lemma 5.1, we can apply a divide-and-
conquer strategy to reduce the number of values of c to be
checked. That is, for a range of c values (cl , cr ) to be exam-
ined,we pick themiddle value c in the range, find the c-biased
DDS, and compute (co, cp) via Lemma 5.1. Then, all the
values in (co, cp) can be skipped safely, and the remaining
intervals of c can be processed recursively.

Before presenting the details of the algorithm, we intro-
duce the [x, y]-core, a kind of cohesive subgraphs on directed
graphs [40], which is helpful to reduce the size of the graph
to be processed by Frank-Wolfe-DDS.

Definition 5.1 ([x, y]-core [40]) Given a directed graph
G=(V , E), the [x , y]-core is the largest (S, T )-induced sub-
graph G[S, T ], which satisfies:

1. ∀u ∈ S, d+
G[S,T ](u) ≥ x and ∀v ∈ T , d−

G[S,T ](v) ≥ y;
2. �G[S′, T ′] �= G[S, T ], such that G[S, T ] is a subgraph

of G[S′, T ′], i.e., S ⊆ S′, T ⊆ T ′, and G[S′, T ′] satisfies
(1).

Theorem 5.1 [40] Given a graph G=(V , E), its DDS

D=G[S∗, T ∗] is contained in the
[
� ρ∗
2
√
c
�, �

√
cρ∗
2 �

]
-core,

where c= |S∗|
|T ∗| .

By Theorem 5.1, we can run the Frank-Wolfe-DDS

algorithm on the
[

ρ̃∗
2
√
cr

,
√
cl ρ̃∗
2

]
-core, where (cl , cr ) is the

interval of c values to be examined and ρ̃∗ is the density of
the densest subgraph found so far.

Based on Frank-Wolfe-DDS and the divide-and-
conquer strategy, we design an algorithm framework, as
shown in Algorithm 2. Given the range (cl , cr ) of c to be

Algorithm 2: Our algorithm framework.

1 Function CP-DDS(G, cl , cr , ε, N):
2 c ← cl+cr

2 ;
3 G ← prune G via [x, y]-core; // Theorem 5.1
4 repeat
5 (r, α, β) ← Frank-Wolfe-DDS(G, N, c);
6 if ε > 0 then (Sc, Tc, co, cp, f) ← App-cDDS(G, r, ε,

c);
7 else (Sc, Tc, co, cp, f) ← Exact-cDDS(G, r, α, β, c);
8 until f = True;
9 if ρ(Sc, Tc) > ρ̃∗ then ρ̃∗ ← ρ(Sc, Tc), D̃ ← G[Sc, Tc];

10 if cl ≤ co then
11 (S, T ) ← CP-DDS(G, cl , co, ε);

12 if ρ(S, T ) > ρ̃∗ then ρ̃∗ ← ρ(S, T ), D̃ ← G[S, T ];
13 if cp ≤ cr then
14 (S, T ) ← CP-DDS(G, co, cr , ε);

15 if ρ(S, T ) > ρ̃∗ then ρ̃∗ ← ρ(S, T ), D̃ ← G[S, T ];
16 return D̃;

checked, we first assign the middle value of cl and cr to c
(line 2) and prune the graph via the [x, y]-core (line 3).

Then, the function repeats calling Frank-Wolfe-DDS
with N iterations (line 5) and extracting the approximate
(resp. exact) DDS candidate as well as the c value range to
be skipped via App-cDDS (resp. Exact-cDDS) in line 6
(resp. line 7) until the accuracy requirement (noted as f) is
fulfilled (lines 4–8). Next, we checkwhether the current DDS
needs to be updated; if so, update the DDS (line 9). Finally,
the whole range (co, cp) is skipped and we conduct search
on the two intervals which are split by (co, cp) to compute
the approximate DDS (lines 10–15).

The detailed functions of extracting the approximate
and exact DDSs and skipping the range of c values, i.e.,
App-cDDS and Exact-cDDS, will be discussed exten-
sively in Sects. 5.2,5.3, respectively.

Under the convex-programming-based framework (Algo-
rithm 2), to compute the (1+ε)-approximation DDS, we
can directly invoke CP-DDSG, 1

n , n, ε, N and term it as
CP-Approx. Similarly, to compute the exact DDS, we can
directly invoke CP-DDSG, 1n , n, 0, N and call itCP-Exact.

5.2 The (1+")-approximation algorithm

We begin with an interesting Lemma:

Lemma 5.2 Given a directed graph G = (V , E), a positive
real value ε, and c∗ = |S∗|

|T ∗| , if c satisfies that
√
c∗ · 1

1+ε
≤√

c ≤ √
c∗ · (1 + ε), we have

ρ∗

ρ∗
c

≤ 1 + ε, (5.1)

where the DDS of G is G[S∗, T ∗] and c∗= |S∗|
|T ∗| .
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Proof According to the definition of the c-biased DDS, we

have ρ∗
c ≥ 2√

c√
c∗ +

√
c∗√
c

ρ(S∗, T ∗). Since c satisfies
√
c√
c∗ ≤ 1+ε

and
√
c∗√
c

≤ 1 + ε, we can easily conclude that ρ∗
c ≥

2√
c√
c∗ +

√
c∗√
c

ρ(S∗, T ∗) ≥ 1
1+ε

ρ∗. Hence, Lemma 5.2 holds. �

Clearly, Lemma 5.2 states that if the value of c is close
to c∗, then the c-biased DDS provides a good approximation
solution with theoretical approximation guarantee. However,
the value of c∗ is unknown in advance, so a straightforward
approximation algorithm needs to split the whole range of
c, i.e., [ 1n , n], into a list consecutive intervals, i.e., [ 1n , 1

n (1+
ε)2], [ 1n (1+ε)2, 1

n (1+ε)4], . . . , [ 1
(1+ε)2

n, n], then compute
the exact c-biased DDS for a value of c from each interval,
and return the one with the highest density. This algorithm
needs to compute the exact c-biased DDS for a c selected
from each interval, which is very costly, and examine many
such intervals. We introduce two corollaries to tackle these
issues, which allow us to compute the approximate c-biased
DDS and prune some intervals of the c values.

Corollary 5.1 For a fixed c, let (α, β, r) be a feasible solution
of DP(c). For G[Sc, Tc] satisfying ‖r‖∞

ρc(Sc,Tc)
≤ 1+ ε, let co =

|Sc||Tc| and cp = c2
co
. For any (S, T )-induced subgraph G[S, T ],

if min{co, cp} ≤ |S|
|T | ≤ max{co, cp}, then ρ(S, T ) ≤ (1 +

ε) · ρ(Sc, Tc), where ε ∈ R+.

Proof As ‖r‖∞ is the upper bound of ρ∗
c , ρ∗

c ≤ (1 +
ε)ρc(Sc, Tc). For any G[S, T ] satisfying min{co, cp} ≤
|S|
|T | ≤ max{co, cp}, we have ρ(S, T ) ≤ c+co

2
√
c
√
co

ρ∗
c ≤

(1 + ε) · ρ(Sc, Tc). �
Corollary 5.2 For a fixed c, let (α, β, r) be a feasible solution
of DP(c). Suppose G[Sc, Tc] satisfies ‖r‖∞

ρc(Sc,Tc)
≤ √

1 + ε.

For any (S, T )-induced subgraph G[S, T ], if c
1+ε

≤ |S|
|T | ≤

c · (1 + ε), then ρ(S, T ) ≤ (1 + ε) · ρ(Sc, Tc).

Proof According to Lemma 5.2, we have ρ(S,T )
ρ∗
c

≤ √
1 + ε,

where c
1+ε

≤ |S|
|T | ≤ c · (1 + ε). Further, we have ρ∗

c
ρ(Sc,Tc)

≤
‖r‖∞

ρc(Sc,Tc)
≤ √

1 + ε. Multiplying the two inequalities, we

have ρ(S,T )
ρ∗
c

· ρ∗
c

ρ(Sc,Tc)
≤ 1+ ε. Hence, the corollary holds. �

Based on Corollaries 5.1,5.2, we propose a strategy for
reducing the number of c values to be examined. We use
Fig. 5 to illustrate the strategy: When the interval [co, cp]
covers [ c

1+ε
, c·(1+ε)], we can skip the c values by using both

Corollary 5.1 and Corollary 5.2. When the interval [ c
1+ε

, c ·
(1+ε)] covers [co, cp], then only Corollary 5.2 will be used.
Note that these two intervals never partially intersect with
each other, since cocp = c2 = c

1+ε
c(1 + ε). In other words,

the intervals fulfill that either co ≤ c
1+ε

≤ c(1 + ε) ≤ cp or
c

1+ε
≤ co ≤ cp ≤ c(1 + ε). In the two cases, the number of

Fig. 5 The strategy of reducing the number of c values

trials of c is bounded by O(log1+ε n), since the size of the
interval increases exponentially with (1+ε).

