
Efficient Maximal Motif-Clique Enumeration over Large
Heterogeneous Information Networks

Yingli Zhou

The Chinese University of Hong

Kong, Shenzhen

yinglizhou@link.cuhk.edu.cn

Yixiang Fang
∗

The Chinese University of Hong

Kong, Shenzhen

fangyixiang@cuhk.edu.cn

Chenhao Ma

The Chinese University of Hong

Kong, Shenzhen

machenhao@cuhk.edu.cn

Tianci Hou

The Chinese University of Hong

Kong, Shenzhen

tiancihou@link.cuhk.edu.cn

Xin Huang

Hong Kong Baptist University

xinhuang@comp.hkbu.edu.hk

ABSTRACT
In the heterogeneous information network (HIN), a motif-clique is a

“complete graph” for a given motif (or a small connected graph) that

could capture the desired relationship in the motif. The maximal

motif-cliques of HINs have found various applications in commu-

nity discovery, recommendation, and biological network analy-

sis. The state-of-the-art algorithm for enumerating maximal motif-

cliques may have to explore all possible subgraphs of a maximal

motif-clique and check whether a maximal motif-clique has been

enumerated at each recursive step, which is very time-consuming.

To improve the efficiency of enumeration, in this paper, we develop

efficient algorithms for maximal motif-clique enumeration over

large HINs. We first introduce an order-based framework to avoid

duplicated enumeration, which results in lower time complexity

compared to the existing algorithm. We then propose a pivot-based

pruning strategy, which significantly reduces the search space. We

further optimize the process of identifying the candidate sets and

locating the subgraphs containing the maximal motif-cliques. Ex-

tensive experiments on five real-world HINs demonstrate that our

proposed algorithm achieves high efficiency and is up to three

orders of magnitude faster than the state-of-the-art algorithm.

PVLDB Reference Format:
Yingli Zhou, Yixiang Fang, Chenhao Ma, Tianci Hou, and Xin Huang.

Efficient Maximal Motif-Clique Enumeration over Large Heterogeneous

Information Networks . PVLDB, 17(11): 2946 - 2959, 2024.

doi:10.14778/3681954.3681975

PVLDB Artifact Availability:
The source code, data, and/or other artifacts have been made available at

https://github.com/EnderturtleOrz/VLDB2024-Mclique.

1 INTRODUCTION
Heterogeneous information networks (HINs) are networks with mul-

tiple typed objects and multiple typed links denoting different se-

mantic relations. These graph data sources are prevalent in various

domains, including bibliographic networks [70, 73], co-purchasing

networks [71, 92], and knowledge graphs [31]. For example, Figure

∗
Yixiang Fang is the corresponding author.

This work is licensed under the Creative Commons BY-NC-ND 4.0 International

License. Visit https://creativecommons.org/licenses/by-nc-nd/4.0/ to view a copy of

this license. For any use beyond those covered by this license, obtain permission by

emailing info@vldb.org. Copyright is held by the owner/author(s). Publication rights

licensed to the VLDB Endowment.

Proceedings of the VLDB Endowment, Vol. 17, No. 11 ISSN 2150-8097.

doi:10.14778/3681954.3681975

𝑨

𝑷

𝑷

(a) An HIN (b) A motif (c) Schema

A

P

T V

pubInmention

writecite

(e) A maximal M-clique 𝐶!

𝒑𝟏

𝒑𝟐
𝒂𝟏

𝒂𝟐 𝒂𝟑

𝒂𝟒

𝒗𝟏𝒑𝟑

(f) A maximal M-clique 𝐶&

𝒑𝟏

𝒑𝟐𝒂𝟏

𝒂𝟐 𝒂𝟑

𝒂𝟒 𝒑𝟏 𝒂𝟑

𝒑𝟑𝒑𝟏

𝒑𝟐𝒂𝟏

𝒂𝟐

(d) An M-clique 𝐶

Figure 1: An example HIN of DBLP network.

1(a) illustrates an example HIN of the DBLP bibliographic network,

consisting of four authors (i.e., 𝑎1, · · · , 𝑎4), three papers (i.e., 𝑝1, 𝑝2,
𝑝3), and one venue (i.e., 𝑣1).

In this paper, we study the efficient solutions for the problem of

MaximalMotif-Clique Enumeration (or MMCE problem) over large

HINs [38, 46]. As a fundamental graph mining topic, maximal clique

enumeration (MCE) has gained tremendous attention [9, 14, 21–

23, 29, 58, 75], but little has been paid to MCE on HINs. Recently, the

MCE on HINs [38, 46] has been studied by using a motif to capture

the desired relationship in it. A motif, a.k.a. higher-order structure

or graphlet, is a small connected subgraph or pattern. As pointed

out by [19, 39, 56, 61, 62, 66, 77], a motif is a fundamental building

block of large and complex networks, and it enables “higher-order

semantics” analysis for HINs. Figure 1(b) depicts a triangle motif,

describing that an author writes two papers and one paper cites the

another one. The “higher-order semantics” is a widely-used concept

in graph mining [4, 51, 62, 89], indicating the complex multi-hop

relationships captured by a motif, instead of an edge with direct

connection. Given a motif, a motif-clique (M-clique) [38, 46] is a

“complete graph” for capturing the higher-order semantics in the

motif. Conceptually, the M-clique is a generalization of the classic

clique for HINs, representing a user’s defined patterns (motifs)

rather than edges; as such, it is a “complete subgraph” according to

themotif. For example, if amotifM is an edge linked by two vertices

of the same type, then the M-clique is a clique in a homogeneous

network; ifM is an edge linked by two vertices of different types,

then the M-clique actually is a biclique [1, 17] in a bipartite graph.

