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ABSTRACT

2-hop labeling has been widely utilized to accelerate the efficiency

of online shortest distance queries. Given the nature of frequent

changes in real-world graphs, the efficient maintenance of 2-hop

labeling index has been extensively studied recently. However, ex-

isting methods cannot efficiently process large-scale graphs due to

their high time and memory costs, and most of them process large

batches of updates sequentially, significantly decreasing efficiency.

In this paper, we propose a novel algorithm for maintaining the

2-hop labeling index in a parallel manner, called M2HL, which can

efficiently handle both edge insertions and deletions. Moreover,

we theoretically prove that M2HL maintains both correctness and

minimality for the updated 2-hop labeling index. Our experiments

on ten large-scale graphs demonstrate that M2HL outperforms the

state-of-the-art 2-hop labeling maintenance methods by up to four

orders of magnitude in speed while maintaining correctness and

minimality, as well as exhibiting strong scalability and low memory

usage.
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1 INTRODUCTION

The small-world networks are characterized by their short average

path lengths and skewed degree distributions [20] and are prevalent

in real-world scenarios such as social networks, citation networks,

biological systems, and communication networks [3, 20, 21]. As a

fundamental problem in graph analytics, the shortest distance query

𝑞(𝑠, 𝑡) reports a minimized length of a path between two nodes 𝑠

and 𝑡 in a given graph 𝐺 , and it has served as a building block in
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many graph-based areas, such as GPS navigation [26], route plan-

ning [1, 13, 30], and community searching [9, 10, 15, 23, 24]. Due

to the frequent distance computations and high cost, various index-

based methods have been proposed to speedup the computations

by building extra auxiliary structures [6, 7, 20, 27, 37, 38]. To our

knowledge, 2-hop labeling [11] is widely regarded among all dis-

tance labeling methods for its excellent query performance [21, 44].
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Figure 1: (a) Graph 𝐺𝑆 and (b) Graph 𝐺𝐿

Table 1: The 2-hop labeling of 𝐺𝑆 and 𝐺𝐿

The 2-hop labeling 𝐿0 of𝐺𝑆 The 2-hop labeling 𝐿1 of𝐺𝐿

𝑣0 (𝑣0, 0) (𝑣0, 0)
𝑣1 (𝑣1, 0) , (𝑣0, 2) (𝑣1, 0) , (𝑣0, 1)
𝑣2 (𝑣2, 0) , (𝑣0, 1) , (𝑣1, 1) (𝑣2, 0) , (𝑣0, 1) , (𝑣1, 1)
𝑣3 (𝑣3, 0) , (𝑣0, 1) (𝑣3, 0) , (𝑣0, 1) , (𝑣2, 1)
𝑣4 (𝑣4, 0) , (𝑣0, 1) , (𝑣3, 1) (𝑣4, 0) , (𝑣0, 1) , (𝑣3, 1)
𝑣5 (𝑣5, 0) , (𝑣1, 1) , (𝑣0, 3) (𝑣5, 0) , (𝑣0, 1) , (𝑣1, 1)
𝑣6 (𝑣6, 0) , (𝑣5, 1) , (𝑣0, 2) , (𝑣1, 2) (𝑣6, 0) , (𝑣0, 1) , (𝑣5, 1)
𝑣7 (𝑣7, 0) , (𝑣0, 1) , (𝑣6, 1) , (𝑣5, 2) (𝑣7, 0) , (𝑣0, 1) , (𝑣4, 1) , (𝑣6, 1)

The 2-hop labeling approach consists of two typical phases: in

the offline phase, it assigns each vertex 𝑣 a label set 𝐿(𝑣) with
some hub vertices and distances. During the online phase, the

shortest distance between any two reachable vertices 𝑢 and 𝑣 can

be answered directly by checking their shared hub vertices. For

example, Figure 1 can be visualized as a social media platform, such

as Twitter or Facebook, where the vertices represent individual

users and the edges illustrate their friendship connections. The

insertion and deletion of edges connected to each node can signify

changes in their friend network. The distance between any two

users serves as an indicator of their closeness [3, 5, 32]. The 2-hop

labeling of 𝐺𝑆 is recorded in Table 1. Here, each entry of a vertex’s

label set is a key/value pair, i.e., the label (𝑣1, 1) ∈ 𝐿(𝑣2) means

that the shortest distance between 𝑣1 and 𝑣2 in 𝐺𝑆 is 1. This index

and its variations have also been used to solve many distance/path
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Table 2: Comparison of 2-hop index maintenance algorithms

Algorithm Correctness Minimality Scalability Parallelism

Edge-batch

update

FULPLL ✓ ✗ ✗ ✗ ✗
BPCL ✓ ✗ ✗ ✓ ✗
M2HL ✓ ✓ ✓ ✓ ✓

query problems, such as reachability query [8, 29, 35, 39, 41] and

shortest path counting query [28, 31, 45]. Due to its importance

and effectiveness, we adopt 2-hop labeling as the base index for

studying the index maintenance problem in this paper.

Motivation. In many real-world applications, the graphs are

typically dynamic, undergoing discrete changes in their topological

structures by either inserting or deleting vertices and edges [14].

For instance, in Twitter, users having 100 followers on average were

found to obtain 10% more new followers but lose about 3% of exist-

ing followers in a given month [25]. To quickly report the shortest

distances in such scenarios, a naive method is to use the state-of-

the-art index construction algorithm PSL [20] to reconstruct the

2-hop labeling index. However, even with significant computing

resources, building a complete 2-hop labeling index from scratch

for each change is extremely time-consuming, especially on large-

scale graphs. This is because the speedup achieved by PSL [20] is

nonlinear, implying that simply increasing processing power does

not lead to a proportional reduction in indexing time. For instance,

indexing the Orkut graph with 29 million vertices and 106 million

edges costs over 10
4
seconds using 40 cores. Meanwhile, we observe

that the numbers of changed vertices and edges are often much less

than those of the entire graph. For example, the English Wikipedia

saw a 2.6% increase in articles in 2023
1
. Prior studies [17, 18, 47]

have shown that the majority of vertex labels remain unchanged

in this case. Consequently, full index reconstruction significantly

increase computational workloads, leading to substantial time con-

sumption. Based on the above analysis, it is strongly desirable to

design efficient algorithms for maintaining the 2-hop labeling index

on large dynamic graphs.

Challenges.Maintaining 2-hop labeling index in large dynamic

graphs is a challenging task with two primary issues:

(1) How to maintain correctness and minimality. The 2-

hop labeling index is characterized by its correctness and

minimality, with the former guaranteeing the accuracy of

query results and the latter striving to minimize the memory

space utilized by the index. Graph changes alter the shortest

distances between specific vertex pairs, compromising the

correctness of index-based queries. Specifically, inserting new

edges can reduce distances between vertices, while deleting

edges can increase them. Besides, many existing labels can be

overshadowed by newly added labels, thereby affecting their

minimality. Detailed descriptions of these two properties are

provided in Section 2.1.

(2) How to design efficient and scalable techniques.Although

the numbers of changed vertices and edges are typically much

smaller than those of the entire graph, they may still need

much computational cost to update labels. In addition, intro-

ducing auxiliary structures with high space costs to improve

the efficiency of index maintenance is undesirable, particu-

larly for large-scale graphs.

1
https://en.wikipedia.org/wiki/Wikipedia:Size_of_Wikipedia

Prior works. Existing methods primarily focus on ensuring the

correctness of queries while neglecting minimality. Moreover, we

observe that these methods suffer from significant issues of low

efficiency and poor scalability. Table 2 compares the representative

maintenance methods of 2-hop labeling index. Specifically, as the

first work of maintaining 2-hop labeling index, FULPLL [12] suffers

from three non-negligible issues: 1) retaining the outdated labels in

the edge insertion scenario, thus violating the minimality property;

2) deleting massive irrelevant labels in the edge deletion scenario,

thereby significantly increasing time cost; and 3) lacking the par-

allel optimization strategy, leading to substantial time costs. The

state-of-the-art method BPCL [47] incorporates a parallel optimiza-

tion strategy to reduce indexing time and an auxiliary structure

to quickly identify the labels that need to be reconstructed during

edge deletions. However, its scalability is poor due to the substantial

memory costs associated with the auxiliary structure and labels,

and moreover it fails to maintain the minimality of 2-hop labeling

index in the edge insertion scenario. Further, both methods handle

dynamic edges by sequentially processing each edge, limiting the

power of multiple core processing.

Our Approach. To ensure both correctness and minimality,

M2HL systematically verifies all relevant label entries, addressing

both redundant labels introduced by edge insertions and missing

labels caused by edge deletions. Specifically:

(1) For edge insertions, M2HL first gathers all new labels intro-

duced by the inserted edges to maintain correctness. It then

removes any redundant labels that are dominated by these new

labels, ensuring minimality and reducing the index memory

overhead.

(2) For edge deletions, M2HL precisely identifies and removes er-

roneous labels stemming from the deleted edges. It then inserts

missing labels that were previously overshadowed by these

erroneous labels, thereby restoring both correctness and min-

imality. Each erroneous label corresponds to a change in the

shortest distance between a specific pair of nodes.

We further provide a theoretical analysis to confirm the correct-

ness and minimality of these methods. Additionally, we introduce

effective pruning strategies to minimize irrelevant computations

during the index maintenance process:

(1) For edge insertions, these strategies ensure that new labels

are not dominated by existing ones and exclude irrelevant labels

that are unaffected by the update.

(2) For edge deletions, the strategies accurately identify all miss-

ing labels caused by the removal of erroneous labels, further

reducing unnecessary computations.

A key innovation of M2HL lies in its ability to process all dy-

namic edges concurrently. By consolidating updates into rounds

without conflicts, M2HL avoids redundant computations that would

arise from processing individual edges sequentially. This design

also optimizes the use of multiple computing cores, significantly

improving overall efficiency.

Contributions.Our principal contributions are listed as follows:

• We identify the core principles of index construction on static

graphs and thoroughly analyze the limitations of existing 2-hop

labeling maintenance methods.

• We propose M2HL, a novel method for maintaining the 2-hop

labeling index in a parallel manner, which theoretically guar-

antees the correctness and minimality.
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• We design effective pruning strategies to significantly reduce

irrelevant computations in index maintenance, demonstrating

well-bounded memory costs and good scalability.

• Extensive experiments demonstrate the superior performance

of M2HL. Particularly, M2HL achieves up to four orders of

magnitude speedup compared to state-of-the-art methods.

Roadmap.We review the related works in Section 8 and present

the problem of maintaining 2-hop labeling index in Section 2. Sec-

tion 3 analyzes the existing methods. Sections 4 and 5 develop the

index maintenance strategies for the scenarios of edge insertion and

deletion, respectively. Section 7 presents the experimental results

and Section 6 introduces the extensions of our method on directed

and weighted graphs. Finally, we conclude in Section 9.

2 PRELIMINARIES

Let𝐺 (𝑉 , 𝐸) be an undirected graph where𝑉 and 𝐸⊆𝑉×𝑉 are sets of

𝑛 vertices and𝑚 edges, respectively.𝑁 (𝑣,𝐺)={𝑢 |𝑒 (𝑢, 𝑣)∈𝐸} denotes
the neighbor set of 𝑣 in 𝐺 and 𝑑𝑒𝑔(𝑣) = |𝑁 (𝑣,𝐺) | is the degree of
𝑣 . Given a pair of vertices (𝑠, 𝑡), 𝑝 (𝑠, 𝑡) = ⟨𝑣0 = 𝑠, . . . , 𝑣𝑘−1, 𝑣𝑘 = 𝑡⟩
is a path between 𝑠 and 𝑡 , where 𝑒 (𝑣𝑖 , 𝑣𝑖+1)∈𝐸 for 𝑖∈[0, 𝑘−1]. The
distance of 𝑝 (𝑠, 𝑡), denoted by |𝑝 (𝑠, 𝑡) |, is the number of edges.

𝑑𝑖𝑠𝑡 (𝑠, 𝑡) = min𝑝 (𝑠,𝑡 ) ∈𝑃 (𝑠,𝑡 ) |𝑝 (𝑠, 𝑡) | denotes the shortest distance
between 𝑠 and 𝑡 , where 𝑃 (𝑠, 𝑡) is a set of all paths between them.