After approximately solving the DP(c) and getting r, we
can get the approximate c-biased DDS by slightly modifying
the construction method in Sect. 4.3. That is, we sort the ver-
tices of r and then construct the approximate c-biased DDS
using vertices with higher incoming weights and outgoing
weights. App-cDDS (Algorithm 3) presents the detailed
steps of computing an approximate c-biased DDS. It first
initializes ρ∗

c to 0, S
∗
c , T

∗
c to ∅, and Sc, Tc to ∅ (line 1). Then,

the vertices of r are sorted in descending order to their cor-
responding values (line 2). We put vertices with outgoing
weight rα(u) into set L and vertices with incoming weight
rβ(v) into set R (line 4). Afterward, each vertex is inserted
into Sc (resp. Tc) if its corresponding vertex is contained in L
(resp. R) (in lines 6–7). Once Sc or Tc is updated,App-cDDS
checks whether ρ∗

c can be updated by ρc(Sc, Tc) (line 9); if
yes, updates ρ∗

c , S
∗
c , and T ∗

c (line 10). Next, it computes co
and cp according to Corollary 5.1 (lines 11–12). Finally, it
checks whether the approximate DDS candidate satisfies the
conditions in Corollaries 5.1,5.2 and returns the DDS candi-
date as well as the range of c to be skipped (lines 14–16).

Complexity The time complexity of CP-Approx is
O(log1+ε n · tFW). tFW denotes the time complexity of
Frank-Wolfe-DDS, and its convergence rate is provided
by Theorem 4.3.

Comparison with state-of-the-art VW-Approx [53] is the
state-of-the-art (1+ε)-approximation algorithm.VW-Approx
transforms the DDS problem into O(log1+ε n) vertex-
weighted undirected densest subgraph problems, where the
vertex weights are set according to O(log1+ε n) differ-
ent guesses of |S|

|T | . We summarize the reasons on why
CP-Approx is more efficient than VW-Approx:

1. Less values of |S|
|T | to be examined.Both algorithms need to

select several different values of |S|
|T | for inner-loop com-

putation, but the strategies of choosing values of |S|
|T | are

different, which can explain the efficiency improvement.
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Algorithm 3: Extract approximate c-biased DDS.

1 Function App-cDDS(G = (V , E), r , ε, c):
2 ρ∗

c ← 0, S∗
c , T ∗

c ← ∅, Sc, Tc ← ∅;
3 sort the nodes according to r: r(u1) ≥ r(u2) ≥ · · · ≥ r(u2n);
4 L ← {u|rα(u) ∈ r}, R ← {v|rβ(v) ∈ r};
5 for i = 1, . . . , 2n do
6 if ui ∈ L then Sc ← Sc ∪ {ui };
7 else Tc ← Tc ∪ {ui };
8 if Sc = ∅ or Tc = ∅ then continue;
9 if ρc(Sc, Tc) > ρ∗

c then
10 ρ∗

c ← ρc(Sc, Tc), S∗
c ← Sc, T ∗

c ← Tc;

11 co ← |S∗
c |

|T ∗
c | , cp ← c2

co
; // Corollary 5.1

12 if co > cp then Swap(co, cp);

13 δ ←
r
uI1
ρ∗
c
;

14 if δ ≤ √
1 + ε then return

(S∗
c , T ∗

c ,min{co, c
1+ε

},max{cp, c · (1 + ε)}, True);
15 else if δ ≤ 1 + ε ∧ co < c

1+ε
∧ c · (1 + ε) < cp then return

(S∗
c , T ∗

c , co, cp, False);
16 else return (S∗

c , T ∗
c , co, cp, False);

VW-Approx select O(log1+ε n) values, i.e., the powers
of 1 + ε over the range [ 1n , n], while CP-Approx uses
the divide-and-conquer strategy to prune the values of
|S|
|T | based on the optimization result in the inner loop
(Corollary 5.1). The worst case of the number of val-
ues of |S|

|T | examined in CP-Approx is also O(log1+ε n)

(Corollary 5.2), but Corollary 5.1 allows more values to
be skipped.

2. Tighter error estimation in the inner loop. When trans-
forming the DDS problem to a set of vertex-weighted
undirected densest subgraph problems, VW-Approx
applies a relaxation of AM-GM inequality. In contrast,
in CP-Approx, we build the equivalence between the
optimal solution of LP(c) and the c-biased DDS (Theo-
rem 4.2). We conjecture that the relaxation of AM-GM
inequality causes extra overhead to satisfy the approxi-
mation guarantee for VW-Approx, especially when ε is
small.

3. Smaller size of the graph to be processed. The [x, y]-
core-based pruning strategy (Theorem 5.1) helps prune
the vertices, which are certainly not contained in theDDS,
and further reduce the size of the graph to be processed
by the Frank–Wolfe computation in CP-Approx, while
VW-Approx needs to process the whole graph each time.

5.3 The exact algorithm

To obtain the exact c-biased DDS, a straightforward method
is to compute the optimal solution of DP(c) using the Frank–
Wolfe-based algorithm and then compute the c-biased DDS
using the construction method in Algorithm 1. However, this
method is very costly since the Frank–Wolfe-based algorithm

needs many iterations to derive the optimal solution ofDP(c)
as shown by Theorem 4.3. To reduce the number of such
iterations, we introduce some novel techniques such that the
Frank–Wolfe-based algorithm can be stopped earlier, but it
can still output the optimal solution.

In the following, we first introduce a novel concept called
stable (S, T )-induced subgraph inspired by [13] and then
present the necessary and sufficient conditions of verify-
ing whether a stable (S, T )-induced subgraph is the exact
c-biased DDS.

Definition 5.2 (Stable (S, T )-induced subgraph) Given a
directed graph G and a fixed c, an (S, T )-induced sub-
graphG[S, T ] ofG is a stable (S, T )-induced subgraph with
respect to a feasible solution (r, α, β) toDP(c), if the follow-
ing conditions hold:

1. min
{
minu∈S{rα(u)},minv∈T {rβ(v)}}

> max
{
maxu∈V \S{rα(u)},maxv∈V \T {rβ(v)}};

2. for each (u, v) ∈ E \E(S, T ) such that αu,v = 0 if u ∈ S,
or βv,u = 0 if v ∈ T .

Essentially, in Definition 5.2, the first condition requires
that vertices in the stable (S, T )-induced subgraph are with
higher incoming weights or outgoing weights, while the sec-
ond one states that the edges of the stable (S, T )-induced
subgraph are denser because the incoming weights or outgo-
ing weights received by vertices in the subgraph only come
from the edges in the subgraph. Then, we give an example to
explain further the stable (S, T )-induced subgraph.

Example 5.2 Reconsider the graph G in Fig. 3a. Given
c=2, G[S = {u1, u2}, T = {u3, u4}] is stable with
respect to the feasible solution (α, β, r) to DP(c), where
∀(u, v) ∈ E(S, T ), αu,v = 1

3 , βu,v = 2
3 , and ∀(u, v) ∈

E\E(S, T ), αu,v = βu,v = 1
2 . The first condition in Def-

inition 5.2 is fulfilled since rα(u1) = rα(u2) = rβ(u3) =
rβ(u4) = 4

√
2

3 is the highest value in r. The second condi-
tion is also fulfilled as ∀(u, v) ∈ E\E(S, T ) satisfies u /∈ S
and v /∈ T .

We now theoretically show that for a fixed c, the c-biased
DDS must be contained in some stable (S, T )-induced sub-
graphs:

Lemma 5.3 For a fixed c, suppose an (S, T )-induced sub-
graphG[S, T ] is stablewith respect to some feasible solution
(r, α, β) toDP(c), and G[S∗

c , T
∗
c ] is the c-biased DDS. Then,

G[S∗
c , T

∗
c ] is contained in G[S, T ], i.e., S∗

c ⊆ S and T ∗
c ⊆ T .

Proof (Proof sketch) We prove the lemma by contradiction
via assuming G[S∗

c , T
∗
c ] is not contained the stable subgraph

G[S, T ]. Then, we derive the contradiction by considering
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Algorithm 4: Verify c-biased DDS.