Given an HINH and a motifM, a vertex set 𝑅 is called an M-

clique, if for any subset 𝑇 of its vertices, that contains the same

2946

https://doi.org/10.14778/3681954.3681975
https://github.com/EnderturtleOrz/VLDB2024-Mclique
https://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:info@vldb.org
https://doi.org/10.14778/3681954.3681975
https://www.acm.org/publications/policies/artifact-review-and-badging-current
http://crossmark.crossref.org/dialog/?doi=10.14778%2F3681954.3681975&domain=pdf&date_stamp=2024-08-30

number of vertices and the same types of vertices asM, the in-

duced subgraph of 𝑇 is subgraph isomorphic toM. For example,

Figure 1(d) shows an M-clique𝐶 , since both subsets {𝑎1, 𝑝1, 𝑝2} and
{𝑎2, 𝑝1, 𝑝2} satisfy the above constrains. An M-clique is maximal

if it is not a subgraph of any other M-clique. Figures 1(e) and (f)

present two maximal M-cliques for the above motif in the HIN

of Figure 1(a). Similar to the classic maximal clique enumeration

(MCE) in homogeneous networks that has been applied to various

applications like social network analysis [45, 59], financial network

analysis [8], and biological network analysis[43], the MMCE on

HINs has also found many real-world applications, to name a few:

• Community discovery [38]. In social networks (e.g., Face-

book), the communities can be modeled as maximal M-cliques, by

using a specific motif as a guide. Our experiments in Section 7.4

show that the maximal M-cliques are effective for revealing commu-

nities in DBLP network. For example, given a motif that represents

two authors who have published the same papers, we can discover

the maximal M-cliques [38], which can be viewed as close-knit com-

munities, since all members have a close collaborative relationship.

• Bundle recommendation [12]. The MMCE solutions can

be used to enhance the performance of bundle recommendation

models, since a bundle can often be described by a motif. As shown

in our case study in Section 7.4, the MMCE algorithms can improve

the performance of SOTA bundle recommendation method BGCN
[12], by first finding maximal M-cliques of motifs of bundles and

then augmenting the networks of users, items, and bundles.

• Biological network analysis [46]. In a biological graph, the

maximal M-cliques can disclose new side effects of a drug, and

potential drugs for healing diseases. For example, in the HIN of dis-

eases, genes, and drugs, discovering the maximal M-cliques under

specified motifs (e.g., a drug node and a disease node linking to the

same gene node) could be used to study medicine characteristics

and find potential side effects of drugs [46].

While it is very useful, the MMCE problem is NP-hard [38]. Hu

et al. attempted to solve it by proposing a recursive backtracking

algorithm META [38] based on the Bron-Kerbosch (BK) algorithm

[9], which is a classic MCE algorithm for homogeneous graphs.

It first identifies all subgraphs to which the motif is isomorphic.

Here, the sets of vertices of these subgraphs are also called themotif
instances of the motif. Then, for each motif instance, it iteratively

enumerates all the maximal M-cliques that contain it by following

a node expansion process. However, META is very costly, because to

enumerate all the maximal M-cliques containing a specific motif

instance, it needs to explore all the possible M-cliques that contain

it. Besides, it treats checking whether each maximal M-clique has

been enumerated as a subset query problem, i.e., if the M-clique

𝑅 includes a motif instance Γ that is already visited, then the ex-

pansion of 𝑅 can be skipped. Although it can avoid outputting

duplicated maximal M-cliques, it is still inefficient since adding

each new vertex to an M-clique requires a subset query.

We notice that to avoid duplicated search and reduce the time

complexity of MCE, the previous algorithms of the classic MCE

problem often define a search order for the vertices [17, 24, 26, 29,

48, 54]. The main idea is that for each vertex 𝑣 , only its neighbors

with an order greater than 𝑣 need to be included in the enumeration

process, so the overall search space can be dramatically reduced.

However, the search order above cannot be directly applied to

MMCE problem either. This is because, unlikeMCE,MMCE needs to

iteratively find maximal M-cliques containing each motif instance,

rather than a single vertex, and defining an order for these motif

instances is not straightforward. Besides, the BK algorithm can be

significantly speeded up by exploiting the pivot principle [9, 29, 58,

75], whose key idea is that every maximal clique must contain either

a vertex 𝑝 or a non-neighbor of 𝑝 . Thus, during the MCE expansion

process, if a vertex 𝑝 (known as a pivot vertex) is selected, then all its

neighbors can be pruned in the current recursion, thus significantly

reducing search space. Unfortunately, we demonstrate that the

pivot principle cannot be directly applied to MMCE, because in

each recursion, the neighbors of a pivot vertex may form a larger

M-clique with the current M-clique, so it cannot be skipped.

Our technical contributions. To resolve the above issues, we

first propose a new elegant order-based framework that can in-

corporate different kinds of vertex orders. Under the order-based

framework, in the enumeration process, for each motif instance Γ,
we only take into account the larger-order vertices. Here, a larger-

order vertex is a vertex, if its order is higher than the maximum

order of vertices that are with the same type in Γ. By exploiting the

orders, the search space can be reduced dramatically.

We also design a novel pivot principle, called motif-pivot, which

is very different from the previous pivot principle. The key idea

of motif-pivot is that when a pivot vertex 𝑝 is selected, we first

identify a set I(𝑝) of vertices, called M-clique precedence set, for

reducing the search space. More precisely, in each recursion, any

M-clique in 𝑅∪I(𝑝) can be enlarged by 𝑝 . Since 𝑅∪I(𝑝) does not
contain any solutions, the enumeration algorithm can safely prune

the vertices in I(𝑝) from the candidate set, which contains all the

possible vertices that are in the maximal M-cliques. However, given

a pivot vertex 𝑝 , detecting the M-clique precedence set I(𝑝) is an
NP-hard problem, as we will prove later. To tackle this challenge, we

propose a fast algorithm to quickly identify an approximate subset

of I(𝑝). As shown in our experiments later, this approximate set is

very close to the original set, and it also can be quickly identified.

In addition, to further improve the efficiency, we introduce two

non-trivial optimization techniques. The first one is to quickly

identify the candidate set for each motif instance, and the second

one is a graph reduction approach for eliminating edges and vertices

that are not included in any maximal M-cliques.

By combining the above techniques together, we obtain a fast

Pivot andOrder-basedMMCEAlgorithm, also called POMA.We have

performed extensive efficiency evaluation on five real-world large

HINs. The results show that POMA achieves higher efficiency and

scalability than the state-of-the-art algorithm META on all datasets,

and is up to three orders of magnitude faster than META. We have

also conducted two case studies on real-world HINs which show

that enumerating maximal M-cliques could be useful in community

discovery and bundle recommendation.

Contributions. In summary, our main contributions are:

• We propose an elegant order-based search framework to

avoid duplicated computation;

• We develop a novel pivot principle to reduce the search

space which significantly speedups the process of MMCE;

• We propose non-trivial optimization techniques to quickly

identify the candidate set for each motif instance and locate

the subgraphs containing the maximal M-cliques.