Besides, we use 𝐸+ and 𝐸− to denote the sets of edges to be

inserted and deleted, respectively. 𝐺+ can be obtained by inserting

all edges of 𝐸+ into 𝐺 , while 𝐺− is obtained by deleting all edges

in 𝐸− from 𝐺 . For example, Figure 1 shows two graphs 𝐺𝑆 and 𝐺𝐿 ,

where dynamic edges are marked in blue. 𝐺𝐿 can be obtained by

inserting all dynamic edges into 𝐺𝑆 , while 𝐺𝑆 can be obtained by

deleting all dynamic edges from 𝐺𝐿 . Similarly, 𝑁 +Δ (𝑣) and 𝑁 −Δ (𝑣)
denote the neighbor sets of 𝑣 in these two types of edge sets. Table 3

summarizes frequently used notations.

Table 3: Notations and meanings.

Notation(s) Meanings

𝐺 (𝑉 , 𝐸 ) an undirected graph

𝑁 (𝑣,𝐺 ) the neighbor set of a vertex 𝑣 in𝐺

𝑑𝑒𝑔 (𝑣) the degree of a vertex 𝑣

𝑝 (𝑠, 𝑡 ) a path from the vertex 𝑠 to the vertex 𝑡

|𝑝 (𝑠, 𝑡 ) | the distance of 𝑝 (𝑠, 𝑡 )
𝐿 (𝑣),𝐶 (𝑣) sets of 2-hop label and hub nodes of 𝑣

𝐿𝑑 (𝑣) a set of labels whose distances are 𝑑

𝐶𝑑 (𝑣) a set of hub nodes in 𝐿𝑑 (𝑣)
𝐿<𝑑 a set of labels whose distances are less than 𝑑

𝑉𝐴 a set of affected vertices

𝐸+, 𝐸− sets of edges to be inserted and deleted

𝐺+,𝐺− the updated graphs𝐺 ∪ 𝐸+ and𝐺 \ 𝐸−
𝑁 +Δ (𝑣), 𝑁

−
Δ (𝑣) neighbor sets of 𝑣 in 𝐸+ and 𝐸−

𝐹 (𝑣) an auxiliary parameter of 𝑣 to update the labels

2.1 Overview of 2-hop labeling index

Index structure. The 2-hop labeling index requires building a label

set 𝐿(𝑣) with ∀𝑣 ∈ 𝑉 , where each entry of 𝐿(𝑣) is a key/value pair
(𝑢,𝑑𝑖𝑠𝑡 (𝑢, 𝑣)) with 𝑢 ∈ 𝑉 . Here, 𝐶 (𝑣) = {𝑢 | (𝑢,𝑑𝑖𝑠𝑡 (𝑢, 𝑣)) ∈ 𝐿(𝑣)}
denotes the hub set of 𝑣 . Then,

⋃︁
𝑣∈𝑉 𝐿(𝑣) is a 2-hop labeling index

if it satisfies the 2-hop cover constraint below.

Definition 1 (2-hop cover constraint [3, 20]). A labeling
function 𝐿 satisfies the 2-hop cover constraint if any vertex pair (𝑠, 𝑡)
satisfies 𝑑𝑖𝑠𝑡 (𝑠, 𝑡)=𝑑𝑖𝑠𝑡 (𝑠,𝑤)+𝑑𝑖𝑠𝑡 (𝑤, 𝑡) with certain𝑤∈𝐶 (𝑠)∩𝐶 (𝑡).

Core properties. The 2-hop labeling index 𝐿 of any graph𝐺 needs

to satisfy the following two properties.

• Correctness [3, 20]. For any query task 𝑞(𝑠, 𝑡) with 𝑠, 𝑡 ∈ 𝑉 , we

have 𝑑𝑖𝑠𝑡 (𝑠, 𝑡)=min𝑣∈𝐶 (𝑠 )∩𝐶 (𝑡 ) 𝐿(𝑠) [𝑣] + 𝐿(𝑡) [𝑣].
• Minimality [3, 20]. For any label (𝑢,𝑑𝑖𝑠𝑡 (𝑣,𝑢)) ∈ 𝐿(𝑣) with

𝑣 ∈ 𝑉 , there is a pair of vertices (𝑠, 𝑡) such that 𝑑𝑖𝑠𝑡 (𝑠, 𝑡) ≠
𝑄 (𝑠, 𝑡, 𝐿(𝑠) ∪ 𝐿(𝑡)) if we delete (𝑢,𝑑𝑖𝑠𝑡 (𝑣,𝑢)) from 𝐿(𝑣).

Query process. Given a query 𝑞(𝑠, 𝑡) with 𝑠, 𝑡 ∈ 𝑉 , the shortest
distance is 𝑄 (𝑠, 𝑡, 𝐿(𝑠) ∪ 𝐿(𝑡)) = min𝑣∈𝐶 (𝑠 )∩𝐶 (𝑡 ) 𝐿(𝑠) [𝑣] + 𝐿(𝑡) [𝑣],
where the time complexity is 𝑂 ( |𝐿(𝑠) | + |𝐿(𝑡) |).
Label size. Considering that the label size of 𝑣 is the number of

entries in 𝐿(𝑣), denoted as |𝐿(𝑣) |, we can conclude that the size of

2-hop labeling index is 𝑂 (𝑛 · 𝛿), where 𝛿 = max𝑣∈𝑉 |𝐿(𝑣) | is the
maximum label size of vertices in 𝐺 [20].

Example 1. The 2-hop labeling indices of𝐺𝑆 and𝐺𝐿 are recorded
in Table 1. As shown in Figure 1(a), the label (𝑣1, 1) ∈ 𝐿(𝑣5) means
that the shortest distance between 𝑣5 and 𝑣1 is 1. For 𝑞(𝑣5, 𝑣3) in
Figure 1(a), we have 𝑑𝑖𝑠𝑡 (𝑣5, 𝑣3) = min𝑢∈𝐶 (𝑣5 )∩𝐶 (𝑣3 ) 𝐿(𝑣5) [𝑢] +
𝐿(𝑣3) [𝑢] = 4.

2.2 Maintenance of 2-hop labeling index

In this section, we formally introduce the problem of maintaining

the 2-hop labeling index for dynamic graphs.

Problem 1 (2-hop labeling index maintenance [12, 43, 47]).

Given an undirected graph 𝐺 (𝑉 , 𝑅), a minimal 2-hop labeling index
𝐿 of 𝐺 , and a set of edges to be inserted 𝐸+ (resp. a set of edges to
be deleted 𝐸−), return the updated 2-hop labeling index 𝐿+ for the
updated graph 𝐺+ (resp. 𝐿− for 𝐺−).

Node order. To achieve the minimality of the index, existing meth-

ods (e.g., PLL [3] and PSL [20]) often impose an order on the vertices.

Specifically, the vertex order is assigned by using a ranking func-

tion 𝑟 (·), which is based on some metrics such as vertex degree

and vertex centrality [20]. For each vertex 𝑣 ∈ 𝑉 , it is required that

∀(𝑤,𝑑𝑖𝑠𝑡 (𝑣,𝑤)) ∈ 𝐿(𝑣) satisfies 𝑟 (𝑤) > 𝑟 (𝑣) with 𝑤 ≠ 𝑣 , which

helps to reduce the redundant labels.

Note that the whole index may need to be reconstructed from

scratch to achieve theminimality if the node order sequence changes,

as only vertices with larger ranks can appear in the label set of

vertices with lower ranks. Hence, our solution aims to maintain

the correctness and minimality of the updated 2-hop labeling index

under the same node order sequence, which helps to reduce the

time overhead.

Example 2. As shown in Figure 1, we have 𝑟 (𝑣0) > · · · > 𝑟 (𝑣11)
when ranking the vertices according to their degrees and IDs. Table 1
lists the 2-hop labeling index 𝐿0 and 𝐿1 of Figures 1(a) and 1(b) re-
spectively, where all dynamic edges are marked in blue in Figure 1.
We illustrate Problem 1 as follows.
• Edge insertion. Given the minimal 2-hop labeling index 𝐿0

of Figure 1(a) and the edge set 𝐸+ to be inserted, it returns the
minimal 2-hop labeling index 𝐿1 of Figure 1(b).

• Edge deletion. Given the minimal 2-hop labeling index 𝐿1 of Fig-
ure 1(b) and the edge set 𝐸− to be deleted, it returns the minimal
2-hop labeling index 𝐿0 of Figure 1(a).

3 ANALYSIS OF EXISTING CONSTRUCTION

AND MAINTENANCE ALGORITHMS

In this section, we analyze the state-of-the-art methods about the

construction and maintenance of 2-hop labeling index, respectively.
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3.1 2-hop labeling index construction methods

We begin with the concepts of peak path and valley path.

Definition 2 (Peak path and valley path [34]). Given
a vertex pair (𝑠, 𝑡), 𝑝 (𝑠, 𝑡) is a peak path when satisfying 𝑟 (𝑢) >
max{𝑟 (𝑠), 𝑟 (𝑡)} with ∃𝑢 ∈ 𝑝 (𝑠, 𝑡) \{𝑠, 𝑡}; otherwise, 𝑝 (𝑠, 𝑡) is a valley
path, since ∀𝑢 ∈ 𝑝 (𝑠, 𝑡) satisfies 𝑟 (𝑢) ≤ max{𝑟 (𝑠), 𝑟 (𝑡)}.

Example 3. As shown in Figure 1, 𝑝1 (𝑣2, 𝑣6) = ⟨𝑣2, 𝑣1, 𝑣6⟩ is a
peak path since 𝑟 (𝑣1) > max{𝑟 (𝑣2), 𝑟 (𝑣6)}. In contrast, 𝑝2 (𝑣0, 𝑣5) =
⟨𝑣0, 𝑣2, 𝑣5⟩ is a valley path since 𝑟 (𝑣2) < max{𝑟 (𝑣0), 𝑟 (𝑣5)}.

Next, we identify two core principles of the index construction

based on the above path definitions.

Lemma 1. Given any two vertices 𝑢 and 𝑣 with 𝑟 (𝑢) > 𝑟 (𝑣), the
label (𝑢,𝑑𝑖𝑠𝑡 (𝑢, 𝑣)) is inserted into 𝐿(𝑣) iff any shortest path between
𝑢 and 𝑣 is a valley path.

Proof. Let 𝑝 (𝑢, 𝑣) be any shortest valley path between 𝑢 and

𝑣 , where ∀𝑣∗ ∈ 𝑝 (𝑢, 𝑣) \ {𝑢} satisfies 𝑟 (𝑢) > 𝑟 (𝑣∗). Based on the

constraint of node order strategy, the label (𝑢,𝑑𝑖𝑠𝑡 (𝑢, 𝑣)) needs to
be inserted into 𝐿(𝑣) to satisfy the 2-hop cover in Definition 1. Oth-

erwise, we have 𝑄 (𝑢, 𝑣, 𝐿(𝑢) ∪ 𝐿(𝑣)) ≠ 𝑑𝑖𝑠𝑡 (𝑢, 𝑣), thus destroying
the correctness property. □

Lemma 2. Given any two vertices 𝑢 and 𝑣 with 𝑟 (𝑢) > 𝑟 (𝑣), the
label (𝑢,𝑑𝑖𝑠𝑡 (𝑢, 𝑣)) cannot be inserted into 𝐿(𝑣) if there exists at least
one shortest peak path between 𝑢 and 𝑣 .

Proof. Assume that (𝑢,𝑑𝑖𝑠𝑡 (𝑢, 𝑣)) ∈ 𝐿(𝑣) and 𝑝∗ (𝑢, 𝑣) is a short-
est peak path where𝑤 is a middle vertex in 𝑝∗ with the maximal

rank value. In this case, we have 𝑝∗ (𝑢, 𝑣) concatenated by two short-
est valley paths 𝑝∗

1
(𝑢,𝑤) and 𝑝∗

2
(𝑤, 𝑣). Based on Lemma 1, the labels

(𝑤,𝑑𝑖𝑠𝑡 (𝑢,𝑤)) and (𝑤,𝑑𝑖𝑠𝑡 (𝑣,𝑤)) are inserted into 𝐿(𝑢) and 𝐿(𝑣),
respectively. Then, we have 𝑑𝑖𝑠𝑡 (𝑢, 𝑣) = 𝐿(𝑢) [𝑤] + 𝐿(𝑣) [𝑤] with
𝑤 ∈ 𝐶 (𝑢) ∩𝐶 (𝑣), proving that inserting (𝑢,𝑑𝑖𝑠𝑡 (𝑢, 𝑣)) to 𝐿(𝑣) will
break the minimality of 2-hop labeling index. Hence, the lemma

holds. □

Next, we briefly introduce two most related methods about build-

ing the minimal 2-hop labeling index below.