1 Function Is-cDDS(G[S, T ], c):
2 L ← {uL |u ∈ S}, R ← {uR |u ∈ T };
3 VF ← {s} ∪ L ∪ R ∪ {t};
4 for uR ∈ R do add (s, uR) to EF with capacity d+

G[S,T ](u);

5 for uL ∈ L do add (uL , t) to EF with capacity ρc(S,T )

2
√
c

;

6 for uR ∈ R do add (uR, t) to EF with capacity
√
cρc(S,T )

2 ;
7 for (u, v) ∈ E(S, T ) do add (uR, uL ) to EF with capacity 2;
8 f ← maximum flow from s to t ;
9 return f = |E(S, T )|;

two cases according towhetherG[S∗
c , T

∗
c ] andG[S, T ] over-

lap with each other. The detailed proof can be found in
Appendix (Sect. 9). �

Lemma 5.3 implies that for a fixed c, the constraint that
G[S, T ] is a stable (S, T )-induced subgraph is the necessary
condition of thatG[S, T ] is the c-biasedDDS, so the c-biased
DDS verification process can be stopped earlier by checking
this condition.

Next, we introduce the verification procedure for check-
ing whether a stable (S, T )-induced subgraph is the c-biased
DDS, inspired by [40, 56], which is based on the max-flow
algorithm, as shown in Algorithm 4. To build the flow net-
work, it first creates two sets L and R of nodes (lines 2),
initializes the flow network with node set {s} ∪ L ∪ R ∪ {t}
(line 3), and then adds directed edges with different capaci-
ties between these nodes (lines 4–7). Afterward, it computes
the max-flow (line 8) and uses the value of the max-flow to
verify the optimality (line 9).

The correctness of Algorithm 4 is guaranteed by Theo-
rem 5.2.

Theorem 5.2 (Optimality test bymax-flow) Given a directed
graph G, a stable (S, T )-induced subgraph G[S, T ] of G,
a fixed c, the max-flow f in Algorithm 4 equals the edge
number |E(S, T )|, if and only if G[S, T ] is the c-biasedDDS.

Before proving the theorem, we introduce a support
lemma, which gives the upper bound of |E(S, T )|.
Lemma 5.4 Given a feasible vector r inDP(c)with rα(u1) ≥
rα(u2) ≥ · · · ≥ rα(un) and rβ(u1) ≥ rβ(u2) ≥ · · · ≥
vβ(un), any (S, T )-induced subgraph in G satisfies

|E(S, T )| ≤
⎢⎢⎢⎣ 1

2
√
c

|S|∑

i=1

rα(ui ) +
√
c

2

|T |∑

i=1

rβ(ui )

⎥⎥⎥⎦ . (5.2)

Proof For each edge (u, v), αu,v and βv,u can be consid-
ered as the weights distributed from the edge to its two
endpoints. As a result, |E(S, T )| ≤ � 1

2
√
c

∑
v∈S rα(v) +

√
c
2

∑
v∈T rβ(v)� ≤

⌊
1

2
√
c

∑|S|
i=1 rα(ui ) +

√
c
2

∑|T |
i=1 rβ(ui )

⌋
,

where the last inequality holds because of the fact that
u1, u2, . . . , u|S| are the |S| nodes with largest rα values and
u1, u2, . . . , u|T | are the |T | nodes with largest rβ values. �
Proof of Theorem 5.2 Suppose f equals to |E(S, T )|, i.e.,
there exists a feasible flow with value |E(S, T )| in the con-
structed network. The feasible flow induces (α, β) ∈ DP(c)
for G[S, T ]: for each edge (u, v) ∈ E(S, T ), αu,v is the flow
on the edge (vR, uL) (i.e., fvR ,uL ) and βv,u = 1 − fvR ,uL .
This (α, β) induces r where rα(u) = ρc(S, T ),∀u ∈ S and
rβ(v) = ρc(S, T ),∀v ∈ T . In other words, each item in r
is equal to ρc(S, T ). Then, Lemma 5.4 shows that there is
no subgraph in G[S, T ] with strictly higher c-biased den-
sity, because for any subgraph G[X ,Y ] ⊂ G[S, T ] we have
ρc(X ,Y ) ≤ 2

√
c·c′

c+c′
|X |
2
√
c
+

√
c|Y |
2√|X |·|Y | ρc(S, T ) = ρc(S, T ), where

c′ = |X |
|Y | . According to Lemma 5.3, the c-biased DDS is

within G[S, T ]. Hence, G[S, T ] is the c-biased DDS.
Conversely, if G[S, T ] is the c-biased DDS, there is a

feasible (α, β, r) ∈ DP(c) for G[S, T ] such that rα(u) =
ρc(S, T ),∀u ∈ S and rβ(v) = ρc(S, T ),∀v ∈ T , following
Lemma 4.3 and its proof. From α, we can construct a feasible
flowwith value |EH | by setting the flow on the edge (vR, uL)

to αu,v , for each (u, v) ∈ E(S, T ). �
Example 5.3 Following Example 5.2, we can validate that
given c = 2, the flow network generated based on the stable
subgraph G[S = {u1, u2}, T = {u3, u4}] has the maximum
flow with value of 2 = |E(S, T )| by assigning the flows
fuR3 ,uL1

, fuR3 ,uL2
, fuR4 ,uL1

and fuR4 ,uL2
to 1

3 . Hence, the stable
subgraph is a c-biased DDS.

Based on the above discussions, we develop the whole
algorithm of extracting and verifying the exact c-biased DDS
in Algorithm 5. Precisely, we first extract a tentative c-biased
DDS following the method used in App-cDDS (line 2).
Then, we compute co and cp based on Lemma 5.1 (lines
3–4). Afterward, we check whether the extracted subgraph
is a stable (S, T )-induced subgraph via Definition 5.2 (line
5). If yes, we will continue to check its optimality by Algo-
rithm 4 (line 6). If yes, the c-biased DDS is found (line 7). If
the subgraph is stable but not the c-biased DDS, we use the
subgraph to replace the graphG. For the current c, the follow-
ingFrank-Wolfe-DDS computationwill be conducted on
the updated G, as the c-biased DDS is contained in the sub-
graph according to Lemma 5.3 (line 8). If the subgraph is not
the c-biased DDS, the algorithm returns False, meaning that
Frank-Wolfe-DDS needs to be invoked again (line 9).

Complexity The time complexity of CP-Exact is O(h ·
tFW). h is the number of LPs to solve. Theoretically, h ≤
n2, but h � n2 in practice. tFW denotes the complexity of
Frank-Wolfe-DDS, and its convergence rate is provided
by Theorem 4.3.

Comparison with the state-of-the-art DC-Exact [40] is
the state-of-the-art exact DDS algorithm enhanced with the
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Algorithm 5: Extract exact c-biased DDS.
1 Function Exact-cDDS(G = (V , E), r , α, β, c):
2 run lines 2-9 in Algorithm 3 to get G[S∗

c , T ∗
c ];

3 co ← |S∗
c |

|T ∗
c | , cp ← c2

co
;

4 if co > cp then Swap(co, cp);
5 if Is-Stable(G, S∗

c , T
∗
c , α, β) then

// Definition 5.2
6 if Is-cDDS(G[S∗

c , T ∗
c ], c) then // Theorem 5.2

7 return (S∗
c , T ∗

c , co, cp, True);

8 update G as G[S∗
c , T ∗

c ]; // Lemma 5.3

9 return (S∗
c , T ∗

c , co, cp, False);

divide-and-conquer strategy and elegant core-based prun-
ing techniques. Both CP-Exact and DC-Exact adopt the
divide-and-conquer strategy to reduce the number of differ-
ent c values to be examined, but they are derived based on
different paradigms. The one in [40] is based on the output
of the max-flow-based algorithm, and it needs to finish the
max-flow-based binary search to skip the c values. In con-
trast, the one in our algorithm is based on the optimal value
of the LP/DP formulation. The feasible solutions of DP(c)
and LP(c) provide the upper and lower bound for the optimal
value, respectively. Hence, our divide-and-conquer strategy
also works for our approximation algorithm via the bounds.
We further summarize the reasons why CP-Exact is more
efficient than DC-Exact:

1. Avoiding the repeatedmax-flowcomputation.CP-Exact
uses the iterative Frank-Wolfe-DDS algorithm to
avoid the heavy time cost of computing the max-flow
many times, where computing the max-flow on a flow
network takes at least O(nm) [48]. Instead, it only uses
the max-flow algorithm for the optimal validation on a
small subgraph.