• We conduct experiments on five real-world large HINs to

demonstrate the efficiency and scalability of our algorithm.

Outline.We formally present the MMCE problem in Section 2.

Section 3 analyzes the limitations of the state-of-the-art algorithm.

2947

The overall POMA algorithm and two optimizations are presented

in Section 4. The order-based and pivot-based of our POMA algo-

rithm are detailed in Sections 5 and 6, respectively. We report the

experimental results in Section 7. We review the related works in

Section 8 and conclude in Section 9. For lack of space, all the proofs

in this paper are included in the technical report [90].

2 PROBLEM DEFINITION
In this section, we formally present the definition ofMMCE problem.

Table 1 summarizes the notations frequently used in this paper.

Table 1: Notations and meanings.

Notation Meaning
H = (V ,

E,𝜓, 𝜙)
An HIN with vertex set V , edge set E, vertex type
mapping function𝜓 , edge type mapping function 𝜙

M = (VM ,

EM ,𝜓, 𝜙)
A motif with vertex set𝑉M , edge set EM , vertex type

mapping function𝜓 , edge type mapping function 𝜙

Γ A motif instance ofM in H
Φ All motif instances ofM in H

N(𝑣) The set of neighbors of 𝑣 in H: N(𝑣) = {𝑢 ∈ V |
(𝑢, 𝑣) ∈ E}

NM (𝑣)
The set of neighbors of 𝑣 inM: NM (𝑣) = {𝑢 ∈ VM |
(𝑢, 𝑣) ∈ EM }

Δ The number of motif instances ofM in H
D𝑅

𝑢 The set of vertices in 𝑅 dominated by 𝑢

H[𝑇] The subgraph of H induced by vertices set𝑇

ℎ The number of vertex types inM
P𝑅 The candidate pivot set of 𝑅

Definition 1 (HIN [73]). An HIN is an undirected graph 1 H =
(V , E,𝜓 , 𝜙) with a vertex type mapping function𝜓 : V → A, and
an edge type mapping function 𝜙 : E → R, where A is the set of
vertex types, R is the set of edge types, each vertex 𝑣 ∈ V belongs
to a vertex type𝜓 (𝑣) ∈ A, each edge 𝑒 ∈ E belongs to an edge type
𝜙 (𝑒) ∈ R, |A| ≥ 1, |R | ≥ 1, and |A| + |R| > 2.

An HIN often follows a schema, or a graph defined over vertex

types A and edge types R, denoted by 𝑇𝐺 = (A,R). The HIN

schema describes all allowable edge types between vertex types.

Figure 1(b) gives the HIN schema of DBLP network. We use ℎ = |A|
to denote the number of vertex types in A, and use A𝑖 to denote

the 𝑖-th vertex type in A. Denoted by N(𝑣) = {𝑢 ∈ V|(𝑢, 𝑣) ∈ E},
the set of neighbors of 𝑣 inH .

Given an HINH , a motif is a small connected HINM = (VM ,

EM ,𝜓, 𝜙). Notice that a valid motif must adhere to the constraints

imposed byH ’s schema, including adhering to vertex types defined

by the schema and ensuring that edges follow the vertex relation-

ships permitted by the schema. Denote by NM (𝑣) = {𝑢 ∈ VM |
(𝑢, 𝑣) ∈ EM }, a set of neighbors of 𝑣 inM. Since a motif is of-

ten small, it cannot capture the cohesive relationship among many

vertices. Thus, people are more interested in motif-based subgraphs.

Definition 2 (Subgraph isomorphism [63]). A motifM is sub-
graph isomorphic to an HINH , if there exists an injective mapping
𝜏 : VM → V , s.t., ∀𝑢 ∈ VM , 𝜓 (𝑢) = 𝜓 (𝜏 (𝑢)) and ∀𝑢, 𝑣 ∈ VM ,
if (𝑢, 𝑣) ∈ EM , then (𝜏 (𝑢), 𝜏 (𝑣)) ∈ E and 𝜙 (𝑢, 𝑣) = 𝜙 (𝜏 (𝑢), 𝜏 (𝑣)),
where 𝜏 (𝑢) is the vertex to which 𝑢 is mapped.

Clearly,M is subgraph isomorphic toH iffM is isomorphic to

a subgraph (not necessarily induced) ofH .

1
In this paper, we follow the [38] and focus on undirected HINs for simplicity, but our

techniques can be readily extended to handle the directed HINs.

Definition 3 (Type-matched vertex set [38]). Given an HIN
H and a motifM , a vertex set𝑇 ⊆ V is a type-matched vertex set of
M, if 𝑇 andM have the same number of vertices (i.e., |𝑇 | = |VM |),
and there exists a bijection 𝜏 :𝑇 →VM , s.t., ∀𝑢 ∈ 𝑇,𝜓 (𝑢) = 𝜓 (𝜏 (𝑢)).

In the case without ambiguity, we will simply use “match-set”

to denote “type-matched vertex set”. If a motif M is subgraph

isomorphic to the induced subgraph of a match-set 𝑇 , then 𝑇 is

called a motif instance ofM.

Definition 4 (Motif-cliqe [38, 46, 80]). Given an HINH and
a motifM, a vertex set 𝑅 is a motif-clique (M-clique), if for each
match-set𝑇 in 𝑅,M is subgraph isomorphic to the induced subgraph
H[𝑇].

AnM-clique 𝑅 is maximal if there does not exist any other vertex

set 𝑅′ inH such that 𝑅′ is an M-clique and 𝑅 ⊆ 𝑅′. Since a maximal

M-clique often contains an exponential number of small M-cliques,

enumerating all M-cliques will be extremely costly. Thus, we focus

on enumerating maximal M-cliques rather than all M-cliques. We

now formally present the definition of MMCE problem [38, 46].

Problem 1 (MMCE problem [38, 46]). Given an HINH and a
motifM, enumerate all the maximal M-cliques ofM inH .