Prune Landmark Labeling (PLL) [3]. This method sequentially

performs 𝑛 rounds of pruned BFS searches to collect labels. In the

𝑖-th round, the search process is sourced from 𝑣𝑖 and expanded to

other vertices 𝑢 with 𝑟 (𝑣𝑖 ) > 𝑟 (𝑢). Then, the label (𝑣𝑖 , 𝑑𝑖𝑠𝑡 (𝑢, 𝑣𝑖 ))
is inserted into 𝐿(𝑢) when satisfying Lemmas 1 and 2. Finally, the

2-hop labeling index can be built after finishing totally 𝑛 rounds of

searches.

Parallel Shortest-distance Labeling (PSL) [20]. PSL proposes

the distance dependency property to build the 2-hop labeling index

in 𝐷 rounds where 𝐷 ≪ 𝑛 denotes the diameter of the graph.

Assuming that 𝐿𝑑 (𝑣)={(𝑤,𝑑𝑖𝑠𝑡 (𝑣,𝑤))∈𝐿(𝑣) |𝑑𝑖𝑠𝑡 (𝑣,𝑤) = 𝑑} and
𝐿<𝑑 (𝑣) = {(𝑤,𝑑𝑖𝑠𝑡 (𝑣,𝑤)) ∈ 𝐿(𝑣) |𝑑𝑖𝑠𝑡 (𝑣,𝑤) < 𝑑}, this property
proves that 𝐿𝑑 (𝑣) only depends on

⋃︁
𝑢∈𝑁 (𝑣,𝐺 ) 𝐿<𝑑 (𝑢), i.e, for each

label (𝑤,𝑑) ∈ 𝐿𝑑 (𝑣), we have (𝑤,𝑑−1) ∈ 𝐿𝑑−1 (𝑢) with𝑢 ∈ 𝑁 (𝑣,𝐺).
Similarly, the label (𝑤,𝑑𝑖𝑠𝑡 (𝑣,𝑤)) can be inserted into 𝐿(𝑣) when
satisfying Lemmas 1 and 2. Following this principle, PSL can process

all labels with the same distance originating from all vertices in

each round, which helps to ensure high parallel efficiency.

Example 4. Take 𝑣5 in Figure 1(a) as an example. As shown in
Table 1, the label (𝑣1, 1) is inserted into 𝐿(𝑣5) since the shortest path
⟨𝑣1, 𝑣5⟩ is a valley path and there is no shortest peak path. Similarly,
due to the existence of ⟨𝑣5, 𝑣1, 𝑣2⟩, we have𝑑𝑖𝑠𝑡 (𝑣5, 𝑣2) = 𝑑𝑖𝑠𝑡 (𝑣5, 𝑣1)+
𝑑𝑖𝑠𝑡 (𝑣1, 𝑣2). Thus, the label (𝑣2, 2) cannot be inserted in 𝐿(𝑣5).

3.2 2-hop labeling index maintenance methods

In this section, we mainly introduce two state-of-the-art solutions

for maintaining the 2-hop labeling index.

• FULPLL [12]. In the edge deletion scenario, FULPLL detects all

labels possibly affected by the deleted edges and recomputes the

missing hubs to maintain the 2-hop cover constraint. For edge in-

sertions, it uses the strategy in [4] to maintain the 2-hop labeling

index. However, FULPLL suffers from performance bottlenecks

due to its requirement to sequentially process each updated

label. This sequential nature significantly limits its scalability

for large-scale or highly dynamic graphs. In addition, FULPLL

overlooks redundant labels and deletes the correct labels in the

scenarios of edge insertion and deletion, respectively.

• BPCL [47]. Compared to FULPLL, BPCL adopts the parallel opti-

mization strategy to update the 2-hop labeling index and designs

an auxiliary structure to quickly capture the necessary recon-

structed labels of each vertex in the scenario of edge deletion.

However, this approach introduces two significant challenges:

(1) underutilization of resources: computational tasks assigned

to individual edges fail to fully leverage available computational

resources, leading to reduced efficiency; (2) redundant calcula-

tions: repeated computations across different dynamic edges

result in longer processing times. Furthermore, the serious mem-

ory cost of BPCL includes:

– Extra auxiliary information. To locate the missed affected

labels, for any two nodes 𝑣,𝑤 ∈ 𝑉 , BPCL constructs an

auxiliary structure PPR to record the elements ((𝑤, 𝑐), 𝑣)
and ((𝑣, 𝑐),𝑤), where (1) 𝑄 (𝑤, 𝑣, 𝐿<𝑑 ) = 𝑑 (𝑤, 𝑐) + 𝑑 (𝑐, 𝑣)
and (2) 𝑐 is the hub node of 𝑣 and𝑤 [44, 47].

– Complicated data structure. Upon examining the source

code, we observed that BPCL uses complex data structures,

such as a combination of “map” and “array,” to store label

entries and auxiliary information. While this design reduces

the time needed to locate affected labels, it significantly

increases memory usage compared to simpler, single-array-

based structures used by PSL and M2HL.

– Experimental verification. Our experimental results confirm

the memory overhead of BPCL. For example, on the Pokec

dataset, BPCL’s memory usage exceeds 1.5 TB, while our

proposed M2HL requires only 46 GB.

Based on the above analysis, we conclude that there is a strong

need for more effectivemethods that not only guarantee correctness

and minimality, but also improve efficiency significantly.

4 EDGE INSERTION

In this section, we introduce how to efficiently update the 2-hop

labeling index in the edge insertion scenario. Our high-level idea

is to first add the new labels to maintain the correctness, and then

delete the redundant labels that are dominated by the new labels,

to guarantee the minimality. The details are shown in Algorithm 1.

Algorithm 1: M2HL in the edge insertion scenario

Input:𝐺 , 𝐿 =
⋃︁

𝑣∈𝑉 𝐿 (𝑣) , 𝐸+
Output: the 2-hop labeling index 𝐿+ of𝐺+

1 𝐿#,𝑉𝐴 ← 𝑁𝐿𝐶(𝐺 , 𝐿, 𝐸+) // Collect all new labels to maintain
the correctness property by Algorithm 2

2 𝐿+ ← 𝑅𝐿𝐷(𝐿# ,𝑉𝐴) // Remove all redundant labels to maintain
the minimality by Algorithm 3

3 return 𝐿+ // The minimal 2-hop labeling index of the graph 𝐺+
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4.1 New label collection

In the edge insertion scenario, the actual distances between some

pairs of vertices may decrease, compromising query correctness.

To address this issue, it is necessary to collect the new distance

messages into the labels. As shown in Algorithm 2, given a minimal

2-hop labeling index 𝐿 of 𝐺 and 𝐸+, 𝐿∗ is first initialized to collect

the new labels (Line 1), where 𝐶∗ (𝑣) = {𝑢 | (𝑢,𝑑𝑖𝑠𝑡 (𝑢, 𝑣)) ∈ 𝐿∗ (𝑣)}.
Then, we insert (𝑢, 1) into 𝐿∗ (𝑣) with ∀𝑒 (𝑢, 𝑣) ∈ 𝐸+ if 𝑟 (𝑢) > 𝑟 (𝑣)
(Lines 2-4). In the𝑑-th step, each node 𝑣 needs to build the candidate

node set 𝐶𝑎𝑛𝑑 (𝑣) (Line 7) which includes

(1) 𝐶∗
𝑑−1 (𝑢) with 𝑢 ∈ 𝑁 (𝑣,𝐺) ∪ 𝑁

+
Δ (𝑣). In this case, ∀(𝑤,𝑑−1) ∈

𝐿∗
𝑑−1 (𝑢) represents the shortest path that passes through one

inserted edge at least.

(2) 𝐶𝑑−1 (𝑢) with 𝑢 ∈ 𝑁 +Δ (𝑣). In this case, the new distance infor-

mation consists of the exiting labels and the inserted edges.

Then, each candidate label (𝑤,𝑑) is inserted into 𝐿∗ (𝑣) if it can-
not be dominated by the existing labels (Lines 8-12), and the whole

process is terminated until each vertex no longer receives any

new label. Finally, each affected vertex 𝑣 is inserted into 𝑉𝐴 if

𝐿∗ (𝑣) ≠ ∅ (Line 14) and the new 2-hop labeling index is 𝐿# =⋃︁
𝑣∈𝑉 𝐿(𝑣) ∪ 𝐿∗ (𝑣) (Line 15).

Example 5. Given the 2-hop labeling index of𝐺𝑆 and 𝐸+, the index
update process is shown in Table 4. Specifically, the new label (𝑢, 1) is
inserted into 𝐿∗ (𝑣) with ∀𝑒 (𝑢, 𝑣) ∈ 𝐸+ with 𝑟 (𝑢) > 𝑟 (𝑣). For example,
(𝑣0, 1) and (𝑣2, 1) are inserted into 𝐿∗ (𝑣1) and 𝐿∗ (𝑣3), respectively.
Then, each vertex collects the candidate hub vertices which satisfies
the proposed two principles in Algorithm 2. Take the vertex 𝑣6 as
an example, where 𝑁 (𝑣6,𝐺𝑆 ) = {𝑣5, 𝑣7} and 𝑁 +Δ (𝑣6) = {𝑣0}. When
𝑑 = 2, we have 𝐶𝑎𝑛𝑑 (𝑣6) = {𝑣0, 𝑣4} originating from 𝐶∗

1
(𝑢) with

𝑢 ∈ 𝑁 (𝑣6,𝐺𝑆 ) ∪𝑁 +Δ (𝑣6). However, these two labels (𝑣0, 2) and (𝑣4, 2)
cannot be inserted into 𝐿∗ (𝑣6) since they are dominated by the existing
labels. The whole process is terminated when 𝑑 = 2 since each vertex
no longer collects new labels.

Time complexity. Let 𝛿∗ = max𝑣∈𝑉 |𝐿∗ (𝑣) | be the maximal num-

ber of new labels over all vertices. In the worst case, each vertex

𝑣 executes 𝑄 (·) to check the candidate new labels from its neigh-

bors. Therefore, the total time complexity is 𝑂 (∑︁𝑣∈𝑉 ( |𝑁 (𝑣,𝐺) | +
|𝑁 +Δ (𝑣) |) · 𝛿 · 𝛿

∗), which can be reduced to 𝑂 (𝑚 · 𝛿 · 𝛿∗).

Algorithm 2: New Label Collection (NLC)

Input:𝐺 ,

⋃︁
𝑣∈𝑉 𝐿 (𝑣) , 𝐸+

Output: 𝐿# ,𝑉𝐴
1 Initialize 𝐿∗ ,𝑉𝐴 , and 𝑑 ← 2

2 foreach 𝑒 (𝑢, 𝑣) ∈ 𝐸+ do
3 if 𝑟 (𝑢 ) > 𝑟 (𝑣) then Insert (𝑢, 1) into 𝐿∗ (𝑣) ;
4 else Insert (𝑣, 1) into 𝐿∗ (𝑢 ) ;
5 while 𝐿∗

𝑑−1 is not empty do

6 foreach 𝑣 ∈ 𝑉 in parallel do
7 Insert 𝑤 into𝐶𝑎𝑛𝑑 (𝑣) when satisfying (1) 𝑤∈𝐶∗

𝑑−1 (𝑢 ) ,
𝑢∈𝑁 (𝑣,𝐺 ) ∪ 𝑁 +Δ (𝑣) or (2) 𝑤∈𝐶𝑑−1 (𝑢 ) , 𝑢∈𝑁 +Δ (𝑣)

8 foreach 𝑣 ∈ 𝑉 in parallel do
9 foreach 𝑤 ∈ 𝐶𝑎𝑛𝑑 (𝑣) with 𝑟 (𝑤 ) > 𝑟 (𝑣) do
10 𝐿𝑤←𝐿< (𝑑+1) (𝑤 )∪𝐿∗<𝑑 (𝑤 ) and 𝐿𝑣←𝐿< (𝑑+1) (𝑣)∪𝐿∗<𝑑 (𝑣)
11 if 𝑄 (𝑤, 𝑣, 𝐿𝑤 ∪ 𝐿𝑣 ) > 𝑑 then

12 Insert (𝑤,𝑑 ) into 𝐿∗
𝑑
(𝑣) if (𝑤,𝑑 ) ∉ 𝐿∗

𝑑
(𝑣)