2. Early stop of the inner loop. The stable subgraph
(Lemma 5.3) and the optimality test by max-flow (Theo-
rem 5.2) can help terminate the inner-loop iterations early.

3. Smaller size of the graph to be processed.First, we borrow
the [x, y]-core (line 3 of Algorithm 2) from [40] to keep
the graph to be computed as small as possible before the
Frank–Wolfe iterations. Next, our proposed stable sub-
graph (line 8 of Algorithm 5) helps shrink the graph size
further to be processed during the Frank–Wolfe iterations.

6 GPU-enabled DDS algorithms

With careful design and elegant pruning strategies, we are
able to ensure that our algorithms are much faster than the
state-of-the-art algorithms. However, for very large-scale
graphs, users may still need to wait for a long time to obtain

the DDS. For example, we need to wait for around three
hours to obtain the DDS for dataset SK, a graph with around
2 billion edges (dataset characteristics in Table 2). After
profiling our DDS algorithms, we find that Frank–Wolfe
computation takes the majority of the total running time.
For example, Frank-Wolfe-DDS takes more than 70%
of the whole processing time to compute the exact DDS on
dataset SK. Fortunately, the updates of edgeweights assigned
to vertices (via α̂, β̂, and r) in each Frank–Wolfe itera-
tion are amenable to parallelization, which can be achieved
via GPU computing. Nevertheless, the trivial parallelization
strategyofmapping eachvertex to oneGPU threadmay cause
workload imbalance and computing resource underutiliza-
tion due to the skewed vertex degree distribution present in
many real-world graphs. Next, we will study parallelization
for Frank–Wolfe iterations, analyze the workload imbalance
caused by the skewed degree distribution, and design strate-
gies to remedy the imbalance issue.

In the i-th Frank–Wolfe iteration (Algorithm 1), there are
two major steps:

1. update α(i) and β(i) via α̂ and β̂;
2. compute r (i) based on α(i) and β(i).

To update α(i) and β(i) in parallel, we can map each edge
to a thread, because there is no dependence and conflict when
we parallelize by edges. Algorithm 6 gives the pseudo-code
for updating α(i). As the threads are organized in blocks on
GPU, we use the block information (i.e., block.id and
block.size) and the thread ID within the block (i.e.,
thread.id) to globally identify each thread and locate
the edge mapped to the thread (line 1). Next, we update α

(i)
u,v

based on the values of r (i−1)
α (u) and r (i−1)

β (v) (lines 2–4).

Similarly, we can also update the β(i) values.

Algorithm 6: Update α(i) via GPU

Input : r (i−1), γi
Output : α(i)

// map edge to thread
1 e = (u, v) ← block.id×block.size+thread.id;

2 if r (i−1)
α (u) < r (i−1)

β (v) then

3 α
(i−1)
u,v ← (1 − γt ) · α

(i)
u,v + γt

4 else α
(i)
u,v ← (1 − γt ) · α

(i−1)
u,v ;

To compute r (i) in parallel, a straightforward solution is
to assign each vertex to a thread. Each thread is responsible
for aggregating the α(i) or β(i) values corresponding to the
adjacent edges of the assigned vertex. Algorithm 7 presents
the pseudo-code. The algorithm first assigns each vertex to a
thread (line 1). Next, each thread aggregates the α(i) values
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Fig. 6 GPU parallel strategies

associated with the edges incident on u to compute r (i)
u (lines

2–4).

Algorithm 7: Compute r (i)
α by thread→vertex

Input : α(i), c
Output : r (i)

α

// map vertex to thread
1 u ← block.id×block.size+thread.id;
2 foreach (u, v) ∈ E do
3 r (i)

α (u) ← r (i)
α (u) + 2

√
c · α(i)

u,v

However, the degree distributions of most real networks
are not uniform, and even follow a power law, at least asymp-
totically [12]. Meanwhile, the threads within a warp follow
the same instruction in each step. Hence, there may be some
idle threads in the block, as the number of clock cycles in
the block is determined by the vertex with the largest degree.
Our next example illustrates the idle threads in Fig. 6a.

Example 6.1 Assume that a block has one warp consisting
of 8 threads,3 and the degrees of the vertices assigned to the
threads are as listed on the left of Fig. 6a. We can find that
many threads are idle after a few cycles, as the corresponding
vertices have low degrees while vertex 0 has a large degree
(i.e., 12).

Another strategy is to assign each vertex u to a block, and
aggregate α

(i)
u,v , where (u, v) ∈ E , to obtain r (i)

α (u) in parallel
within the block. Algorithm 8 gives the pseudo-code. We
first map each vertex to a block (line 1). Next, each thread in
the block sums up a partition of α values into sum (a local
variable in each thread) according to their thread id in the
block (lines 2–6). Next, we aggregate sum from all threads
(line 7) and compute r (i)

α (u) (line 8).
By assigning each vertex to a block, we can reduce the idle

clock cycles within one block, as shown in Fig. 6b. However,

3 In a real GPU, a block can have several warps, and a warp contains
32 threads. Here, we use small numbers for illustration.

Algorithm 8: Compute r (i)
α by block→vertex

Input : α(i), c
Output : r (i)

α

1 u ← block.id ; // map vertex to block
2 k ← thread.id, sum ← 0;
3 while k ≤ d+

G (u) do
4 v ← k-th out-neighbor of u;

5 sum ← sum + α
(i)
u,v ;

6 k = k + block.size;

// reduction in the block

7 r (i)
α (u) ← aggregate sum via all threads within the block in
parallel;

8 r (i)
α (u) ← 2

√
c · r (i)

α (u);

for the vertices with very small degrees, it is extravagant
to assign each of them to a block. For example, in the 4
blocks handling vertices 4–7 of Fig. 6b, each block only
has one working thread, which means that 87.5% threads
in those blocks are idle. Inspired by the block strategy, we
also implement a warp strategy, i.e., assigning one vertex to a
warp. Empirically, the warp strategy performs better than the
block strategy. This means the warp strategy can reduce the
computing resource waste compared to the block strategy.
However, it still suffers from the imbalance among vertex
degrees, as the warp size is 32 and there can be many ver-
tices with degrees much less than 32.

To reduce the idle resources caused by the above three
strategies, we propose a new adaptive strategy, depicted
in Fig. 6c, to allocate computing resources to each vertex
according to its degree. To achieve this goal, we first build
an auxiliary array b2v to keep track of which vertices are
assigned to a thread block. If the degree of a vertex is not
smaller than the block size, the vertex can occupy a block
alone; otherwise, it needs to share a block with other ver-
tices. For example, Fig. 7 depicts the vertex assignment on
blocks for the vertices we presented in Fig. 6. We can find
that block 0 only has vertex 0 with degree 12, but vertices
2 and 3 need to share block 2 together. Vertices 4 to 7 are
assigned to block 3, as 8 in b2v[4] is outside the range.
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Fig. 7 Vertex assignment on blocks

Algorithm 9: Compute r (i)
α adaptively

Input : α(i), c, b2v, v2e
Output : r (i)

α

1 δ ← b2v[block.id + 1] - b2v[block.id];
2 if δ = 1 then
3 u ← b2v[block.id];
4 reuse lines 2-8 from Algorithm 8;
5 else if δ ≥ block.size / 2 then
6 u ← b2v[block.id]+thread.id;
7 reuse lines 2-3 from Algorithm 7;
8 else
9 τ ← block.size/δ;

10 round τ to the previous power of 2;
11 ul ← b2v[block.id], ur ← b2v[block.id+1];
12 el ← v2e[ul ], er ← v2e[ur ];

// sum is shared in block
13 if el+thread.id< er then
14 sum[thread.id] ← α

(i)
el+thread.id;

15 u ← ul+thread.id/τ ;
16 if u < ur then
17 k ← u − ul ;
18 il ←v2e[u]−v2e[ul ], ir ←v2e[u + 1]−v2e[ul ];
19 r (i)

α (u) ← aggregate sum[il : ir − 1] via k-th τ threads in
the block in parallel;

20 r (i)
α (u) ← 2

√
c · r (i)

α (u);

Based on b2v, the vertex assignment array, Algorithm 9
presents the pseudo-code for the adaptive strategy. For the
current block, we first obtain δ, the number of vertices
assigned to this block, via b2v (line 1). If only one vertex v

is assigned, we compute the rv value in parallel by all threads
within the block, following the strategy in Algorithm 8 (lines
2–4). Similarly, if the number of vertices allocated is at least
half of the block size, then we assign each vertex to a thread
within the block, following the strategy in Algorithm 7 (lines
5–7). If the number of assigned vertices is within the range
[2,block.id/2), we first read all related α values from global
memory into sum, which resides in the sharedmemory of the
block (lines 11–14), and allocate τ threads to compute the

r value for each vertex in parallel (lines 15–20). In detail,
we first obtain τ , the number of threads assigned to each
vertex (lines 9–10). Here, we round τ to the previous power
of 2 to facilitate the later aggregation. Next, we obtain the
index range [el , er ) of the related α values via the auxiliary
arrays (lines 11–12). Afterward, for each assigned vertex u,
we denote u as the k-th vertex in the block (line 17), identify
the index range of the related sum values (line 18), allocate
k-th τ threads to aggregate the sum values in parallel (line
19), and compute the final ru value (line 20).