Example 1. Consider the HIN and motif in Figure 1. There are
five match-sets ofM, i.e., 𝑇1 = {𝑎1, 𝑝1, 𝑝2}, 𝑇2 = {𝑎2, 𝑝1, 𝑝2}, · · · ,
𝑇5 = {𝑎3, 𝑝1, 𝑝2}. Clearly, all these match-sets are motif instances
ofM, because for each match-set 𝑇𝑖 ,M is subgraph isomorphic to
H[𝑇𝑖]. Then, we can find that there are two maximal M-cliques 𝑅1 =
{𝑎1, 𝑎2, 𝑎3, 𝑎4, 𝑝1, 𝑝2} and 𝑅2 = {𝑎3, 𝑝1, 𝑝2} in the HIN, as depicted in
Figures 1 (d) and (e) respectively.

3 EXISTING APPROACH
In this section, we review existing algorithm META [38] for solving

the MMCE problem, and then discuss its limitations.

3.1 The META algorithm
To solve the MMCE problem, Hu et al. [38] proposed a recursive

backtracking algorithm META based on the classic BK algorithm

[9], as shown in Algorithm 1. The main idea is to maintain three

disjoint sets 𝑅, 𝐶 , and 𝑋 in the recursive enumeration procedure,

where 𝑅 is an M-clique, 𝐶 is a set of candidates that can be added

to 𝑅 to form a larger M-clique, and 𝑋 is a set of vertices that have

already been explored from𝐶 . In each recursion, the three sets keep

the invariance that 𝑅 ∪ {𝑣} is an M-clique if 𝑣 ∈ 𝐶 ∪𝑋 , and 𝑅 ∪ {𝑣}
is not an M-clique if 𝑣 ∉ 𝐶 ∪𝑋 . The algorithm recursively processes

the vertices in 𝐶 to expand the current M-clique 𝑅, until 𝐶=∅.
In Algorithm 1, it first computes all the motif instances ofM

(line 1). Then, for each motif instance Γ, it invokes the procedure
GetMMC to enumerate all themaximalM-cliques that contain it (lines

2-5). GetMMC recursively processes each vertex 𝑢 ∈ 𝐶 to expand the

current M-clique 𝑅. In each iteration, it updates the sets 𝐶 and 𝑋

using function Refine to keep the invariance that 𝑅 ∪ {𝑢} is also
an M-clique when 𝑢 ∈ 𝐶′ ∪𝑋 ′ (lines 15-16). Afterwards, it removes

𝑢 from 𝐶 and adds it into 𝑋 (line 12). Finally, GetMMC stops when
all the vertices in 𝐶 are processed.

Lemma 3.1 ([38]). Given an HIN H with 𝑛 vertices and a motif
M, META costs𝑂 (𝛾 +𝛼𝑛!) time, where 𝛾 and 𝛼 denote the time cost of
finding all motif instances ofM inH and checking whether a vertex
can enlarge the current M-clique, respectively.

2948

Algorithm 1: META (H ,M) [38]

input :An HIN H and a motifM
output :All the maximal M-cliques ofM in H

1 Φ← compute all motif instances ofM in H ;

2 foreach Γ ∈ Φ do
3 Γ′ ← {𝑢 |𝑢 ∈ V\Γ ∧ N(𝑢) ∩ Γ ≠ ∅};
4 𝐶 ← Refine(Γ, Γ′) ;
5 GetMMC(Γ,𝐶, ∅) ;
6 Function GetMMC(𝑅,𝐶 , 𝑋):
7 if 𝐶 ∪𝑋 = ∅ then report 𝑅 as a maximal M-clique;

8 foreach 𝑢 ∈ 𝐶 do
9 𝐶′ ← Refine(𝑅 ∪ {𝑢},𝐶) ;

10 𝑋 ′ ← Refine(𝑅 ∪ {𝑢}, 𝑋) ;
11 GetMMC(𝑅 ∪ {𝑢},𝐶′, 𝑋 ′) ;
12 𝑋 ← 𝑋 ∪ {𝑢};

13 Function Refine(𝑅,𝐶):
14 𝐶′ ← ∅;
15 foreach 𝑢 ∈ 𝐶 do
16 if 𝑅 ∪ {𝑢} is an M-clique then𝐶′ ← 𝐶′ ∪ {𝑢};
17 return𝐶′

Lemma 3.2 ([38]). Given an HIN H and a motifM, META costs
𝑂 (Δ) space where Δ is the number of motif instances ofM inH .

Note that verifying whether a vertex can be added to an existing

M-clique to generate a larger one is also NP-hard [38]. To alleviate

this issue, Hu et al. [38] proposed a pruning criterion by introducing

the concept of dominance relationships among vertices.

Definition 5 (Dominance [38]). Given an HINH , an M-clique
𝑅 and two vertices 𝑢 ∈ V\𝑅 and 𝑣 ∈ 𝑅 with 𝜓 (𝑢) = 𝜓 (𝑣), 𝑣 is
dominated by 𝑢 if (N (𝑣) ∩ 𝑅) ⊆ (N (𝑢) ∩ 𝑅).

LetD𝑅
𝑣 denote the set of vertices in 𝑅 dominated by 𝑣 . As proved

in [38], if 1 + |D𝑅
𝑣 | > 𝑡 , where 𝑡 denotes the number of vertices in

M with type𝜓 (𝑣), we can directly append 𝑣 from 𝐶 to 𝑅 without

performing any additional checks.

In this case, for any match-set 𝑇 ⊆ 𝑅 ∪ {𝑢} containing 𝑢, 𝑇 ∪
{𝑣} \ {𝑢}, i.e., replacing 𝑢 with any 𝑣 ∈ D𝑅

𝑢 , is a motif instance,

which means𝑇 is also a motif instance. Besides, Hu et al. presented

an early stop strategy and set-trie structure to avoid redundant

searches. For lack of space, we omit the details.

𝑨

𝑷

𝑷

(a) An HIN (b) A motif

𝑷

𝑷

𝑷

𝑨

𝑨

𝑨

𝑷

𝑷

𝒑𝟒

𝒑𝟓𝒑𝟏

𝒂𝟏

𝒑𝟑

𝒑𝟏

𝒂𝟐

𝒂𝟑

(a) An HIN

𝑷𝑷

𝑷𝑨 𝑨

𝑨

𝑷 𝑷

𝒑𝟒 𝒑𝟓

𝒑𝟏

𝒂𝟏 𝒂𝟐

𝒂𝟑

𝒑𝟑

𝒑𝟐
𝑨

𝑷

𝑷

(b) A motif

Figure 2: An example illustration the limitations of META.