13 𝑑 ← 𝑑 + 1
14 foreach 𝑣∈𝑉 with 𝐿∗ (𝑣) ≠ ∅ do𝑉𝐴 .𝑎𝑑𝑑 (𝑣) ;
15 return 𝐿# ← ⋃︁

𝑣∈𝑉 𝐿 (𝑣) ∪ 𝐿∗ (𝑣) ,𝑉𝐴

Table 4: The illustration of M2HL in edge insertion scenario

RLD
NLC

LemmasThe 2-hop labeling index of𝐺𝑆

𝑑 = 1

𝐹 ( ·)
4 5 6 7

𝑣0 (𝑣0, 0) − -1 − − − −
𝑣1 (𝑣1, 0) , (𝑣0, 2) 𝑣0 𝑟 (𝑣0 ) − − (𝑣0, 2) −
𝑣2 (𝑣2, 0) , (𝑣0, 1) , (𝑣1, 1) − -1 (𝑣0, 1) (𝑣1, 1) − −
𝑣3 (𝑣3, 0) , (𝑣0, 1) 𝑣2 𝑟 (𝑣2 ) − − − −
𝑣4 (𝑣4, 0) , (𝑣0, 1) , (𝑣3, 1) − -1 (𝑣0, 1) (𝑣3, 1) − −
𝑣5 (𝑣5, 0) , (𝑣1, 1) , (𝑣0, 3) 𝑣0 𝑟 (𝑣0 ) − − (𝑣0, 3) (𝑣1, 1)
𝑣6 (𝑣6, 0) , (𝑣5, 1) , (𝑣0, 2) , (𝑣1, 2) 𝑣0 𝑟 (𝑣0 ) − − (𝑣0, 2) (𝑣5, 1) , (𝑣1, 2)
𝑣7 (𝑣7, 0) , (𝑣0, 1) , (𝑣6, 1) , (𝑣5, 2) 𝑣4 𝑟 (𝑣4 ) − − − (𝑣6, 1) , (𝑣5, 2)

4.2 Redundant label deletion

As aforementioned, the correctness property has been maintained

by inserting the corresponding labels. Thus, the remaining issue is

how to efficiently rule out all redundant labels that are dominated

by the inserted labels, so that the minimality is guaranteed. Obvi-

ously, it is time-consuming to sequentially check all existing labels,

especially on the large-scale graphs, since its time cost can reach

𝑂 (𝑛 · 𝛿2).
To tackle this issue, we design some effective pruning strategies

to accurately check the candidate redundant labels. For simplic-

ity, let 𝐹 (𝑣) denote the largest ranking value in 𝐿∗ (𝑣), i.e, 𝐹 (𝑣) =
max𝑤∈𝐶∗ (𝑣) 𝑟 (𝑤) with 𝑣 ∈ 𝑉𝐴 , where 𝑉𝐴 = {𝑣 |𝐿∗ (𝑣) ≠ ∅} is the
set of vertices that own new labels. Otherwise, 𝐹 (𝑣) is set as −1.

Lemma 3. ∀(𝑤,𝑑) ∈ 𝐿(𝑣) and ∀(𝑤∗, 𝑑∗) ∈ 𝐿∗ (𝑣), we have 𝑑∗ < 𝑑

if𝑤 = 𝑤∗.

Proof. Based on Line 10 of Algorithm 2, (𝑤∗, 𝑑∗) is not domi-

nated by any existing label, which proves that𝑑∗ < 𝑑 if𝑤 = 𝑤∗. □

Lemma 4. ∀(𝑤,𝑑) ∈ 𝐿(𝑣) is not redundant if 𝑣,𝑤 ∉ 𝑉𝐴 , where 𝐿
is a minimal 2-hop labeling index.

Proof. Following Lemmas 1 and 2, (𝑤,𝑑) ∈ 𝐿(𝑣) means that all

shortest paths between𝑤 and 𝑣 are valley paths. Due to 𝐿∗ (𝑣) = ∅
and 𝐿∗ (𝑤) = ∅, there are no new shortest paths 𝑝∗ (𝑣,𝑤) that pass
through the inserted edges. Therefore, we have 𝑑 = 𝑑𝑖𝑠𝑡 (𝑣,𝑤) ≠
𝑄 (𝑣,𝑤, 𝐿(𝑣) ∪ 𝐿(𝑤)) if removing (𝑤,𝑑) from 𝐿(𝑣), which proves

that the label (𝑤,𝑑) is not redundant. □

Lemma 5. ∀(𝑤,𝑑) ∈ 𝐿(𝑣) is redundant if 𝑣 ∉ 𝑉𝐴 , 𝑤 ∈ 𝑉𝐴 , and
𝑄 (𝑤, 𝑣, 𝐿∗

<𝑑
(𝑤) ∪ 𝐿<𝑑 (𝑣)) ≤ 𝑑 .

Proof. Due to 𝑄 (𝑤, 𝑣, 𝐿∗
<𝑑
(𝑤) ∪ 𝐿<𝑑 (𝑣)) ≤ 𝑑 , there is at least

one shortest path 𝑝∗ (𝑣,𝑤) with |𝑝∗ (𝑣,𝑤) | ≤ 𝑑 . Apparently, (𝑤,𝑑) is
redundant when |𝑝∗ (𝑣,𝑤) | < 𝑑 . Assuming that 𝑝∗ (𝑣,𝑤) is a unique
new shortest path with |𝑝∗ (𝑣,𝑤) | = 𝑑 , there are two possible cases:

(1) 𝑝∗ (𝑣,𝑤) is a valley path. Based on Lemma 1, the label (𝑤, |𝑝∗ |)
is inserted into 𝐿∗ (𝑣) to satisfy the 2-hop cover constraint.

However, due to |𝑝∗ | = 𝑑 , this conclusion is contradictory to

Lemma 3. Therefore, 𝑝∗ cannot be a valley path if |𝑝∗ | = 𝑑 .

(2) 𝑝∗ (𝑣,𝑤) is a peak path. In this case, there exists a middle

vertex 𝑢 located in 𝑝∗, where (𝑢,𝑑𝑖𝑠𝑡 (𝑢,𝑤)) ∈ 𝐿∗ (𝑤) and
(𝑢,𝑑𝑖𝑠𝑡 (𝑣,𝑢)) ∈ 𝐿(𝑣). Based on Lemma 2, the 2-hop cover

constraint is satisfied when removing (𝑤,𝑑) from 𝐿(𝑣), i.e.,
𝑑𝑖𝑠𝑡 (𝑣,𝑤) = 𝐿(𝑣) [𝑢] + 𝐿∗ (𝑤) [𝑢].

Based on the above analysis, the lemma holds. □

Lemma 6. ∀(𝑤,𝑑) ∈ 𝐿(𝑣) with 𝑣 ∈ 𝑉𝐴 and𝑤 ∉ 𝑉𝐴 is redundant
if (1) 𝑟 (𝑤) ≤ 𝐹 (𝑣) and (2) 𝑄 (𝑤, 𝑣, 𝐿<𝑑 (𝑤) ∪ 𝐿∗<𝑑 (𝑣)) ≤ 𝑑 .
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Proof. Due to𝑄 (𝑤, 𝑣, 𝐿<𝑑 (𝑤) ∪𝐿∗<𝑑 (𝑣)) ≤ 𝑑 , 𝑝∗ (𝑣,𝑤) is a new
path where |𝑝∗ (𝑣,𝑤) | ≤ 𝑑 . Based on 𝑣 ∈ 𝑉𝐴 and𝑤 ∉ 𝑉𝐴 , a detailed

analysis of two cases is provided below.

• 𝑟 (𝑤) = 𝐹 (𝑣). Based on the definition of 𝐹 (·), the new label

(𝑤, |𝑝∗ (𝑣,𝑤) |) has been inserted into 𝐿∗ (𝑣) since the ranking
value of each node is unique. Therefore, we conclude that

(𝑤,𝑑) is redundant based on Lemma 3.

• 𝑟 (𝑤) < 𝐹 (𝑣). There are two possible cases below.

(1) (𝑤, |𝑝∗ |) ∈ 𝐿∗ (𝑣). Similar to the case of 𝑟 (𝑤) = 𝐹 (𝑣).
(2) (𝑤, |𝑝∗ |) ∉ 𝐿∗ (𝑣). Referring to the case in Lemma 5,

𝑝∗ (𝑣,𝑤) is a shortest peak path with |𝑝∗ | ≤ 𝑑 . Then,

(𝑤,𝑑) is a redundant label based on Lemma 2.

□

Lemma 7. ∀(𝑤,𝑑) ∈ 𝐿(𝑣) with 𝑣,𝑤∈𝑉𝐴 is redundant if𝑄 (𝑣,𝑤, 𝐿𝑣∪
𝐿𝑤) ≤ 𝑑 , where 𝐿𝑣 = 𝐿<𝑑 (𝑣) ∪𝐿∗<𝑑 (𝑣) and 𝐿𝑤 = 𝐿<𝑑 (𝑤) ∪𝐿∗<𝑑 (𝑤).

Proof. Let 𝑝∗ (𝑣,𝑤) be a new shortest path with |𝑝∗ | ≤ 𝑑 . Due

to (𝑤,𝑑) ∈ 𝐿(𝑣), we have 𝑄 (𝑣,𝑤, 𝐿<𝑑 (𝑣) ∪ 𝐿<𝑑 (𝑤)) > 𝑑 based

on Lemma 2. Considering that (𝑤,𝑑) is redundant if |𝑝∗ | < 𝑑 , we

analyze the following three cases about |𝑝∗ | = 𝑑 in detail.

• 𝑄 (𝑣,𝑤, 𝐿∗
<𝑑
(𝑤) ∪ 𝐿<𝑑 (𝑣)) = 𝑑 . Referring to Lemma 5, there

exists a middle vertex𝑢 ∈ 𝑝∗\{𝑣,𝑤} to satisfy |𝑝∗ | = 𝐿(𝑣) [𝑢]+
𝐿∗ (𝑤) [𝑢].

• 𝑄 (𝑣,𝑤, 𝐿<𝑑 (𝑤) ∪𝐿∗<𝑑 (𝑣)) = 𝑑 . Referring to Lemma 6, there ex-

ists a middle vertex 𝑢 ∈ 𝑝∗ \ {𝑣,𝑤} to satisfy |𝑝∗ | = 𝐿∗ (𝑣) [𝑢] +
𝐿(𝑤) [𝑢].

• 𝑄 (𝑣,𝑤, 𝐿∗
<𝑑
(𝑤) ∪ 𝐿∗

<𝑑
(𝑣)) = 𝑑 . Similarly, there exists a middle

vertex 𝑢 ∈ 𝑝∗ \ {𝑣,𝑤} to satisfy |𝑝∗ | = 𝐿∗ (𝑣) [𝑢] + 𝐿∗ (𝑤) [𝑢].
Thus, we conclude that 𝑝∗ (𝑣,𝑤) is a shortest peak path if |𝑝∗ (𝑣,𝑤) |

= 𝑑 , proving that (𝑤,𝑑) is redundant based on Lemma 2. □

Algorithm 3: Redundant Label Deletion (RLD)

Input:

⋃︁
𝑣∈𝑉 𝐿 (𝑣) ∪ 𝐿∗ (𝑣) ,𝑉𝐴

Output: the 2-hop labeling index 𝐿+ of𝐺+

1 Initialize a list 𝐹

2 foreach 𝑣 ∈ 𝑉𝐴 do 𝐹 (𝑣) ← max𝑤∈𝐶∗ (𝑣) 𝑟 (𝑤 ) ;
3 for ∀(𝑤,𝑑 ) ∈ 𝐿 (𝑣) with 𝑤 ≠ 𝑣 and 𝑣 ∈ 𝑉 in parallel do
4 if 𝑣, 𝑤 ∉ 𝑉𝐴 then continue ; // Lemma 4
5 if 𝑣 ∉ 𝑉𝐴 and 𝑤 ∈ 𝑉𝐴 then // Lemma 5
6 𝐿𝑤←𝐿∗

<𝑑
(𝑤 ) and 𝐿𝑣←𝐿<𝑑 (𝑣)

7 if 𝑣 ∈ 𝑉𝐴 then

8 if 𝑤 ∉ 𝑉𝐴 and 𝑟 (𝑤 ) ≤ 𝐹 (𝑣) then // Lemma 6
9 𝐿𝑤←𝐿<𝑑 (𝑤 ) and 𝐿𝑣←𝐿∗

<𝑑
(𝑣)

10 else if 𝑤 ∈ 𝑉𝐴 then // Lemma 7
11 𝐿𝑤←𝐿<𝑑 (𝑤 )∪𝐿∗<𝑑 (𝑤 ) and 𝐿𝑣←𝐿<𝑑 (𝑣)∪𝐿∗<𝑑 (𝑣)

12 if 𝑄 (𝑤, 𝑣, 𝐿𝑤 ∪ 𝐿𝑣 ) ≤ 𝑑 then Delete (𝑤,𝑑 ) from 𝐿 (𝑣) ;
13 return 𝐿+ ← ⋃︁

𝑣∈𝑉 𝐿 (𝑣) ∪ 𝐿∗ (𝑣)

The details of removing redundant labels are shown in Algo-

rithm 3. First, we calculate the 𝐹 (𝑣) value with each vertex 𝑣 ∈ 𝑉 .
Then, we adopt the four effective strategies mentioned in Lemmas 4

to 7 to rule out all redundant labels (Lines 5-16), thus maintaining

the minimality of the updated 2-hop labeling index.