Example 6.2 From Fig. 6, we can find that the adaptive strat-
egy has the advantages of both the thread and the block
strategies. By allowing vertices with large degrees to occupy
blocks alone, we reduce the idle computing resources in the
thread strategy. For example, vertex 0 with a degree of 12
occupies a block alone. By assigning multiple vertices with
smaller degrees to a block, we reduce the idle resources in
the block strategy. For example, vertices 2 (with degree 5)
and 3 (with degree 3) are assigned to one block, and the four
vertices with a degree of 1 are also assigned to one block.

We can find that in the adaptive strategy, threads in the
same block share the same control flow, while different
blocks can have different computing strategies. The former
ensures we will not suffer from warp divergence, and the
latter employs different methods for different degree distri-
butions.

Algorithms 7,8,9 focus on computing r (i)
α from α(i). Sim-

ilarly, the algorithms can also be used to compute r (i)
β with

minor changes.
Complexity We follow the work-span framework of [54]

to analyze the complexity of a Frank–Wolfe iteration, which
is performed in parallel here.

Compared to serial computation, parallel computation has
two components of extra work, i.e., the graph data copy
operation between CPU memory and GPU memory and the
reduction process in each block, for the block and adaptive
strategies. The time cost of the former is linear in the graph
size, and the latter one is linear in the number of blocks,
which is also linear in the graph size. Hence, the work of
a Frank–Wolfe iteration is still O(m). The span (or depth)
differs for different strategies, as summarized in Table 1.

7 Experiments

In this section, we first introduce the experimental setup in
Sect. 7.1 and then present the experimental results of approx-
imation algorithms and exact algorithms in Sects. 7.2 and 7.3,
respectively.
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Table 1 Work and span per Frank–Wolfe iteration

Strategy Work Span

Per block # blocks Per iter

Thread O(m) O(dmax) O( n
sb

) O( n·dmax
sb ·sg )

Block O( dmax
sb

) O(n) O( n·dmax
sb ·sg )

Adaptive O( dmax
sb

) O(b) O( b·dmax
sb ·sg )

sb denotes the size of a threadblock. sg denotes the number of concurrent
blocks in the GPU. b is the number of blocks in the adaptive strategy,
where n

sk
≤ b ≤ n

Table 2 Directed graphs used in our experiments

Dataset Full name Category |V | |E |
MO [17] moreno-oz Human Social 217 2672

TC [1] maayan-faa Infrastructure 1226 2615

OF [47] openflights Infrastructure 2939 30.5K

AD [43] advogato Social 6541 51K

AM [35] amazon E-commerce 403K 3.38M

AR [45] amazon-ratings E-commerce 3.38M 5.84M

BA [46] baidu-zhishi Hyperlink 2.14M 17.6M

SK [51] web-sk-2005-all Web 50.6M 1.95B

7.1 Setup

We use eight real datasets [33] which are publicly avail-
able.4 These graphs cover various domains, including social
networks (e.g., Twitter and Advogato), e-commerce (e.g.,
Amazon), and infrastructures (e.g., flight networks). Table 2
summarizes their statistics.

We compare the following approximation DDS algo-
rithms:

– CP-Approx is our proposed approximation algorithm
(Sect. 5.2).

– Core-Approx [40] is the state-of-the-art 2-
approximation algorithm.

– VW-Approx [53] is the state-of-the-art (1 + ε)-
approximation algorithm (briefed in Sect. 5.2).

– Flow-Approx [11] is the max-flow-based state-of-the-
art (1 + ε)-approximation algorithm.

We also compare the following exact DDS algorithms:

– CP-Exact is our proposed exact algorithm (Sect. 5.3).
– DC-Exact [40] is the state-of-the-art exact algorithm
enhanced with the divide-and-conquer strategy and ele-
gant core-based pruning techniques.

4 http://konect.uni-koblenz.de/networks/.

Fig. 8 Efficiency of approximation algorithms

– Core-Exact [40] is simplified version of DC-Exact
without using the divide-and-conquer strategy.

– Flow-Exact [31] is the first max-flow-based exact
algorithm.

– LP-Exact [10] is the LP-based exact algorithm.

Note that the parameter N of Frank-Wolfe-DDS is set
to 100 in CP-Exact and CP-Approx. All the algorithms
above are implemented in C++ with STL used. [40] pro-
vides code for Flow-Exact, DC-Exact, Core-Exact,
and Core-Approx. No source code is available for other
algorithms, we implement code for them. Our source code is
publicly available.5 Due to space limit, additional experimen-
tal results can also be found in the code repo. We ran all the
experiments on a machine having an Intel(R) Xeon(R) Silver
4110 CPU @ 2.10GHz processor, a GeForce GTX 2080 Ti
11GB GPU, and 256GB memory, with Ubuntu installed.

7.2 Approximation algorithms

In this section, we mainly compare our approximation
algorithm CP-Approx with the state-of-the-art (1 + ε)-
approximation algorithms VW-Approx [53], Flow-
Approx [11], and the state-of-the-art 2-approximation algo-
rithm Core-Approx [40].

7.2.1 Efficiency comparison

In this experiment, we evaluate the efficiency of four
approximation algorithms, i.e., CP-Approx, VW-Approx,
Flow-Approx and Core-Approx, with ε = 1. Note that
Core-Approx only provides the 2-approximation DDS,
and the efficiency result of CP-Approx, VW-Approx, and
Flow-Approx w.r.t. different values of ε will be presented
later. Figure8 reports the efficiency result of the four algo-
rithms. The datasets are ordered by graph size on the x-axis.

5 https://github.com/chenhao-ma/DDS-convex-code.
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Fig. 9 Actual approx. ratios of approx. algorithms

Notice that for some datasets, the bars of VW-Approx
and Flow-Approx touch the solid upper line, which
means they cannot finish within one week on those datasets.
From Fig. 8, we can make the following observations: First,
CP-Approx is slightly slower than Core-Approx. On
average, the running time of CP-Approx is 2.68× of that of
Core-Approx over all datasets. CP-Approx offers more
flexibility to control the accuracy guarantee, and it is rea-
sonable to pay for the flexibility. The time complexity of
CP-Approx is also slightly higher than Core-Approx
when ε = 1. Second, CP-Approx is at least 10× and
up to five orders of magnitude faster than VW-Approx
and Flow-Approx. We have listed three reasons on why
CP-Approx is faster than VW-Approx at the end of
Sect. 5.2: fewer trials of different |S|

|T | , tighter error esti-
mation, and the smaller size of graph to be processed.
Flow-Approx is slow because it typically needs to per-
form the blocking flow computations on the whole graph.