3.2 Limitations of META
A major limitation of META is that to find a maximal M-clique, it

has to explore all the possible non-maximal M-cliques contained

by it, which is very costly. For motif instance, consider the HIN

(shown in the shaded region), and motif in Figure 2. To enumerate

all maximal M-cliques containing the motif instance Γ = {𝑎1, 𝑝1, 𝑝2},
META has to explore a total number of seven M-cliques, which re-

spectively include the (2
3
–1) subsets of {𝑎2, 𝑎3, 𝑝3}, but there is

only one maximal M-clique containing Γ. Meanwhile, when a new

vertex is added into 𝑅 to expand the current M-clique, META needs

to check if this M-clique is already checked (i.e., before line 10 in

Algorithm 1), which is also time-consuming. Our later experiments

show that META is very inefficient for processing large HINs (e.g.,

on a DBLP dataset with two million edges, it cannot enumerate all

the maximal M-cliques for 100 motifs within 30 days). Hence, there

is much room for improvement.

Opportunities: The most of the existing MCE algorithms [17,

24, 26, 29, 48, 54] utilize a fixed total search order to ensure that

each maximal clique is enumerated only once, which dramatically

shrinks the search space and also reduces the time complexity. The

key idea is that for each vertex 𝑣 , only its neighbors with an order

greater than 𝑣 need to be included in the enumeration process.

However, the search order above cannot be directly applied to

the MMCE problem either. This is because, unlike MCE, MMCE

needs to iteratively find maximal M-cliques containing each motif

instance, rather than a single vertex. Hence, defining an order for

these motif instances is not easy.

Besides, the pivot principle has been widely used to accelerate

MCE [9, 29, 75]. The key idea is that any maximal clique of a graph

either contains a vertex 𝑣 or a non-neighbor of 𝑣 . In other words,
the clique containing only the neighbors of 𝑣 must not be a maximal
clique, because 𝑣 can be added into it to form a larger one. Thus, if a
vertex 𝑣 in𝐶∪𝑋 , called a pivot vertex, is selected, then all neighbors

of 𝑣 ∈ 𝐶 can be skipped to expand the current clique 𝑅, thus signifi-

cantly reducing the number of recursive calls. Unfortunately, the

pivot principle cannot be directly applied to the MMCE problem,

since the key property for maximal cliques above does not hold

for maximal M-cliques — the maximal M-clique may not contain
𝑣 but only contains its neighbor. Reconsider the HIN and motif in

Figure 2, for example, the vertex set {𝑎1, 𝑝1, 𝑝2, 𝑝4} is an M-clique.

It does not contain vertex 𝑝5 but only contains one of its neighbor

𝑝4, since {𝑎1, 𝑝4, 𝑝5} is not a motif instance of the motif.

Inspired by the discussions above, we develop a novel Pivot and
Order-basedMMCE Algorithm POMA in the following sections.

4 OUR POMA ALGORITHM
In this section, we first give an overview of our POMA algorithm,

and then introduce the two optimization techniques.

4.1 Overview of POMA
Algorithm 2 gives an overview of POMAwhich sequentially performs

the following five steps:

(1) Removing vertices and edges that cannot be included in any

M-cliques by reduceHIN from the HIN (see Section 4.2);

(2) Computing all motif instances of motifM in the HIN by

using a subgraph isomorphism algorithm (e.g., VF3 [11]);

(3) Identifying candidate sets by selectCand (see Section 4.3);

(4) For each motif instance Γ, imposing an order constraint to

reduce the redundant computation (see Section 5);

(5) For each motif instance Γ, finding all the maximal M-cliques

containing it recursively with motif-pivot principle (see

Section 6);

Next, we present the algorithms for Steps (1) and (3) in Sections

4.2 and 4.3 respectively. The two key techniques of ordering strategy

and pivot principle in Steps (4) and (5) will be discussed in Sections 5

and 6 respectively. In Step (2), any subgraph isomorphism algorithm

can be used and we use the SOTA algorithm VF3 [11].

2949

Algorithm 2: POMA(H ,M)

input :An HIN H and a motifM
output :All maximal M-cliques ofM in H

1 H ← reduceHIN(H,M) ; // See Section 4.2

2 Φ← compute all motif instances ofM in H;

3 𝜆 ← sort the vertices by an ordering strategy;

4 C ← selectCand(H,Φ) ; // See Section 4.3

5 foreach Γ ∈ Φ do
6 𝐶,𝑋 ← Order-Divide(C[Γ], Γ, 𝜆) ; // See Section 5

7 MP-MMC(Γ,𝐶,𝑋) ; // See Section 6

4.2 Graph reduction
We introduce two reduction rules to eliminate some vertices and

edges that cannot be included in any M-cliques.

• Rule 1. For each vertex 𝑣 ∈ V , if there does not exist a vertex

𝑣 ′ ∈ VM such that 𝜓 (𝑣) = 𝜓 (𝑣 ′), then we can remove 𝑣 from H
directly, since it is not included in any M-clique.

Similarly, for each edge 𝑒 ∈ E, if there does not exist an edge

𝑒′ ∈ EM such that 𝜙 (𝑒) = 𝜙 (𝑒′), then we can remove 𝑒 from H
directly.

Next, we present two definitions before introducing Rule 2.

Definition 6 (Motif orbit [51]). Given a motifM, two vertices
𝑢, 𝑣 ∈ VM are in the same orbit, if there is an automorphismmapping
𝜏 :VM →VM with 𝜏 (𝑢)= 𝑣 .

Note that if vertex 𝑢 is in the same orbit as vertex 𝑣 , and 𝑣 is in

the same orbit as vertex 𝑥 , then 𝑢 and 𝑥 must be in the same orbit.

Definition 7 (Orbit type). Given a motifM, a vertex type 𝛾 is
said to be an orbit type, ifM contains either a single vertex of type 𝛾
or all vertices of type 𝛾 belong to the same orbit.

Note that for any two vertices 𝑥,𝑦 of the same orbit type in the

motif, we can assert that the neighbors of 𝑥 and 𝑦 have the same

number of vertices of each type inM. Otherwise, 𝑥 and 𝑦 cannot

be on the same orbit, which contradicts our assumption.