Example 6. The process of redundant label deletion is shown in the
“RLD” part of Table 4, where all redundant labels are emphasized with
delete lines. First, we compute the 𝐹 (·) values of all vertices, where
𝐹 (𝑣0), 𝐹 (𝑣2), and 𝐹 (𝑣4) are equal to -1. Then, each vertex sequentially
checks the redundant labels based on Lemmas 4 to 7 as follows.

(1) Lemma 4. Take the label (𝑣0, 1) ∈ 𝐿(𝑣2) as an example, where
𝑣0, 𝑣2 ∉ 𝑉𝐴 . When deleting (𝑣0, 1) from 𝐿(𝑣2), we have 𝐿(𝑣0) ∩
𝐿(𝑣2) = ∅, proving that (𝑣0, 1) is not redundant.

(2) Lemma 5. Take the label (𝑣1, 1) ∈ 𝐿(𝑣2) as an example, where
𝑣2 ∉ 𝑉𝐴 and 𝑣1 ∈ 𝑉𝐴 . We conclude that 𝑄 (𝑣1, 𝑣2, 𝐿∗<1 (𝑣1) ∪
𝐿<1 (𝑣2)) = 2 > 𝐿(𝑣2) [𝑣1], proving that (𝑣1, 1) cannot be deleted
from 𝐿(𝑣2).

(3) Lemma 6. Take the label (𝑣0, 2) ∈ 𝐿(𝑣1) as an example, where
𝑣1 ∈ 𝑉𝐴 and 𝑣0 ∉ 𝑉𝐴 . We have 𝑄 (𝑣0, 𝑣1, 𝐿<2 (𝑣0) ∪ 𝐿∗<2 (𝑣1)) =
1 < 𝐿(𝑣1) [𝑣0], proving that (𝑣0, 2) is a redundant label in 𝐿(𝑣1).

(4) Lemma 7. Take the label (𝑣1, 2) ∈ 𝐿(𝑣6) as an example, where
𝑣1, 𝑣6 ∈ 𝑉𝐴 . Considering that 𝐿𝑣1←𝐿<2 (𝑣1) ∪ 𝐿∗

<2
(𝑣1) and

𝐿𝑣6←𝐿<2 (𝑣6)∪𝐿∗<2 (𝑣6), we have𝑄 (𝑣1, 𝑣6, 𝐿𝑣1∪𝐿𝑣6 ) = 𝐿(𝑣6) [𝑣1],
proving that (𝑣1, 2) is redundant. This is because there exists a
shortest peak path ⟨𝑣1, 𝑣0, 𝑣6⟩ between 𝑣1 and 𝑣6 in Figure 1(b).

Theorem 1 (Correctness and minimality). In the edge
insertion scenario, the 2-hop labeling index 𝐿+ of 𝐺+ constructed by
Algorithm 1 satisfies correctness and minimality.

Proof. During the index update process, each vertex collects

all new distance messages originating from 𝐸+ and gets the corre-

sponding new labels that are not dominated by the existing labels.

This process is terminated until each vertex does not get new labels,

thereby ensuring the correctness property of 𝐿+.
For the minimality of 𝐿+, we have 𝐿∗ is minimal based on the

distance-dependency property [20]. Considering the redundant

labels have been deleted from 𝐿 based on Lemmas 5 to 7, we prove

that each remaining label (𝑤,𝑑) ∈ 𝐿(𝑣) is not redundant as follows.
• 𝑣,𝑤 ∉ 𝑉𝐴 . Please refer to Lemma 4.

• 𝑟 (𝑤) > 𝐹 (𝑣) with 𝑣 ∈ 𝑉𝐴 and𝑤 ∉ 𝑉𝐴 . Based on the definition

of 𝐹 (·), 𝑝∗ (𝑣,𝑤) is a new valley path that passes through the

vertices in 𝐿∗ (𝑣). Then, we analyze the following three cases.

(1) |𝑝∗ (𝑣,𝑤) | > 𝑑 . In this case, (𝑤,𝑑) cannot be deleted from

𝐿(𝑣). Otherwise, the query correctness will be destroyed.

(2) |𝑝∗ (𝑣,𝑤) | = 𝑑 . In this case, all shortest path between 𝑣 and

𝑤 are valley paths. Therefore, (𝑤,𝑑) needs to be retained in
𝐿(𝑣) based on Lemma 1, thus maintaining the correctness.

(3) |𝑝∗ (𝑣,𝑤) | < 𝑑 . In this case, 𝑝∗ (𝑣,𝑤) is the shortest valley
path. Accordingly, the label (𝑤, |𝑝∗ (𝑣,𝑤) |) needs to be

inserted into 𝐿∗ (𝑣) to guarantee the correctness. However,
this operation is contradictory to the prerequisite 𝑟 (𝑤) >
𝐹 (𝑣). Therefore, we have |𝑝∗ (𝑣,𝑤) | ≥ 𝑑 if 𝑟 (𝑤) > 𝐹 (𝑣),
proving that (𝑤,𝑑) is not redundant.

• 𝑄 (𝑤, 𝑣, 𝐿𝑣 ∪ 𝐿𝑤) > 𝑑 where 𝐿𝑣 = 𝐿<𝑑 (𝑣) ∪ 𝐿∗<𝑑 (𝑣) and 𝐿𝑤 =

𝐿<𝑑 (𝑤)∪𝐿∗<𝑑 (𝑤). In this case, the distance of any new path be-

tween 𝑣 and𝑤 is larger than𝑑 . Therefore, we have𝑄 (𝑣,𝑤, 𝐿(𝑣)∪
𝐿(𝑤)) ≠ 𝑑 when deleting (𝑤,𝑑) from 𝐿(𝑣).

Based on the above analysis, each label in 𝐿+ cannot be deleted,
thus ensuring the minimality. Hence, the theorem holds. □

Time complexity. In the worst case, Algorithm 3 avoids checking

the label (𝑤,𝑑𝑖𝑠𝑡 (𝑣,𝑤)) ∈ 𝐿(𝑣) with 𝑣,𝑤 ∉ 𝑉𝐴 . Considering that

the time cost of each query is 𝑂 (𝛿), the total time cost is 𝑂
(︁
𝑛·𝛿2 −

𝑛#·𝛿#·𝛿), where 𝑛# = |𝑉 | − |𝑉𝐴 | and 𝛿# is the maximal number of

labels in 𝑉 \𝑉𝐴 .

5 EDGE DELETION

In this section, we introduce how to efficiently update the 2-hop

labeling index in the edge deletion scenario. Our key idea is to first
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rule out all error labels caused by the deleted edges, and then sup-

plement all missing labels to maintain correctness and minimality.

We summarize these two main steps in Algorithm 4.

Algorithm 4: M2HL in the edge deletion scenario

Input:𝐺 , 𝐿 =
⋃︁

𝑣∈𝑉 𝐿 (𝑣) , 𝐸−
Output: the 2-hop labeling index 𝐿− of𝐺−

1 𝐿, 𝐹,𝑉𝐴 ← 𝐸𝐿𝐷 (𝐺, 𝐿, 𝐸− ) // Delete all error labels caused by
𝐸− based on Algorithm 5

2 𝐿− ← 𝑀𝐿𝐼 (𝐺−, 𝐿, 𝐹 ,𝑉𝐴 ) // Insert all missing labels to maintain
the correctness and minimality based on Algorithm 6

3 return 𝐿− // The minimal 2-hop labeling index of 𝐺−

5.1 Error label deletion

As mentioned in Section 3.2, FULPLL rules out all labels that are

located in the shortest paths associated with the deleted edges.

For example, given a vertex 𝑣 ∈ 𝑉 and a deleted edge 𝑒 (𝑠, 𝑡),
∀(𝑤,𝑑𝑖𝑠𝑡 (𝑣,𝑤)) ∈ 𝐿(𝑣) is ruled out if there exists a shortest path

𝑝 (𝑣,𝑤) passing through 𝑒 (𝑠, 𝑡). However, this strategy removes

plenty of non-error labels, i.e., (𝑤,𝑑𝑖𝑠𝑡 (𝑣,𝑤)) ∈ 𝐿(𝑣) is not an
error label if there are extra shortest valley paths 𝑝# (𝑣,𝑤) with
|𝑝# (𝑣,𝑤) | = 𝑑𝑖𝑠𝑡 (𝑣,𝑤). In addition, FULPLL also suffers from com-

putational inefficiency caused by sequentially handling the deleted

edges.

To alleviate the above issue, we design an efficient algorithm to

rule out all error labels. Note that our algorithm not only accurately

finds all error labels but also handles all deleted edges in parallel.

The details are shown as follows.

Lemma 8 (Error labeldeletion). For any entry (𝑤,𝑑𝑖𝑠𝑡 (𝑣,𝑤))
∈ 𝐿(𝑣), it is a non-error label if there exists at least one shortest valley
path 𝑝# (𝑣,𝑤) in 𝐺− with |𝑝# (𝑣,𝑤) | = 𝑑𝑖𝑠𝑡 (𝑣,𝑤).

Proof. Considering that the actual distance between any two

vertices cannot decrease in the edge deletion scenario, the dis-

tances of all peak paths between 𝑣 and𝑤 in𝐺− are still larger than

𝑑𝑖𝑠𝑡 (𝑣,𝑤) if (𝑤,𝑑𝑖𝑠𝑡 (𝑣,𝑤)) ∈ 𝐿(𝑣) based on Lemma 2. Therefore,

based on Lemma 1, (𝑤,𝑑𝑖𝑠𝑡 (𝑣,𝑤)) is not an error label if there ex-

ists another shortest valley path 𝑝# (𝑣,𝑤) in 𝐺− with |𝑝# (𝑣,𝑤) | =
𝑑𝑖𝑠𝑡 (𝑣,𝑤). □

Based on the above analysis, for each label (𝑤,𝑑𝑖𝑠𝑡 (𝑣,𝑤)) ∈ 𝐿(𝑣),
it is important to accurately and efficiently determine whether there

are extra shortest valley paths 𝑝# (𝑣,𝑤) in 𝐺− with |𝑝# (𝑣,𝑤) | =
𝑑𝑖𝑠𝑡 (𝑣,𝑤). To address this issue, we propose a synchronous label

removal strategy to rule out all error labels in parallel.

Lemma 9 (Synchronous label removal). For each label
(𝑤,𝑑) ∈ 𝐿𝑑 (𝑣), it is a non-error label when satisfying (𝑤,𝑑−1) ∈
𝐿𝑛𝑒𝑟
𝑑−1 (𝑢) with 𝑢 ∈ 𝑁 (𝑣,𝐺

−). Here, 𝐿𝑛𝑒𝑟
𝑑−1 (𝑢) denotes a non-error label

set of 𝑢, where the distance of each label is 𝑑−1.

Proof. As introduced in Section 3.1, each vertex 𝑣 collects the

labels with the same distance from its neighbors in each round.