7.2.2 Accuracy comparison

We present the actual approximation ratios of all the four
approximation algorithms in Fig. 9 with ε = 1. Specifi-
cally, for each dataset, we first obtain the exact DDS via
CP-Exact, then compute the approximate DDSs using
those approximation algorithms, and get the actual approxi-
mation ratio (i.e., the density of the exact DDS over those of
approximateDDSs). Somebars aremissing forVW-Approx
and Flow-Approx, as they cannot finish within one
week on those datasets. From Fig. 9, we can observe that
actual approximation ratios are quite close to each other on
most datasets, except that on the AD dataset, the ratio of
CP-Approx is slightly larger than that of VW-Approx.
Flow-Approx provides the worst actual approximation
ratios on dataset OF. Besides, most ratios of CP-Approx
are smaller than those of Core-Approx (except on SK),
and CP-Approx offers more flexibility on the approxima-
tion guarantee since ε can be any positive real values. The

Fig. 10 Effect of ε

flexibility further helps explore DDS of higher or lower den-
sity.
7.2.3 Effect of "

We evaluate the effect of ε on the efficiency and accuracy of
the three (1+ε)-algorithms, i.e.,CP-Approx,VW-Approx
andFlow-Approx. Figure10presents the running time and
the densities of the subgraphs returned by the algorithms over
different ε values from 0.1 to 6 on the two datasets.When ε is
larger,CP-Approx can provide less dense subgraphs,which
shows that CP-Approx can provide subgraphs with higher
or lower density via smaller or larger ε. Note the running
time plot of VW-Approx and Flow-Approx touches the
solid upper line for some cases, whichmeans the correspond-
ing algorithm cannot finish within one week on those cases.
Hence, the density plot ofVW-Approx is alsomissing in that
case. From Fig. 10, we can observe: First, for all three algo-
rithms, their running time decreases along with the growth
of ε. This is reasonable since computing a more accurate
result often takes a longer time cost. Second, the improve-
ment of CP-Approx over VW-Approx is more significant
when ε is set smaller. One reason is that CP-Approx exam-
ines fewer LPs with different c values. Another reason is
that the relaxation via AM-GM inequality in VW-Approx
causes extra overhead to satisfy the approximation guaran-
tee, especially when ε is small. Hence, we conclude that
our CP-Approx makes better use of the error tolerance
to gain the efficiency speedup over VW-Approx. Third,
the improvement of CP-Approx over Flow-Approx
is quite significant in terms of both running time and
accuracy.
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Table 3 Statistics of DDSs w.r.t. different ε values on AD

ε Density |S| |T | Similarity w.r.t. G[S∗, T ∗]
0 31.6811 453 195 1

0.1 31.6299 443 197 0.98

1 29.0183 913 2 0.43

2 28.0357 1 786 0.16

7.2.4 A case study: parameter selection of ".

In this case study, we investigate the approximate DDSs
returned by CP-Approx under different ε values compared
to the exact DDS. Table 3 reports the statistics of the exact
DDS and three approximate DDSs (with ε = 0.1, 1 and 2,
respectively) on the AD dataset. In terms of the density, we
observe that all the three approximate DDSs have relatively
high densities, but the approximate DDS with ε = 0.1 tends
to have higher overlap than the subgraphs with ε = 1 and 2
since the former one’s vertices and structures are very close
to the exact DDS, while the latter subgraphs look quite dif-
ferent from the exact DDS. Furthermore, we have computed
the similarity between the approximate DDSs and the exact
DDSw.r.t. the sets of vertices in the subgraphs. The similarity
of the approximate DDS with ε = 0.1 is 0.98, while the one
with ε = 1 is 0.43. Hence, we can conclude that if the users
want to find a dense subgraph quickly, they can choose larger
ε values (e.g., ε = 1). On the other hand, if the users want
to find denser subgraphs that are highly overlapped with and
similar to the exact DDS, it is better to set ε to smaller val-
ues (e.g., ε = 0.1). Further, users can also explore the DDSs
returned with different values of ε in downstream applica-
tions (e.g., fake follower detection), as our CP-Approx is
quite efficient.

7.3 Exact algorithms

7.3.1 Efficiency comparison

In Fig. 11, we report the running time of exact algorithms
on all eight datasets scaling from thousands to billions
(ordered by the graph size on the x-axis).We can observe that
CP-Exact is at least 10× and up to 5000× faster than the
state-of-the-art exact algorithm DC-Exact. We have sum-
marized three reasons why CP-Exact is more efficient than
DC-Exact at the end of Sect. 5.3: avoiding the repeated
max-flow computation; early stop in the inner loop; and the
smaller size of the graph to be processed.

To further investigate the performance improvement of
CP-Exact, we collect some statistics of CP-Exact in
Table 4, including the number of LPs with different c values
examined (noted as “#c”), the average number of itera-
tions that Frank-Wolfe-DDS runs for #c LPs (noted

Fig. 11 Efficiency of exact algorithms

Table 4 Statistics of CP-Exact over different datasets

Datasets #c Avg #iterations Avg #edges Product

MO 17 158.82 1707.35 4.61 × 106

TC 18 177.78 588.72 1.88 × 106

OF 39 300 9146.62 1.07 × 108

AD 49 542.86 11687.8 3.11 × 108

AM 9 144.44 6982 9.08 × 106

AR 20 70 12426.5 1.74 × 107

BA 18 61.11 288,142 3.17 × 108

SK 23 121.74 407 × 107 1.14 × 1011

as “Avg #iterations”), the average number of edges that
Frank-Wolfe-DDS processes for #c LPs after pruned via
the techniques in Sect. 5.1 (noted as “Avg #edges”), and the
product for the three items (noted as “Product”). We can
see that the number of c values examined on each dataset is
much smaller than the possible values of c (O(n2)), which
demonstrates that the divide-and-conquer strategy is indeed
effective. Besides, as Frank-Wolfe-DDS consumes the
major running time of CP-Exact, the product explains why
its time cost on AM is less than that on AD, although AM
is larger than AD. Similarly, its time cost on TC is less than
that on MO due to the same reason.

7.3.2 Ablation study of Is-Stable and Is-cDDS

Here, we conduct an ablation study on CP-Exact to
understand the effectiveness of the early stop strategies
(Is-Stable and Is-cDDS). We name the variant without
Is-Stable and Is-cDDS as CP-Exact-ab (ablation).
In this variant, the Frank-Wolfe-DDS computation needs
to keep running until the optimal value reaches. Table 5
reports the running time of CP-Exact and CP-Exact-ab
over different datasets. CP-Exact-ab cannot finish rea-
sonably on SK, so its running time is marked as “NA”
in the table. We can observe the speedup provided by
Is-cDDS and Is-Stable is from 6× to 472×. Hence,
the early stop strategies based on the stable (S, T )-induced
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Table 5 The running time of CP-Exact and CP-Exact-ab

Dataset CP-Exact CP-Exact-ab Speedup

MO 0.17s 22.26 s 131.95

TC 0.08s 1.15 s 15.29

OF 3.40s 439.06 s 128.99

AD 13.12s 1208.11 s 92.09

AM 6.13s 505.47 s 82.46

AR 47.78 s 321.27 s 6.72

BA 242.66 s 114709.50 s 472.71

SK 10687.5 s NA NA

Fig. 12 Memory usage of algorithms

Table 6 Average speedup of CP-Approx compared to CP-Exact

ε 0.001 0.005 0.007 0.01 0.05 0.07

Avg Speedup 0.45 0.90 1.03 1.24 2.82 3.67

ε 0.1 0.5 1 1.5 2 2.5

Avg Speedup 4.67 9.37 25.13 26.87 37.39 38.26

subgraph and the max-flow are effective to reduce the
Frank-Wolfe-DDS iterations.

7.4 Memory usage

We report the maximum memory usage of all algorithms in
Fig. 12. The memory usage of Flow-Exact and Core-
Exact is omitted because the results are very similar to that
ofDC-Exact.We observe that thememory costs of all algo-
rithms are around the same scale because all algorithms take
linear memory usagew.r.t. the graph size. Among those algo-
rithms, LP-Exact needs more memory than others because
we implemented LP-Exact via Google OR-Tools, which
materializes all constraints in the LPs.

7.5 Comparing CP-Exact and CP-Approx

In Table 6, we report the average speedup of CP-Approx
compared to CP-Exact with respect to different values of
ε over all datasets. We can observe that the speedup pro-
vided by CP-Approx increases along with the increase
of ε, because CP-Approx can tolerate larger errors when
ε is larger. Besides, when ε = 0.001/0.005, the speedup
is less than 1, which means CP-Approx is slower than
CP-Exact. The reason is that the number of iterations
for Frank–Wolfe is proportional to ε−2 according to The-
orem 4.3. Further, for CP-Exact, we introduced effective
early stop strategies via stable subgraphs and optimality test
by max-flow. To summarize, for small-to-moderate-sized
graphs (e.g., AM), CP-Exact is the best choice, as it com-
putes an exact DDS in a reasonable time. For large-scale
graphs (e.g., SK),CP-Approx allows the users to efficiently
explore the different approximate DDSs via different ε.