A

P

P

PA

A

P

P A

A

(a) A motif (b) A motif

𝒂𝟏

𝒑𝟏

𝒑𝟐
𝒂𝟏𝒑𝟑

𝒂𝟐 𝒂𝟑 𝒂𝟐

𝒑𝟏

𝒑𝟐

Figure 3: Illustration of the orbit type.

Example 2. In the motifM1 of Figure 3, “author” is an orbit type,
since there exists an automorphism mapping 𝜏 : VM1

→VM1
with

𝜏 (𝑎1) = 𝑎2, 𝜏 (𝑝1) = 𝑝3, and 𝜏 (𝑝2) = 𝑝2. However, “paper” is not an
orbit type, because 𝑝2 has a larger degree than 𝑝1 and 𝑝3.

• Rule 2. Given two vertices 𝑣 ∈ V , 𝑥 ∈ VM , where 𝜓 (𝑣) =
𝜓 (𝑥) and 𝜓 (𝑥) is an orbit type in the motifM, if there exists a

vertex type 𝛾 such that

|{𝑢 ∈ N (𝑣) | 𝜓 (𝑢) = 𝛾}| < |𝑦 ∈ NM (𝑥) | 𝜓 (𝑦) = 𝛾}|, (1)

then we can remove 𝑣 from H because it is not included in any

maximal M-clique.

By combining the aforementioned two rules, when a motifM
is specified, we can locate the maximal M-cliques ofM in a small

subgraph of H by iteratively removing vertices and edges that

violate the above rules fromH . We refer to this graph reduction

algorithm as reduceHIN and provide the details in the technical

report [90].

4.3 Fast candidate set calculation
To compute new candidates, we can use the dominance relationship

between two vertices to significantly boost efficiency. Nonetheless,

when 𝑅 = Γ, the number of vertices that can be dominated by ver-

tices in 𝑅 is quite limited. Consequently, the process of determining

the candidate set 𝐶 for a motif instance Γ remains computationally

intensive. Recall that each vertex 𝑢 in the candidate set satisfies

that Γ ∪ {𝑢} forms an M-clique. To solve this computational bottle-

neck, we propose a novel algorithm that effectively computes the

candidates set for all motif instances in polynomial time. Before

introducing our algorithm, we give the following definition.

Definition 8 (motif instance Neighbor). Given an HINH , a
motifM, and two motif instances Γ1, Γ2 ofM, Γ1 and Γ2 are motif
instance neighbor if |Γ1\Γ2 | = 1, and Γ1 ∪ Γ2 is also an M-clique ofM.
Let S[Γ] denote the set of motif instance neighbors of Γ.

Lemma 4.1 shows how to identify the candidate set.

Lemma 4.1. Given a motif instance Γ ofM, the candidate set 𝐶 of
Γ can be identified by gathering the different vertices from all motif
instance neighbors of Γ using the following equation:

𝐶 =
⋃︂

Γ𝑖 ∈S[Γ]
{Γ𝑖\Γ} (2)

According to Lemma 4.1, we can directly compute the candidate

set for a motif instance Γ by identifying its motif instance neighbors.

The following three steps outline the process: (1) compute a motif

instances set T [Γ], s.t., ∀𝑇 ∈ T [Γ], |𝑇 \Γ | = 1; (2) for each motif

instance 𝑇 ∈ T [Γ], denoting 𝑢 = 𝑇 \Γ, if all match-sets in Γ ∪ {𝑢}
containing 𝑢 are also motif instances ofM, 𝑇 is a motif instance

neighbor of Γ; (3) the candidate set for Γ is computed based on

Lemma 4.1. The detailed steps are illustrated in Algorithm 3.

Algorithm 3: selectCand(H ,Φ)

input :An HIN H and a motif instance set Φ of motifM
output :The candidate sets for all motif instances in Φ

1 C ← ∅ ; // The candidate sets

2 foreach Γ ∈ Φ do
3 T[Γ] ← {𝑇 | (|𝑇 \Γ | = 1) ∧𝑇 ∈ Φ};
4 foreach𝑇 ∈ T[Γ] do
5 𝑢 ← 𝑇 \Γ;
6 Y ← all match-sets in Γ ∪𝑢 that contain 𝑢;

7 if all match-sets in Y are within T[Γ] then
8 S[Γ] ← S[Γ] ∪𝑇 ; // motif instance neighbors

9 C[Γ] ← ⋃︁
Γ𝑖 ∈S[Γ]

{Γ𝑖\Γ};

10 return C;

We first initialize C=∅ and use it to save the candidate sets (line

1). Then, we compute the candidate set for each motif instance Γ in

Φ one by one. Specifically, for each motif instance Γ, we compute

a motif instance set T [Γ] (line 3). Next, for each motif instance

𝑇 ∈ T [Γ], we denote 𝑢 = {𝑇 \Γ}, and then, we calculate all match-

sets, denoted as Y, that are formed by adding 𝑢 into Γ. If all these
match-sets inY are also motif instances ofM,𝑇 is a motif instance

neighbor of Γ (lines 5-8). Afterward, we can compute the candidate

set of Γ (line 9). Finally, after iterating all motif instances in Φ, we
stop and return C (line 10).

Example 3. Reconsider the HIN (depicted in the shaded region),
and motif in Figure 2, taking Γ = {𝑎1, 𝑝1, 𝑝2} as an example. There

2950

are four motif instances that only have a one-vertex difference from
Γ, namely Γ1 = {𝑎1, 𝑝1, 𝑝3}, Γ2 = {𝑎1, 𝑝2, 𝑝3}, Γ3 = {𝑎2, 𝑝1, 𝑝2}, and
Γ4 = {𝑎3, 𝑝1, 𝑝2}, that differ from Γ by only one vertex. Therefore, we
have T [Γ] = {Γ1, Γ2, Γ3, Γ4}. For the motif instance Γ1 ∈ T , we can
compute Y = {{𝑎1, 𝑝1, 𝑝3}, {𝑎1, 𝑝2, 𝑝3}}. Notably, all match-sets in
Y are also motif instances ofM (i.e., Γ1, and Γ2). Hence, Γ1 is a motif
instance neighbor of Γ. After scanning all motif instances in T [Γ],we
can identify all the motif instance neighbors of Γ, represented as S[Γ]
= {Γ1, Γ2, Γ3, Γ4}. Therefore, we can compute the candidate set for Γ,
C[Γ] = {𝑎2, 𝑎3, 𝑝3}.