Similar to this distance-dependency property, for any label (𝑤,𝑑) ∈
𝐿𝑑 (𝑣), if ∃𝑢 ∈ 𝑁 (𝑣,𝐺−) satisfies (𝑤,𝑑 − 1) ∈ 𝐿𝑛𝑒𝑟

𝑑−1 (𝑢), there exists
another shortest valley path 𝑝# (𝑣,𝑤) with |𝑝# (𝑣,𝑤) | = 𝑑 , thereby

proving that (𝑤,𝑑) is not an error label. □

However, directly tracking the non-error labels following Lemma

9 would be time-consuming, as the number of non-error labels is

usually much larger than that of error labels. To avoid this issue, we

Algorithm 5: Error Label Deletion (ELD)

Input:𝐺− , 𝐿, 𝐸−

Output: 𝐿, 𝐹 ,𝑉𝐴
1 Initialize 𝐿# ,𝑉𝐴 , 𝐹 , and 𝑑 ← 1

2 while 𝐿#
𝑑−1 ≠ ∅ or 𝑑 = 1 do

3 for each hub node 𝑤 ∈ 𝐶𝑑 (𝑣) with 𝑣 ∈ 𝑉 in parallel do
4 Insert 𝑤 into𝐶𝑎𝑛𝑑 (𝑣) if (1) 𝑤 ∈ 𝐶#

𝑑−1 (𝑢 ) with 𝑢 ∈ 𝑁 (𝑣,𝐺
− ) or

(2) 𝑤 ∈ 𝐶#

𝑑−1 (𝑢 ) ∪𝐶𝑑−1 (𝑢 ) with 𝑢 ∈ 𝑁 −Δ (𝑣)
5 for ∀𝑤∈𝐶𝑎𝑛𝑑 (𝑣) with 𝑣 ∈ 𝑉 in parallel do
6 if (𝑤,𝑑−1) ∉ 𝐿 (𝑢 ) with ∀𝑢 ∈ 𝑁 (𝑣,𝐺− ) then // Lemma 9
7 Migrate (𝑤,𝑑 ) from 𝐿𝑑 (𝑣) to 𝐿#𝑑 (𝑣)

8 𝑑 ← 𝑑 + 1
9 foreach 𝑣∈𝑉 with 𝐿# (𝑣) ≠ ∅ do
10 𝑉𝐴 .𝑎𝑑𝑑 (𝑣) and 𝐹 (𝑣) ← max𝑤∈𝐶# (𝑣) 𝑟 (𝑤 )
11 return

⋃︁
𝑣∈𝑉 𝐿 (𝑣) , 𝐹 ,𝑉𝐴

Table 5: The illustration of M2HL in edge deletion scenario

ELD MLI
The 2-hop labeling index of𝐺𝐿 𝑑 = 1

𝐹 ( ·)
𝑑 = 2 𝑑 = 3

𝑣0 (𝑣0, 0) − -1 − −
𝑣1 (𝑣1, 0) , (𝑣0, 1) 𝑣0 𝑟 (𝑣0 ) 𝑣0 −
𝑣2 (𝑣2, 0) , (𝑣0, 1) , (𝑣1, 1) − -1 − −
𝑣3 (𝑣3, 0) , (𝑣0, 1) , (𝑣2, 1) 𝑣2 𝑟 (𝑣2 ) − −
𝑣4 (𝑣4, 0) , (𝑣0, 1) , (𝑣3, 1) − -1 − −
𝑣5 (𝑣5, 0) , (𝑣0, 1) , (𝑣1, 1) 𝑣0 𝑟 (𝑣0 ) − 𝑣0
𝑣6 (𝑣6, 0) , (𝑣0, 1) , (𝑣5, 1) 𝑣0 𝑟 (𝑣0 ) 𝑣0 , 𝑣1 −
𝑣7 (𝑣7, 0) , (𝑣0, 1) , (𝑣4, 1) , (𝑣6, 1) 𝑣4 𝑟 (𝑣4 ) 𝑣5 −

choose to propagate the error labels based on Lemma 9. Algorithm 5

depicts the details of the synchronous label removal process. Given

the dynamic graph 𝐺− , the minimal 2-hop labeling index 𝐿, and

the edge set 𝐸− to be deleted, we first initialize 𝐿# to store all error

labels (Line 1). Then, the error labels are gradually ruled out based

on Lemma 9 in each round (Lines 2-8). Take the 𝑑-th round as an

example. We sequentially execute the following two steps.

• Determining candidate labels (Lines 3-4). For each vertex 𝑣 ∈ 𝑉 ,

the candidate error label (𝑤,𝑑) ∈ 𝐿𝑑 (𝑣) is originated from (1)

𝑤 ∈ 𝐶#

𝑑−1 (𝑢) with𝑢 ∈ 𝑁 (𝑣,𝐺
−) or (2)𝑤 ∈ 𝐶#

𝑑−1 (𝑢)∪𝐶𝑑−1 (𝑢)
with 𝑢 ∈ 𝑁 −Δ (𝑣).
• Ruling out error labels (Lines 5-7). Each candidate hub node

𝑤 ∈ 𝐶𝑎𝑛𝑑 (𝑣) needs to be migrated from 𝐿𝑑 (𝑣) to 𝐿#𝑑 (𝑣) if there
is no extra shortest valley path between 𝑣 and𝑤 by Lemma 9.

Finally, all error results are ruled out from the label set, where

𝑉𝐴 and 𝐹 are computed for the subsequent processes (Lines 9-10).

Example 7. Given the graph 𝐺𝐿 and 𝐸− represented by the blue
dashed lines in Figure 1(b), the process of error label deletion is shown
in Table 5, where all error labels are emphasized with delete lines. The
details are shown as follows.

(1) 𝑑 = 1. We delete the corresponding label whose distance is 1
based on 𝐸− . For example, due to the deletion of 𝑒 (𝑣0, 𝑣5) and
𝑒 (𝑣2, 𝑣3), the labels (𝑣0, 1) and (𝑣2, 1) are deleted from 𝐿(𝑣5) and
𝐿(𝑣3), respectively.

(2) 𝑑 = 2. The error label removal procedure is terminated since all
error labels have been ruled out.

Time complexity. In the worst case, each vertex 𝑣 ∈ 𝑉 takes

𝑂 (∑︁𝑢∈𝑁 (𝑣,𝐺 )
∑︁𝐷
𝑑=0
|𝐿𝑑 (𝑢) |) = 𝑂 ( |𝑁 (𝑣,𝐺) | · 𝛿) to check all labels,

where 𝛿 = max𝑣∈𝑉 |𝐿(𝑣) |. Therefore, the time cost is 𝑂 (𝑚·𝛿).
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5.2 Missing label insertion

After ruling out all error labels caused by the deleted edges, each

vertex collects the missing labels from its neighbors based on the

distance-dependency property, thus maintaining correctness and

minimality. For each deleted label (𝑢,𝑑𝑖𝑠𝑡 (𝑣,𝑢)), we observe that the
correctness of 𝑞(𝑣,𝑤) is not affected when 𝑑𝑖𝑠𝑡 (𝑣,𝑤) < 𝑑𝑖𝑠𝑡 (𝑣,𝑢) +
𝐿[𝑤] [𝑢]. However, the time cost of verifying this is𝑂 (𝛿), so it costs
𝑂 (𝑚 ·𝛿2) time to check all labels. To reduce the time cost, we design

two pruning strategies to avoid redundant verification.

Lemma 10. For any two vertices 𝑣,𝑤 ∉ 𝑉𝐴 with 𝑟 (𝑤) > 𝑟 (𝑣),
(𝑤,𝑑𝑖𝑠𝑡 (𝑣,𝑤)) cannot be inserted into 𝐿(𝑣).

Proof. Based on the definition of 𝑉𝐴 , there is no change in the

labels of 𝑣 and𝑤 when 𝑣,𝑤 ∉ 𝑉𝐴 , thereby proving that 𝑑𝑖𝑠𝑡 (𝑣,𝑤) =
𝑄 (𝑣,𝑤, 𝐿(𝑣) ∪ 𝐿(𝑤)). Therefore, the label (𝑤,𝑑𝑖𝑠𝑡 (𝑣,𝑤)) cannot be
inserted into 𝐿(𝑣). Otherwise, the minimality will be destroyed. □

Lemma 11. For each vertex 𝑣 ∈ 𝑉𝐴 , (𝑤,𝑑𝑖𝑠𝑡 (𝑣,𝑤)) cannot be
inserted into 𝐿(𝑣) if 𝑟 (𝑤) > 𝐹 (𝑣) and𝑤 ∉ 𝑉𝐴 .

Proof. Let 𝐿# (𝑣) be the error label set of 𝑣 . Considering that

∀𝑢 ∈ 𝐿# (𝑣) satisfies 𝑟 (𝑤) > 𝑟 (𝑢) if 𝑟 (𝑤) > 𝐹 (𝑣), we have 𝑟 (𝑢) <
𝑟 (𝑤 ′) with ∀𝑤 ′ ∈ 𝐶 (𝑤) based on the node order strategy, proving

that 𝐿(𝑤) ∩ 𝐿# (𝑣) = ∅. This is because the rank value of each hub

node is larger than itself. Therefore, the correctness of 𝑞(𝑣,𝑤) is
not affected by any deleted label in 𝐿# (𝑣). □

Algorithm 6: Missing Labels Insertion (MLI)

Input:𝐺−, 𝐿, 𝐹 ,𝑉𝐴
Output: the 2-hop labeling index 𝐿− of𝐺−

1 Initialize 𝐿∗ and 𝑑 ← 2

2 for ∀𝑤∈𝐶1 (𝑣) with 𝑣∈𝑉 do Insert (𝑤, 1) into 𝐿∗
1
(𝑣) if 𝑤∈𝑉𝐴 ;

3 while 𝐿∗
𝑑−1 ≠ ∅ do

4 foreach 𝑢 ∈ 𝑁 (𝑣,𝐺− ) with 𝑣 ∈ 𝑉 in parallel do
5 for ∀𝑤 ∈ 𝐶∗

𝑑−1 (𝑢 ) with 𝑟 (𝑤 ) > 𝑟 (𝑣) do
6 if 𝑣, 𝑤 ∉ 𝑉𝐴 then continue; // Lemma 10
7 Insert 𝑤 into𝐶𝑎𝑛𝑑 (𝑣)
8 for ∀𝑤 ∈ 𝐶𝑑−1 (𝑢 ) with 𝑣 ∈ 𝑉𝐴 and 𝑟 (𝑣)<𝑟 (𝑤 ) do
9 if 𝑟 (𝑤 )≤𝐹 (𝑣) then Insert 𝑤 into𝐶𝑎𝑛𝑑 (𝑣) ; // Lemma 11

10 for ∀𝑤∈𝐶𝑎𝑛𝑑 (𝑣) with 𝑣 ∈ 𝑉 in parallel do
11 if 𝑤∈𝐶𝑑 (𝑣) and 𝑤∈𝑉𝐴 then Insert (𝑤,𝑑 ) into 𝐿∗

𝑑
(𝑣) ;

12 if 𝑄 (𝑤, 𝑣, 𝐿<𝑑 (𝑤 ) ∪ 𝐿<𝑑 (𝑣) ) > 𝑑 then

13 Insert (𝑤,𝑑 ) into 𝐿∗
𝑑
(𝑣) and 𝐿𝑑 (𝑣) ▶ the missing labels have

been inserted into 𝐿

14 𝑑 ← 𝑑 + 1
15 return 𝐿− ← ⋃︁

𝑣∈𝑉 𝐿 (𝑣)

Algorithm 6 shows the details of missing label insertion, where

𝐿∗ is used to store the inserted labels. Specifically, all 1-hop labels

are first collected in 𝐿∗
1
to activate the whole procedure (Line 2).

Then, for each vertex 𝑣 ∈ 𝑉 , the hub node 𝑤 in the 𝑑-th round

is originated from (1) 𝐶∗
𝑑−1 (𝑢) or (2) 𝐶𝑑−1 (𝑢) with 𝑣 ∈ 𝑉𝐴 (Lines

4-9), where 𝑢 ∈ 𝑁 (𝑣,𝐺−). Finally, the label (𝑤,𝑑) is inserted into

𝐿(𝑣) if it is not dominated by the existing labels (Lines 10-13). Note

that the candidate label (𝑤,𝑑) is also inserted into 𝐿∗
𝑑
(𝑣) when

(𝑤,𝑑) ∈ 𝐿𝑑 (𝑣) to avoid the early termination of the procedure,

which helps to maintain the correctness and minimality.

Example 8. The process of missing label insertion is the “MLI” part
of Table 5. When 𝑑 = 2, we have 𝐶𝑎𝑛𝑑 (𝑣1) = {𝑣0} and 𝐶𝑎𝑛𝑑 (𝑣7) =
{𝑣5}. Then, the labels (𝑣0, 2) and (𝑣5, 2) are inserted into 𝐿(𝑣1) and
𝐿(𝑣7), respectively. Similarly, when 𝑑 = 3, we have 𝐶𝑎𝑛𝑑 (𝑣5) = {𝑣0}.
Accordingly, the label (𝑣0, 3) is inserted into 𝐿(𝑣5).

Theorem 2 (Correctness and Minimality). In the edge
deletion scenario, the 2-hop labeling index 𝐿− of 𝐺− constructed by
Algorithm 4 satisfies correctness and minimality.

Proof. After deleting all error labels 𝐿# by Lemma 9, we have

two pruning strategies to reduce the redundant computations dur-

ing the process of adding missing labels. Specifically, for each

deleted error label (𝑢,𝑑𝑖𝑠𝑡 (𝑣,𝑢)), each candidate node𝑤 is inserted

into 𝐶𝑎𝑛𝑑 (𝑣) if it satisfies (1) 𝑟 (𝑤) > 𝑟 (𝑣) and (2) 𝑑𝑖𝑠𝑡 (𝑣,𝑤) =

𝑑𝑖𝑠𝑡 (𝑣,𝑢) + 𝐿(𝑤) [𝑢], because the correctness of 𝑞(𝑣,𝑤) is possibly
affected by the deleted label. Following this property, the missing

labels can be regarded as a subset of

∑︁
𝑣∈𝑉 𝐶𝑎𝑛𝑑 (𝑣), which proves

that the correctness can be maintained after updating the labels.