7.6 GPU parallel evaluation

To examine the effects of our different parallelization strate-
gies, we evaluate the running time of the Frank–Wolfe
iterations for each strategy with varying block sizes on all
eight datasets. Figure13 reports the running time results
under these settings. We make the following observations
from the figure. (1) In most cases, especially on large graphs,
the adaptive strategy is the most efficient compared to the
other two strategies. On large datasets, the adaptive strategy
can be around 10× faster than the other two strategies. (2)
Usually, a larger thread block size is preferable in the adap-
tive strategy, especially for large graphs. We can find that
a block size of 1024 has the best performance on the three
largest datasets and has a similar running time to the other two
methods on the remaining datasets. (3) In the block strategy
and the thread strategy, a smaller block size is desirable in
almost all cases. Besides, the block strategy with a block size
of 64 usually performs better than the thread strategy with
the same block size. We reckon the reason is that the vertices
with larger degrees can receive more computing resources,
and meanwhile, the smaller block size will not cause too
many idle threads for vertices with small degrees. (4) The
warp strategy usually outperforms the block strategy, and is
outperformed by the adaptive strategy, as the warp size is 32
and there can be many vertices with degrees much less than
32.

To gain further insights into the performance differences
among the various strategies, we report two metrics in
Table 7: Avg. Active Threads Per Warp, which is the aver-
age number of active threads in a warp, and Achieved Active
Warps Per SM, which is the average number of active warps
per SM during kernel execution with block size 1024. We
observe that the adaptive and block strategies have similar
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Fig. 13 Running time of Frank–Wolfe iterations under different strategies

Table 7 Compute workload
analysis

Strategy Avg. active threads / Warp Achieved active warps / SM

Adaptive 31.19875 36.38

Block 31.8475 31.445

Thread 20.74125 14.32125

Warp 26.1425 33.62125

Table 8 Speedup by the adaptive strategy on Frank–Wolfe computation

Dataset MO TC OF AD AM AR BA SK

Speedup 4.0 1.8 18.8 39.2 50.3 456 517 232

levels of warp divergence, as the average number of active
threads per warp is close to 32. However, the adaptive strat-
egy achieves better performance than the block strategy, as
it can utilize the GPU resources more efficiently, leading to
a higher number of active warps per SM.

Next, we evaluate the speedup provided by the adap-
tive strategy with a block size of 1024 on GPU compared
to the original CPU Frank–Wolfe computation for optimiz-
ing the dual programs, as this setting is almost the best
choice. Table 8 reports the speedup results. We can find
that the speedup is more significant on large datasets. Notice
that these speedups relate to the Frank–Wolfe computation,
which, as we mentioned earlier, takes up around 75% of the
whole processing time on dataset SK. Thus, the theoretical
speedup provided by the GPU parallel Frank–Wolfe com-
putation is limited to at most 1

1−75% = 4 times. We further
report the end-to-end speedup provided by GPU acceleration
in Table 9. The end-to-end speedup on SK is around 3.88,
which is close to the theoretical limit. However, for smaller
datasets such asMO, TC, and OF, the speedup can be smaller
than 1 due to the running time on those datasets being less
than 0.1 s, while the GPU initialization can incur up to 3 s of
latency.6 Thus, the GPU speedup is more suitable for large-

6 https://deci.ai/blog/measure-inference-time-deep-neural-networks/.

Table 9 Breakdown of total time (in seconds) for GPU-enabled version
and end-to-end speedup

Dataset Data move GPU comp Pre/post process Speedup

MO 0.0081 0.0367 3.337 0.05

TC 0.0079 0.043 3.2798 0.03

OF 0.0374 0.1664 3.5683 0.87

AD 0.1209 0.3378 3.5789 3.36

AM 0.0228 0.0191 5.8581 0.62

AR 0.0881 0.0267 13.0513 1.73

BA 0.9461 0.1894 118.0355 1.80

SK 118.765 30.9194 2390.4377 3.88

scale datasets. The maximum GPU memory usage and the
size of data transferred between GPU and CPU memory can
be found in Table 10.

We have also evaluated the CPU parallel implementa-
tion of Frank–Wolfe with 32 threads. However, the speedup
provided by CPU parallel is much smaller than our GPU
implementation. The average speedup provided by GPU
implementation is about 164×, while the 32-thread CPU-
only version can provide about 3× speedup in terms of
Frank–Wolfe computation. For details, please refer to our
code repo.

8 Conclusion

This paper studies efficient solutions of the directed dens-
est subgraph (DDS) problem via convex programming. We
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Table 10 Maximum GPU
memory used and data
transferred between CPU and
GPU

Memory (in MB) MO TC OF AD AM AR BA SK

Max usage 207 207 207 207 213 257 257 5,585

Transferred 1.93 2.01 35.8 177 6.06 29.7 241 44,662

first review and discuss the limitations of existing algorithms.
To efficiently find the DDS, we formulate the DDS problem
as a set of linear programs and derive their dual programs.
We use a Frank–Wolfe-based algorithm to iteratively solve
the dual program and construct the DDS candidates based
on their duality. Next, we apply a divide-and-conquer strat-
egy to reduce the number of linear programs to be solved
and develop both efficient exact and (1 + ε)-approximation
algorithms, respectively, where ε is an arbitrary positive
value. We further study parallelization strategies for com-
puting Frank–Wolfe iterations on GPU. Finally, we perform
extensive experiments on eight real datasets (up to 2 billion
edges) to evaluate the proposed algorithms. The experimental
results show that our exact and approximation DDS algo-
rithms are up to three and five orders of magnitude faster
than their state-of-the-art competitors, respectively. The best
GPU parallelization strategy can also speed up the Frank–
Wolfe computation by up to two orders of magnitude.
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9 Appendix

9.1 Convergence rate of Frank-Wolfe-DDS

Toperform the convergence analysis of Frank-Wolfe-DDS
(Algorithm 1), it would be easier if the objective function is
differentiable [27], which, however, is not the case for ‖r‖∞
in DP(c) ((4.6)). Hence, we construct a convex program with
a differentiable objective function, which shares the same
optimal solution and minimizer of the linearization of the
objective function at a specific position ((4.8)) with DP(c).

CP(c) min f (α, β) = 1

4
√
c

∑

u∈V
rα(u)2 +

√
c

4

∑

v∈V
rβ(v)2

s.t. α, β, r satisfy the constraints in DP(c).

(9.1)

We can verify that (4.8) is also the minimizer of the linear
function given by ∂ f (α, β). Hence, Frank-Wolfe-DDS
(Algorithm 1) applies to both DP(c) and CP(c). Further, the
following two lemmas indicate that the optimal solution of
CP(c) induces the c-biased DDS, which is also the objective
of DP(c).

Lemma 9.1 Suppose that an optimal solution (α, β) of CP(c)
induces the density vector r ∈ R

2|V |
+ . Then, we have

1. ∃(u, v) ∈ E, rα(u) > rβ(v) ⇒ αu,v = 0, βv,u = 1;
2. ∃(u, v) ∈ E, rα(u) < rβ(v) ⇒ βv,u = 0, αu,v = 1.

Proof Weprove the lemmaby contradiction. For (1), suppose
αu,v > 0. There exists ε > 0 such that we could decrease
αu,v by ε and increase βv,u by ε to strictly decrease the objec-
tive function because ∂ f

∂αu,v
= rα(u) >

∂ f
∂βv,u

= rβ(v). This
contradicts the optimal assumption. Similarly, we can also
prove (2). �

To simplify the notations, we denote Dc as the feasible
set of DP(c) and CP(c), as DP(c) and CP(c) share the same
constraints.

Lemma 9.2 Suppose a non-empty subset pair (S, T ), where
S, T ⊆ V , is stable with respect to a pair (α, β, r) ∈ Dc.
Suppose that ∃ρ∗

c ∈ R such that ∀u ∈ S, rα(u) = ρ∗
c and

∀v ∈ T , rβ(v) = ρ∗
c . Then, G[S, T ] is the c-biased DDS and

has c-biased density ρ∗
c .