Theorem 4.2. Algorithm 3 correctly computes the candidate sets
for all motif instances ofM.

Proof sketch. For any 𝑌 ∈ T [Γ], let 𝑢 = (𝑌\Γ). Then, all
match-sets in Γ∪{𝑢} are also motif instances ofM, since Γ∪{𝑢} is
an M-clique. Hence, any 𝑌 ∈ T [Γ] and all motif instance neighbors

of Γ can be computed by Algorithm 3. □

Lemma 4.3. The total time cost of selectCand is𝑂 (|V| ·Δ), where
Δ is the number of motif instances ofM inH .

Proof sketch. In the worst case, for each motif instance Γ ∈ Φ,
we need𝑂 (|V| · |VM |) time to compute its motif instance neighbor,

where |VM | is the number of vertices in the motif, which can be

considered as a constant in practice. □

In addition, we summarize the time, and space complexities of

each step of META and POMA, and the limitations of POMA in our

technical report [90].

5 AN ORDER-BASED SEARCH FRAMEWORK
In this section, we introduce a novel ordering technology that can

be used to avoid the duplicate enumeration of maximal M-cliques.

5.1 Our order-based search framework
The main idea of the order-based search framework in the MCE

problem is that for each vertex 𝑣 , only its neighbors with an order

greater than 𝑣 need to be included in the enumeration process,

so the overall search space can be dramatically reduced, where

degree order [48, 81, 87] and degeneracy order [13, 17, 24] are com-

monly used orders. While order-based techniques for improving the

performance of MCE have been well studied, their utilization for

accelerating the MMCE process remains unexplored. Unfortunately,

those vertex order techniques cannot be directly applied to MMCE,

because MMCE needs to iteratively enumerate maximal M-cliques

containing each motif instance, rather than a single vertex. Hence,

it is desired to design a new order-based search framework for the

MMCE problem.

(a) An HIN (b) A motif (c) A maximal M-clique R1 (d) A maximal M-clique R2

𝑷

𝑷

𝑷

𝑨

𝑨

𝒂𝟏 𝒑𝟑

𝒑𝟐𝒑𝟏

𝒂𝟐
1

2

35

4

𝑷𝑷

𝑨 𝑷

𝑷

𝑷

𝑨𝒂𝟏 𝒑𝟑

𝒑𝟐𝒑𝟏 𝑷

𝑷

𝑨

𝑨𝒂𝟐 𝒑𝟐

𝒑𝟏𝒂𝟏

Figure 4: Illustrating the limitations of existing orders.

• A failed attempt. The key challenge in designing an order-

based search framework lies in determining how to compare the

order of vertices in a motif instance with that of a vertex in its candi-

date set. The initial idea is to use either the maximum or minimum

order value of all the vertices within a motif instance to denote

its order. However, both methods have inherent limitations. We

illustrate the limitations via Figure 4, where the order of each vertex

is displayed below it in red, and there are four motif instances in

the graph, i.e., Γ1 = {𝑎1, 𝑝1, 𝑝2}, Γ2 = {𝑎1, 𝑝2, 𝑝3}, Γ3 = {𝑎1, 𝑝1, 𝑝3},
and Γ4 = {𝑎2, 𝑝1, 𝑝2}.

(1) If the maximum order is adopted, some maximal M-cliques
will be missed. Assume that we first detect all maximal M-

cliques containing Γ1, with 𝐶 = {𝑎2, 𝑝3} and the maximum

vertex order of Γ1 is 5. As all vertices in 𝐶 have orders less

than 5, 𝑅1 cannot be obtained. Similarly, in the process of

detecting the maximal M-cliques containing other motif

instances, such as Γ2, Γ3, and Γ4, 𝑅1 remains undiscovered.

(2) Using the minimum order will lead to redundant computa-
tions. When we detect maximal M-cliques containing Γ1,
and Γ1 has an order of 2, the candidate set𝐶 is {𝑝3}. As a re-
sult, 𝑅1 will be enumerated. Similarly, when detecting max-

imal M-cliques containing Γ3, 𝑅1 will also be enumerated.

Hence, the advantages of the order-based search strategy

will not be fully utilized.

• A new search framework. To ensure each maximal M-clique

is enumerated only once, we introduce a novel order-based search

framework. The main idea of our new search framework is that for

each motif instance Γ ofM, we only consider larger-order vertices

in the candidate set of Γ. Here, a larger-order vertex is a vertex, if
its order is higher than the maximum order of the vertices in ΛΓ
with the same type. Let ΛΓ [·] denote the maximum order of the

vertices in each vertex type in Γ:

ΛΓ [𝛾] = max{𝜆(𝑢) |𝑢 ∈ Γ ∧𝜓 (𝑢) = 𝛾}, (3)

where 𝛾 is a vertex type in Γ. Consequently, no result will be missed

and each maximal M-clique is enumerated only once, which will

be proved in Section 5.3. Based on the above analysis, we develop

a new order-divide algorithm using any given vertex order, called

Order-Divide, in Algorithm 4.

Algorithm 4: Order-Divide (𝐶, Γ, 𝜆)
input :A candidate set𝐶 , a motif instance Γ, and a vertex order 𝜆

output :A new candidate set𝐶′ and not set 𝑋

1 ΛΓ [·] ← ∅;
2 foreach 𝑣 ∈ Γ do
3 ΛΓ [𝜓 (𝑣)] ← max{𝜆 (𝑢) |𝑢 ∈ Γ ∧𝜓 (𝑢) = 𝜓 (𝑣) };
4 𝐶′ ← {𝑢 |𝑢 ∈ 𝐶 ∧ 𝜆 (𝑢) > ΛΓ [𝜓 (𝑢)] };
5 𝑋 ← {𝑢 |𝑢 ∈ 𝐶 ∧ 𝜆 (𝑢) < ΛΓ [𝜓 (𝑢)] };
6 return𝐶′ and 𝑋 ;

Specifically, we first compute the maximum order of the vertices

for each vertex type in a motif instance Γ (lines 2-3). Next, we divide
the candidate set 𝐶 into the new candidate set 𝐶′ and the not set 𝑋

by only considering the larger-order vertices in𝐶 (lines 4-5). Finally,

the new sets 𝐶′ and 𝑋 are returned (line 6).