Based on the minimal 2-hop labeling index 𝐿 of𝐺 , the remaining

label set 𝐿 ← 𝐿 \ 𝐿# is also minimal based on Lemma 8. During

the subsequent process of missing label insertion, for each vertex

𝑣 ∈ 𝑉 , each candidate node 𝑤 ∈ 𝐶𝑎𝑛𝑑 (𝑣) cannot be inserted into

𝐿(𝑣) if 𝑄 (𝑣,𝑤, 𝐿(𝑣) ∪ 𝐿(𝑤)) > (𝑤,𝑑𝑖𝑠𝑡 (𝑣,𝑤)) (Lines 12-13), which
means that the label (𝑤,𝑑𝑖𝑠𝑡 (𝑣,𝑤)) is dominated by the existing

labels in 𝐿(𝑣). Therefore, 𝐿− is a minimal 2-hop labeling index of

𝐺− when inserting all missing label entries into 𝐿. □

Time complexity. In the worst case, each vertex 𝑣 does not check

the label (𝑤,𝑑) with 𝑣,𝑤 ∉ 𝑉𝐴 . Therefore, the time cost is𝑂 (𝑚 · 𝛿 ·
𝛿 − 𝑛#·𝛿#·𝛿), where 𝑛# = |𝑉 | − |𝑉𝐴 | and 𝛿# is the maximal number

of labels in 𝑉 \𝑉𝐴 .

6 EXTENSIONS OF M2HL ON DIRECTED AND

WEIGHTED GRAPHS

In this part, we briefly discuss how to extend M2HL for handling

directed graphs and weighted graphs as follows.

Directed graphs. Due to the constraint of edge direction, each

vertex 𝑣 ∈ 𝑉 collects the in-label and out-label sets, denoted as 𝐿𝐼 (𝑣)
and 𝐿𝑂 (𝑣) respectively, and the minimal 2-hop labeling index of 𝐺

is

⋃︁
𝑣∈𝑉 𝐿𝐼 (𝑣) ∪ 𝐿𝑂 (𝑣) [20]. During the index construction process,

the in-label (𝑢,𝑑) can be inserted into 𝐿𝐼 (𝑣) if 𝑄 (𝑢, 𝑣, 𝐿<𝑑,𝑂 (𝑢) ∪
𝐿<𝑑,𝐼 (𝑣)) < 𝑑 . Accordingly, the out-label (𝑤,𝑑) can be inserted

into 𝐿𝑂 (𝑣) if 𝑄 (𝑣,𝑤, 𝐿<𝑑,𝑂 (𝑣) ∪ 𝐿<𝑑,𝐼 (𝑤)) < 𝑑 .

• Edge insertion. Given an edge set 𝐸+ to be inserted, the new

out-labels and in-labels are inserted into 𝐿∗
𝑂
(𝑣) and 𝐿∗

𝐼
(𝑣) by

executing Algorithm 2 in 𝐺 . Specifically, in the 𝑑-th step, the

labels (𝑤,𝑑) and (𝑢,𝑑) are inserted into 𝐿∗
𝑂
(𝑣) and 𝐿∗

𝐼
(𝑣) respec-

tively based on Lemmas 1 and 2 when they are not dominated

by the existing results. This process is terminated until each ver-

tex does not collect any new label. Furthermore, all redundant

labels can be ruled out via Algorithm 3.

• Edge deletion. Given an edge set 𝐸− to be deleted, the er-

ror in-labels and out-labels are deleted from 𝐿𝐼 (𝑣) and 𝐿𝑂 (𝑣)
by executing Algorithm 5 in 𝐺 and its reversion, respectively.

Similarly, all error labels with the same distance are simultane-

ously handled in each round. Next, we execute Algorithm 6 to

maintain the correctness and minimality.

Weighted graphs. Considering that the minimality is possibly

destroyed when directly executing PSL on weighted graphs [20],

we adopt the PVC method in [40] to generate the minimal 2-hop

labeling index 𝐿. The core idea of PVC is that each vertex 𝑣 ∈ 𝑉 only

collects the labels (𝑤,𝑑) in the 𝑑-th step based on Lemmas 1 and 2.

Then, we discuss the index maintenance process in the following

two scenarios.

• Weight decrease. Similar to the edge insertion scenario, the ac-

tual distances of vertex pairs may be decreased. Specifically, all

2012



weight-decrease edges can first be regarded as newly inserted

edges. Then, referring to the core idea of PVC, we collect all new

labels and rule out all redundant labels based on Algorithms 2

and 3, respectively.

• Weight increase. Similar to the edge deletion scenario, the

actual distances of vertex pairs may be increased. Here, the

error labels can still be deleted based on Algorithm 5 since the

shortest paths will not go through any weight-increase edge.

Afterwards, we execute Algorithm 6 to update the index in the

new graph following the core idea of PVC.

7 EXPERIMENTS

In this section, we conduct extensive experiments to evaluate the

performance of our proposed methods.

7.1 Setup

Datasets. In our experiments, we employ ten real-world datasets

as reported in Table 6, which are commonly used in previous

works [20, 21]. The largest graph within our dataset contains over

2.9 billion edges. These datasets originate from various types (e.g.,

social networks and web networks) of small-world networks char-

acterized by a maximal degree value that significantly exceeds

the average degree value. Note that all directed graphs have been

converted to undirected graphs.

Table 6: Statistic of Real-world Graphs

Alias Dataset |𝑉 | |𝐸 | 𝑑𝑎𝑣𝑔 𝑑𝑚𝑎𝑥

TK WikiTalk 2.4M 4.7M 4 100,029

SP SocPokec 1.6M 30.6M 27 14,854

LJ SocLiveJ 4.8M 42.8M 17 20,333

OK Orkut 2.9M 106.3M 76 33,313

ID Indochina 7.4 M 194.1 M 40 256,425

U2 UK2002 18.5M 298.1M 28 194,955

U5 UK2005 39.4M 936.1M 39 1,776,858

IT IT2004 41.3M 1.15B 49 1,326,744

SK SK2005 50.6M 1.94B 57 8,563,816

U6 UK2006 77.7M 2.96B 39 4,070,242

Algorithms. We mainly compare the following algorithms:

• FULPLL [12]. A fully dynamic 2-hop labeling index mainte-

nance algorithm.

• BPCL [47]. A parallel 2-hop labeling indexmaintenancemethod,

where the bandwidth is set as 0.

• PSL [20]. A parallel 2-hop labeling index construction algo-

rithm for static graphs. For each test, we directly use this

method to reconstruct the 2-hop labeling index with respect to

the same node order strategy.

• BatchHL
+
[17]. The SOTA maintenance algorithms of the

highway distance labeling.

• M2HL. Our proposed maintenance algorithms (Algorithm 1

and Algorithm 4).

Setting.We generate five types of tests to evaluate the update time

in the scenarios of edge insertions and deletions, where the degrees

of vertices to insert/delete edges in these tests are distributed in

10%, 30%, 50%, 70%, and 90%, respectively. Following the setting

in [18, 47], the instances of each test are set as 1,000 by default and

each instance does not belong to the original graph in the edge

insertion scenario. To evaluate the scalability of our method, we

vary the number of dynamic edges from 10 to 10
5
while keeping

the number of computing cores fixed at 40. Furthermore, we also

evaluate the speedup by adjusting the number of computing cores

from 10 to 60. The experimental result is marked as “INF” when

an algorithm cannot finish in 10
6
seconds or exceeds the memory

limitation. For query evaluation, we randomly select 10
6
vertex

pairs (𝑠, 𝑡) for all datasets and report the average time cost.

Environment.All algorithms are deployed in a Linux server which

has Intel(R) Xeon(R) Silver 4210R with 64 computing cores and 1.5

TB of main memory. All algorithms are implemented by C++ and

the parallel optimization is supported by OpenMP. Note that BPCL,

PSL, and M2HL are equipped with 40 cores.

7.2 Index maintenance evaluation

In this section, we mainly examine the time cost and updated index

size of the index maintenance solutions.

• Index update time. In this experiment, we evaluate the update

time cost of FULPLL, PSL, BPCL, and M2HL on all datasets. The

final results in Figures 2 and 3 represent the average update time for

all types of tests mentioned above. Tables 7 and 8 show the update

time for the five types of tasks in the scenarios of edge insertion

and deletion, respectively. Note that the results of PSL and BPCL

are omitted in these two tables, because (1) the processing time of

PSL across the five types of tasks is very close and (2) BPCL cannot

finish within 10
6
seconds or using 1.5TB memory on most datasets.
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Figure 2: Average update time with edge insertion

Table 7: Update time (s) in the edge insertion scenario

FULPLL (10
4
s) M2HL (s)

Dataset

10% 30% 50% 70% 90% 10% 30% 50% 70% 90%

Talk 0.85 0.91 0.91 0.82 0.93 1.07 1.23 1.09 1.19 1.12

pokec 0.78 0.74 0.66 0.66 0.61 15.8 12.6 11 9.47 7.25

socLiveJ 1.95 1.85 1.81 1.68 1.61 24.9 19.3 16.2 13.3 17.7

orkut 3.51 3.52 3.47 3.25 3.32 140.2 99.4 81.9 62.9 51.4

Indochina 9.32 8.36 8.13 7.89 6.61 57.8 54.6 49.2 43.3 39.6

uk2002 29.1 25.1 27.2 28.8 23.6 829.1 774.8 655.1 641.5 410.3

uk2005 69.8 67.2 61.1 61.1 60.1 979.5 1335.4 567.1 1205.4 759.8

it2004 30.4 41.7 39.4 35.5 34.8 331.8 548.5 726.8 453.1 478.9

sk2005 30.7 23.9 33.6 28.4 27.7 198.4 187.1 236.5 212.2 172.3

uk2006 62.5 59.5 52.5 54.5 51.1 797.6 951.2 466.4 779.9 467.2

In the edge insertion scenario, as shown in Figure 2 and Ta-

ble 7, M2HL achieves up to 3, 2, and 2 orders of magnitude speedup

compared to FULPLL, PSL, and BPCL, respectively. The superior

performance of M2HL can be mainly attributed to its parallelism

optimization for handling incremental edges and its effective prun-

ing strategies for reducing the time cost of redundant label removal.

In contrast, it is time-consuming for FULPLL to update the 2-hop

labeling index, especially on large-scale graphs, because it needs

to sequentially handle each inserted edge and cannot be optimized

by the parallelism strategy. In addition, it is very time-consuming

for PSL to reconstruct the whole 2-hop labeling index, although it

is equipped with some optimization techniques. For BPCL, it only

employs parallelism optimization to accelerate the index mainte-

nance process for a single dynamic edge. Since the computational

workload caused by a single dynamic edge is limited, this strategy

inevitably reduces the effectiveness of parallel acceleration.

In the edge deletion scenario, as shown in Fig. 3 and Table 8,

M2HL achieves up to 3, 3, and 2 orders of magnitude faster exe-

cution times compared to FULPLL, BPCL, and PSL, respectively.

Specifically, M2HL not only handles all edges in parallel but also

can efficiently and accurately determines the error labels to avoid
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redundant computations. In contrast, it is required for FULPLL to

remove all labels related to any deleted edge, thus causing serious

time costs.
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Figure 3: Average update time with edge deletion

Table 8: Update time (s) in the edge deletion scenario

FULPLL (10
4
s) M2HL (s)

Dataset

10% 30% 50% 70% 90% 10% 30% 50% 70% 90%

Talk 1.11 0.28 0.29 0.28 0.28 0.59 0.34 0.35 0.41 0.40

pokec 43.2 42.5 40.1 38.2 21.2 128.3 62.3 42.2 25.6 2.75

socLiveJ 68.2 62.8 47.6 52.9 53.3 35.2 18.7 22.7 16.5 7.7

orkut INF 84.2 82.3 INF 81.4 506.1 140.2 97.1 88.1 29.4

Indochina 8.65 40.5 13.1 9.85 9.55 12.1 11.96 13.58 15.8 9.2

uk2002 50.4 70.4 55.8 89.2 88.1 99.2 99.49 64.12 81.89 31.7

uk2005 INF INF INF INF INF 240.04 330.4 83.5 210.1 72.1

it2004 75.9 INF 75.7 72.1 71.4 17.2 97.5 82.6 108.1 48.1

sk2005 54.3 54.1 52.3 53.2 51.1 87.5 105.3 103.9 88.9 45.2

uk2006 INF INF INF INF INF 118.7 229.1 26.37 190.8 79.8

•Memory cost. In this experiment, we evaluate the memory

cost of the three algorithms in the scenarios of edge insertion and

deletion, with the number of dynamic edges set to 1,000. Specifically,

the experimental result is marked as “OM” when an algorithm

exceeds the memory limitation.