Proof As (α, β, r) is a feasible solution of DP(c) and (S, T )

is stable, the objective value of (α, β, r) is ‖r‖∞ = ρ∗
c .More-

over, since (S, T ) is stable, ρc(S, T ) = 2
√
cc′

c+c′ · |E(S,T )|√|S||T | = ρ∗
c ,

where c′ = |S|
|T | . This comes from |E(S, T )| = (

|S|
2
√
c

+
√
c|T |
2 )ρc(S, T ). By Lemma 4.1, (S, T ) gives a feasible pri-

mal solution in LP(c) with objective value ρ∗
c . Hence, ρ

∗
c is

the optimal value for both LP(c) and DP(c), which means
that G[S, T ] is the c-biased DDS. �

Lemmas 9.1,9.2 imply that an optimal solution (α, β, r)
of CP(c) induces the c-biased DDS G[S∗

c , T
∗
c ] in G, where

S∗
c = {u|rα(u) = ‖r‖∞} and T ∗

c = {v|rβ(v) = ‖r‖∞}.
Hence, we can confirm that Frank-Wolfe-DDS (Algo-

rithm 1) applies to both DP(c) and CP(c) and the opti-
mal solutions of both programs induce the c-biased DDS.
Hence, we use CP(c) to analyze the convergence rate of
Frank-Wolfe-DDS. According to the previous conver-
gence analysis of the Frank–Wolfe-based algorithms in [13,
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27], the convergence rate of our Frank-Wolfe-DDS algo-
rithm can be described by a value related to the graph, Qc =
1
2Diam(Dc)

2 sup(α,β)∈Dc
‖∇2 f (α, β)‖2, whereDiam(Dc) is

the diameter of Dc, ∇2 f (α, β) is the Hessian, and ‖ · ‖2 is
the spectral norm of a matrix.

Theorem 9.1 (Convergence Rate of Frank–Wolfe [27]) Sup-
pose (α∗, β∗) ∈ Dc is an optimal solution of CP(c). Then,
for all i ≥ 1, f (α(i), β(i)) − f (α∗, β∗) ≤ 2Qc

i+2 .

Lemma 9.3 (Bounding Qc) Given a directed graph G =
(V , E) with maximum outdegree d+

max and maximum inde-
gree d−

max and a given c, we have that
Qc ≤ 2|E |max{√cd+

max,
1√
c
d−
max)}.

Proof First, we have Diam(Dc) = √
2|E |. The Hessian of

f (α, β) is irrelevant to the value of (α, β), and it is a nonnega-
tive symmetricmatrix. Therefore, sup(α,β)∈Dc

‖∇2 f (α, β)‖2
is the maximum singular value of ∇2 f (α, β). Let A =
∇2 f (α, β), λ1 be the maximum singular value (also the
maximum eigenvalue) of A, x be the eigenvector associated
with λ1, and p be the component in which x has maximum
absolute value. Without loss of generality, we assume xp is
positive. We have

λ1xp = (Ax)p =
2n∑

q=1

Ap,q xq ≤
2n∑

q=1

Ap,q xp

≤ xp max{2√cd+
max,

2√
c
d−
max}.

Therefore, Qc ≤ 2|E |max{√cd+
max,

1√
c
d−
max)}. �

Lemma 9.4 Suppose (α, β, r) ∈ Dc such that ε := ‖r‖∞ −
ρ∗
c , where ρ∗

c = ‖r∗‖∞ and (α∗, β∗, r∗) is the opti-
mal solution of DP(c). Then, we have that (4

√
c + 4√

c
) ·

( f (α, β) − f (α∗, β∗)) ≥ ε2.

Proof First, we have f (α, β)− f (α∗, β∗) ≥ f (α −α∗, β −
β∗), because f (α, β) − f (α∗, β∗) − f (α − α∗, β − β∗) is
an affine function on Dc and obtains its minimum value 0 at
(α∗, β∗). Second, f (α −α∗, β −β∗) can be bounded by the
l2-norm of r − r∗, i.e., (4

√
c + 4√

c
) f (α − α∗, β − β∗) ≥

‖r − r∗‖22. For the infinity norm and the l2-norm, we have
‖r‖∞ −ρ∗

c ≤ ‖r−r∗‖∞ ≤ ‖r−r∗‖2. Combining the above
inequalities, we will have the lemma. �

Corollary 9.1 (Convergence of Algorithm 1) Suppose d+
max

(resp. d−
max) is the maximum outdegree (resp. indegree)

of G and c is fixed. In Algorithm 1, for i > 16(
√
c +

1√
c
)
|E |max{√cd+

max,
1√
c
d−
max)}

ε2
, we have ‖r(i)‖∞ − ρ∗

c ≤ ε.

9.2 Proofs

Proof of Lemma 4.1 We prove the lemma by showing a fea-
sible solution (x, s, t, a, b) of LP(c). Let a = 2c′

c+c′ and b =
2c

c+c′ . For each vertex u ∈ P , set su = a
√
c

|P| = 2c′√c
(c+c′)|P| . For

each vertex v ∈ Q, set tv = b√
c|Q| = 2c

(c+c′)√c|Q| = 2c′√c
(c+c′)|P| .

For each edge (u, v) ∈ E(P, Q), set xu,v = su = tv . All the
remaining variables are set to 0. Now,

∑
u∈V su = a

√
c and∑

v∈V tv = b√
c
. Hence, this is a feasible solution to LP(c).

The value of this solution is

2c′√c

(c + c′)|P| |E(P, Q)| = 2
√
cc′√|Q|

(c + c′)
√|P|

|E(P, Q)|√|P||Q|
= 2

√
c
√
c′

c + c′ ρ(P, Q).

Thus, the lemma holds. �

Proof of Lemma 4.2 Without loss of generality,we can assume
that for each (u, v) ∈ E , xu,v = min{su, tv}. We define
a collection of sets S, T indexed by a parameter r ≥ 0.
Let S(r) = {u|su ≥ r}, T (r) = {v|tv ≥ r}, and E(r) =
{(u, v)|xu,v = min{su, tv}}. Hence, E(r) is precisely the set
of edges that go from S(r) to T (r).

Now,
∫ ∞
0 |S(r)|dr = ∑

u∈V su = a
√
c. Similarly,∫ ∞

0 |T (r)|dr = ∑
v∈V tv = b√

c
. By the Cauchy–Schwarz

inequality,

∫ ∞

0

√|S(r)||T (r)|dr

≤
√(∫ ∞

0
|S(r)|dr

)(∫ ∞

0
|T (r)|dr

)
= √

ab.

Note that
∫ ∞
0 |E(r)|dr = ∑

(u,v)∈E xu,v . This is the objec-
tive function value of the solution. Let this value be xsum.

We claim that there exists r such that E(r)√|S(r)||T (r)| ≥ xsum√
ab
.

Suppose there was no such r . Then,

∫ ∞

0
|E(r)|dr <

xsum√
ab

∫ ∞

0

√|S(r)||T (r)|dr ≤ xsum.

This gives a contradiction. Thus, the lemma holds. �

Proof of Lemma5.3 As G[S∗
c , T

∗
c ] is the c-biased DDS with

c-biased density ρc(S∗, T ∗), there must exist u ∈ S satis-
fying rα(u) ≤ ρc(S∗

c , T
∗
c ), or v ∈ T satisfying rβ(v) ≤

ρc(S∗
c , T

∗
c ). Otherwise, G[S, T ] is a subgraph with a higher

c-biased density than G[S∗
c , T

∗
c ].

Now, we prove the lemma by contradiction. Assume
G[S∗

c , T
∗
c ] is not contained in G[S, T ]. Based on whether

G[S∗
c , T

∗
c ] overlaps G[S, T ], there are two cases.
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1. S∗
c ∩ S = ∅ and T ∗

c ∩ T = ∅. Since |E(S∗
c , T

∗
c )| =

(
|S∗

c |√
c

+ √
c|T ∗

c |)ρc(S∗
c , T

∗
c ), there exists u ∈ S∗

c , rα(u) ≥
ρc(S∗

c , T
∗
c ) or v ∈ T ∗

c , rβ(v) ≥ ρc(S∗
c , T

∗
c ).

2. S∗
c ∩ S �= ∅ or T ∗

c ∩ T �= ∅.

|E(S∗
c , T

∗
c )|

=|E(S∗
c ∩ S, T ∗

c ∩ T )| + |E(S∗
c , T

∗
c ) \ E(S, T )|

=
( |S∗

c ∩ S|√
c

+ √
c|T ∗

c ∩ T |
)

ρc(S
∗
c ∩ S, T ∗

c ∩ T )

+
( |S∗

c \ S|√
c

+ √
c|T ∗

c \ T |
)

ρ′
c.

Since ρc(S∗
c ∩ S, T ∗

c ∩ T ) ≤ ρc(S∗
c , T

∗
c ), we have

ρ′
c ≥ ρc(S∗

c , T
∗
c ). Thus, there exists u ∈ S∗

c \S, rα(u) ≥
ρc(S∗

c , T
∗
c ) or v ∈ T ∗

c \T , rβ(v) ≥ ρc(S∗
c , T

∗
c ).

Consequently, for each case above, combining the inequali-
ties will give us a contradiction to the first condition of the
stable (S, T )-induced subgraph definition. Hence, the lemma
holds. �
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