Table 9: The comparison of memory cost (GB)

Dataset

Edge insertion Edge deletion

FULPLL PSL BPCL M2HL FULPLL PSL BPCL M2HL

TK 1.1 1.06 128.2 1.06 1.07 1.07 115.3 1.07

SP 44.7 44.5 OM 44.5 44.7 44.7 OM 44.7

LJ 84.1 83.9 OM 83.9 83.9 83.9 OM 83.9

OK 140.1 139.8 OM 139.8 139.9 139.9 OM 139.9

ID 22.7 22.3 OM 22.3 21.9 21.9 OM 21.9

U2 345.1 343.8 OM 343.8 344.1 344.1 OM 344.1

U5 985.8 985.4 OM 985.4 985.6 985.6 OM 985.6

IT 555.3 554.3 OM 554.3 554.5 554.5 OM 554.5

SK 187.6 186.8 OM 186.8 187.1 187.1 OM 187.1

U6 1030.5 1027.3 OM 1027.3 1030.4 1030.4 OM 1030.4

As shown in Table 9, we observe that the memory cost of FULPLL

is slightly larger than those of PSL and M2HL in the edge insertion

scenario. This is because FULPLL only guarantees the correctness

property, whilst ignoring the redundant labels dominated by the

new 2-hop labeling index entries. Note that the memory cost of

M2HL is consistent with that of PSL in all scenarios. This is because

M2HL not only rules out all redundant labels in the edge insertion

scenario but also accurately determines all candidate labels in the

edge deletion scenario. Notice that the memory cost of BPCL is

almost 2 orders of magnitude higher than that of M2HL. The high

memory cost of BPCL is mainly attributed to its complex data

structure and the precomputed auxiliary structure, making it fail

with out-of-memory errors on most datasets.

7.3 Scalability and query evaluation

In this part, we evaluate the scalability of the algorithms with

respect to the update size and multi-core number, respectively.

Note that the experimental results of BPCL are not listed since it

cannot finish on most datasets.

• Scalability w.r.t. the number of dynamic edges. Here, we

evaluate the scalability of M2HL, PSL, and FULPLL on update time

by varying the number of dynamic edges from 10 to 100,000.
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Figure 4: Update time (s) vs. the number of inserted edges
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Figure 5: Update time (s) vs. the number of deleted edges

As shown in Figure 4, we observe that the time cost of M2HL

and FULPLL increases as the number of inserting edges increases,

whilst M2HL achieves up to 4 orders of magnitude speedup com-

pared to FULPLL. Specifically, the update time of FULPLL grows

approximately linearly since it needs to sequentially supplement

the new labels caused by each inserting edge. Therefore, FULPLL

cannot finish the task within a reasonable time limit when inserting

too many edges. In contrast, M2HL can simultaneously handle all

inserting edges, which not only avoids the production of redundant

labels but also contributes to improving the effect of parallelism

optimization. The processing time of PSL remains almost the same

across all tests, as PSL requires a complete reconstruction of the

2-hop labeling index. In comparison, M2HL achieves up to a 2-order

and 1-order magnitude improvement over PSL when the number

of inserted edges is 10 and 100,000, respectively.

As shown in Figure 5, we observe that M2HL is up to 4 orders

of magnitude faster than FULPLL in the edge deletion scenario.

Similar to the edge insertion scenario, the superior performance

of M2HL is attributed to the parallelism optimization of handling

decremental edges and effective pruning strategies to avoid redun-

dant computations.
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• Scalability w.r.t. the number of multi cores. In this exper-

iment, we assess the maintenance speedup of M2HL by varying

the number of cores from 10 to 60, where the number of dynamic

edges is set as 100,000. Note that in this setting, FULPLL is omitted

since it cannot be parallelized.

As shown in Figure 6, compared to the setting with 10 cores,

M2HL achieves up to 5.4× (on average 4.4×) acceleration in terms

of update time when utilizing a total number of 60 cores. This is

mainly because (1) M2HL designs effective strategies to handle all

inserting edges in each round and (2) the computational workload

of index maintenance is higher when inserting more edges. Thus,

M2HL can efficiently maintain the 2-hop labeling index with a large

number of dynamic edges.
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Figure 6: The update time vs. the number of cores

• Query time In this part, we evaluate the average query time

of FULPLL, PSL, BPCL, and M2HL. As shown in Figure 7, the query

time of FULPLL and BPCL is slightly higher than that of M2HL. This

is because FULPLL does not rule out the redundant labels dominated

by the other elements. Note that the query time of M2HL is the

same as that of PSL, since M2HL can maintain correctness and

minimality in all cases.
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Figure 7: Average query time (ns) on all datasets

7.4 Comparison with BatchHL
+

In this part, we compare the index update time and query perfor-

mance of M2HL and BatchHL
+
with our method. Specifically, the

numbers of landmark vertices in BatchHL
+
are set to 50, 100, and

1000, respectively. For lack of space, we only present the results for

four datasets, as the omitted datasets exhibit similar trends.
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Figure 8: Performance evaluation of M2HL and BatchHL
+

As shown in Figure 8 (a), when the number of landmarks is set to

50, BatchHL
+
achieves up to 2 orders of magnitude speedup on the

update time compared to M2HL. This is due to BatchHL
+
’s more

relaxed index structure, which results in lower time cost. How-

ever, the performance gap narrows significantly as the number of

landmarks increases, as more vertices are affected, thereby increas-

ing processing time. For instance, when the number of landmarks

exceeds 500, their update time costs are comparable.

As shown in Figure 8 (b), M2HL achieves up to 4 orders of mag-

nitude speedup on query time compared to BatchHL
+
. This excep-

tional query performance is due to M2HL’s compact index struc-

ture, where the index-hop number between any two connected

vertices does not exceed 2. Additionally, the distance between any

two disconnected vertices can be quickly determined. In contrast,

BatchHL
+
employs a highway structure to quickly estimate the

upper bound of the distance between any two vertices. Following

this, a DFS-based search strategy is needed to compute the exact

shortest distances. In the worst case, the query time complexity of

this method is 𝑂 (𝐸).

7.5 Performance evaluation on directed and

weighted graphs

Table 10 records the average time cost of M2HL and PSL in scenarios

involving edge insertions and deletions for two types of graphs,

where the number of dynamic edges is 1000. Specifically, M2HL

demonstrates a speedup of up to two orders of magnitude compared

to PSL across all scenarios. Furthermore, we notice that the time

cost associated with PSL on directed graphs is significantly higher

than that on weighted graphs. This disparity arises because the

inclusion of edge directions increases the diameter of the graphs,

consequently diminishing the effectiveness of the node ranking

strategy.

Table 10: Average time (s) on directed and weighted graphs

Datasets Insertion Deletion PSL

SP 15.9 82.7 4236.5
Directed graph

LJ 36.7 39.9 9749.5

SP 8.7 13.8 1448.6
Weighted graph

LJ 14.8 20.2 1896.6

Figure 9 illustrates the average update time for both directed and

weighted graphs as the number of dynamic edges varies. Notably,

the time cost of our method scales proportionally with the increase

in dynamic edges. In comparison to PSL, when the number of

dynamic edges reaches 10
5
, M2HL exhibits remarkable performance

improvements. Specifically, for directed graphs, M2HL achieves

speedups of up to 11.5× and 23.9× in scenarios involving edge

insertion and deletion, respectively. Similarly, for weighted graphs,

M2HL demonstrates speedups of up to 23.2× and 26.2× in the same

scenarios. Figures 10 and 11 showcase the update time of M2HL on

two types of graphs as the number of cores varies. When compared

to the setting with 10 cores, M2HL achieves an acceleration of up to

4.8× (with an average of 4.6×) on directed graphs when utilizing a

total of 60 cores. Similarly, for weighted graphs,M2HL demonstrates

an acceleration of up to 5.3× (with an average of 4.8×) when using

60 cores.

8 RELATEDWORK

In this section, we first discuss the related works about the 2-hop

labeling on the static and dynamic graphs, respectively. Then, we

introduce the applications of 2-hop indexes to various path query

problems. It is noted that road networks typically exhibit a longer

diameter and lower degrees [26]. Due to the structural difference
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Figure 9: Average time (s) vs. the number of dynamic edges
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Figure 11: Update time on weighted graphs vs. core number

between small-world graphs and road networks, the methods con-

structing distance indexes differ significantly between these two

types of graphs, leading to two distinct research directions.

8.1 2-hop labeling on static graphs

Cohen et al. [11] first proposed the 2-hop labeling to efficiently solve

the distance queries. On the small-world graphs, Akiba et al. [3]

proposed the pruned landmark labeling (PLL) which adopts the

node order strategy to build a minimal 2-hop labeling. Later on, Li

et al. [20] proposed parallel shortest-distance labeling (PSL) to build

the 2-hop labeling in parallel, whilst guaranteeing the minimality.

We will introduce their detailed steps in Section 3.1. Compared to

PSL, the core-tree labeling [21] reduces the index size by exploring

the core-periphery property with a negligible cost in query time.

On the road networks, Akiba et al. [2] proposed the pruned high-

way labeling to decompose the road network into disjoint paths.

H2H [26] combines the 2-hop labeling and the tree decomposition

strategy to provide excellent query performance. Due to the large

index size of H2H, the authors of [16] proposed HC2L which adopts

a balanced tree hierarchy to reduce the index size and the search

space of 2-hop labeling. Since we focus on the maintenance of 2-hop

labeling index on dynamic graphs, we omit the details which can

be found in [17, 22, 36].

8.2 2-hop labeling on dynamic graphs

On the small-world graphs, Akiba et al. [4] proposed IncPLL to up-

date the 2-hop labeling in the edge insertion scenario. However, it

does not remove the outdated entries since the authors considered

it too costly. D’angelo et al. [12] proposed DecPLL to update the

2-hop labeling in the edge deletion scenario. Zhang et al. [43] pro-

posed WPSL to update the 2-hop labeling on the dynamic weighted

graphs. However, this method needs to use the vertex pruning

records to quickly capture the connections of vertices and their

label entries, thus incurring serious memory costs. In addition, this

method cannot correctly process the case when edge weight in-

creases [47]. To address this limitation, the authors in [47] proposed

BPCL to modify the maintenance strategy of WPSL in the edge

weight increasing scenario. However, we observe that BPCL in-

curs significant memory overhead to store both the index and a

pre-computed auxiliary structure, leading to poor scalability.

On the road networks, the authors in [46] proved that the index

maintenance of contraction hierarchy [19] and hierarchical 2-hop

index [26] can become unbounded even for single weight updates.

More details of index maintenance on road network can be found

in [46].

8.3 Other 2-hop labeling-based path queries

Reachability query. To construct the 2-hop labeling for the reach-

ability query [11], each node 𝑣 maintains two sets 𝐿𝐼 (𝑣) and 𝐿𝑂 (𝑣)
to record the in-entries and out-entries, respectively. This setup en-

sures that the index-based hop number between any two reachable

vertices is no greater than 2, significantly enhancing query effi-

ciency. Furthermore, the 2-hop labeling index has been expanded to

address reachability queries on edge-labeled graphs [29], temporal

graphs [35], and bipartite graphs [8]. A comprehensive summary

of these advancements can be found in [42].

Shortest path counting. Zhang et al. [45] first adopted 2-hop

labeling to count the number of different shortest paths between

two vertices. Specifically, each node 𝑣 collects the distance and the

number of shortest paths to each hub node 𝑢. Then, the number

of shortest paths between any two vertices can be answered using

only their labels. Furthermore, Peng et al. [28] designed the parallel

optimization strategy to largely reduce the indexing time. Wang et

al. [33] adopted the core-tree index to significantly reduce its space

cost while slightly weakening the query efficiency.

9 CONCLUSION

In this paper, we study the problem of 2-hop labeling index mainte-

nance on large dynamic graphs. We first identify the core principles

of 2-hop labeling index construction and analyze the limitations of

existing index maintenance methods. Based on these analysis, we

then propose a novel approachM2HL, which not only theoretically

guarantees the correctness and minimality of the 2-hop labeling

index, but also efficiently handles the updates of both edge inser-

tion and deletion in parallel. Our comprehensive experiments on

ten real-world large-scale graphs demonstrate that M2HL achieves

significant improvements in terms of index update efficiency and

scalability. Additionally, our approach can be easily extended for

processing directed graphs and weighted graphs.
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