Example 4. Reconsider the HIN and the motif instances in Figure
4 with Γ1 = {𝑎1, 𝑝1, 𝑝2}, Γ2 = {𝑎1, 𝑝2, 𝑝3}, Γ3 = {𝑎1, 𝑝1, 𝑝3}, and
Γ4 = {𝑎2, 𝑝1, 𝑝2}. Taking Γ3 = {𝑎1, 𝑝1, 𝑝3} as an example, we have
ΛΓ3 [𝐴] = 5 and ΛΓ3 [𝑃] = 3, where 5 represents the order of 𝑎1 (i.e.,
𝜆(𝑎1) = 5) and 3 represents themaximum value of 𝜆(𝑝1) and 𝜆(𝑝3). By
running Algorithm 4, we get 𝐶 = {𝑎2, 𝑝2}, 𝐶′ = {𝑝2}, and 𝑋 = {𝑎2}
for Γ3. The detailed information is provided in Table 2.

2951

Table 2: Illustrating the Order-Divide.

Motif instances ΛΓ𝑖 [·] 𝐶 𝐶′ 𝑋

Γ1={𝑎1, 𝑝1, 𝑝2} [5, 4] {𝑎2, 𝑝3} ∅ {𝑎2, 𝑝3}
Γ2={𝑎1, 𝑝2, 𝑝3} [5, 4] {𝑎2, 𝑝1} ∅ {𝑎2, 𝑝1}
Γ3={𝑎1, 𝑝1, 𝑝3} [5, 3] {𝑎2, 𝑝2} {𝑝2} {𝑎2}
Γ4={𝑎2, 𝑝1, 𝑝2} [1, 4] {𝑎1} {𝑎1} ∅

5.2 Ordering heuristics
As shown in Algorithm 4, different vertex orders may have signifi-

cant effect on the efficiency of MMCE. However, finding the optimal

order is an NP-hard problem [26], so in the literature, some heuris-

tic orders have been proposed, such as degree order and degeneracy

order, which are described as follows:

•Degree order. The degree order [48, 81, 87] is the simplest one,

where the vertices are arranged in ascending order based on their

degrees. By using the degree order, the size of the largest candidate

set is no larger than the maximum degree.

• Degeneracy order. Another simple yet efficient ordering is

to use the degeneracy order [24, 29], which is widely used in MCE

algorithms. Such an order can be obtained by repeatedly peeling a

vertex of the minimum degree in the remaining subgraph, where

the vertex removing order is exactly the degeneracy order. Such a

peeling procedure can be done in 𝑂 (𝑚 + 𝑛), where𝑚 and 𝑛 denote

the number of edges and vertices in the graph, respectively. In the

HIN, we can obtain a degeneracy order by ignoring the vertex and

edge types and running classic core decomposition algorithm [3].

Since the degeneracy order is theoretically better than the degree

order [29], so we employ it in this paper.

5.3 Theoretical correctness analysis for POMA
Lemma 5.1. For each motif instance Γ of M, Algorithm 2 can

enumerate all the maximal M-cliques containing it without missing
any results.

Proof sketch. Suppose there exists a maximal M-clique 𝑅 con-

taining Γ that cannot be enumerated. We can construct a new motif

instance Γ′ by selecting vertices of each type with the minimum

order from 𝑅, and then 𝑅 can be enumerated by the recursive enu-

meration starting from Γ′, which contradicts our assumption. □

Lemma 5.2. Algorithm 2 ensures that each maximal M-clique will
only be enumerated exactly once.

Proof sketch. Proof this by contradiction, supposing a maxi-

mal M-clique 𝑅 can be enumerated twice by two motif instances Γ1
and Γ2. However, whether ΛΓ1 is dominated by ΛΓ2 or not, 𝑅 cannot

be enumerated twice. □

Lemma 5.3. The total time cost of POMA is 𝑂 (𝛾 + 𝛼Δ2𝛽), where
𝛽 = ℎ × 𝛿 , 𝛿 is the degeneracy number of the input HIN, ℎ is the
number of vertex types in the input motif, Δ is the number of motif
instance ofM inH , and the other variables have the same meanings
as those in Lemma 3.1.

Proof sketch. In the worst-case scenario, each motif instance

Γ necessitates the consideration of up to 2
𝛽
branches in Algorithm

2. For each branch, we need 𝑂 (𝛼) time to check whether a vertex

can expand to the M-clique. □

Discussions. Although our ordering framework shares some

general purpose with those of classic MCE algorithms [29, 58, 75],

it significantly differs from them in three aspects:

• Order definitions: In MCE algorithms, the order is defined

based on comparing vertices, while in POMA, the order is de-
fined based on comparing both vertices and motif instances.

• Order-based pruning strategies: In MCE, when enumerating

the maximal cliques containing a vertex 𝑣 , only the neigh-

bours of 𝑣 with larger orders than 𝑣 need to be considered.

In contrast, in POMA, we find maximal M-cliques containing

each motif instance, rather than a single vertex, so we only

consider “larger-order” vertices. Here, a larger-order vertex

is a vertex whose order is higher than the maximum order

of the vertices with the same type in this motif instance.

• Correctness proofs. In MCE problem, the correctness is ev-

ident as each maximal clique can be enumerated starting

from the vertex with the smallest order in this clique. How-

ever, for MMCE problem, we need to theoretically prove

Lemma 5.1 and 5.2 to confirm the correctness.

Lemma 5.4. Given an HIN H and a motifM, POMA costs 𝑂 (Δ)
space, where Δ is the number of motif instance ofM inH .

Proof sketch. In the process of enumerating all maximal M-

cliques, all the motif instances would be stored in the memory. □

6 PIVOT-BASED ENUMERATION
TECHNIQUES

As discussed in Section 3, the classical pivot principle cannot be

directly applied to the MMCE problem. In this section, we present

a novel pivot principle for accelerating the MMCE process.

6.1 The motif-pivot principle
Recall that in the MCE on homogeneous graphs, we can just use

the neighbors of the pivot to find the vertices that can be pruned.

However, in our MMCE, pruning neighbors from the candidate set

is not correct. To figure out the vertices to prune, we introduce the

concept of M-clique precedence.

Definition 9 (M-cliqe precedence ≺). Given an HIN H , a
motifM, an M-clique 𝑅, a candidate set𝐶 of vertices, and two vertices
𝑢, 𝑣 ∈ 𝐶 , 𝑣 has M-clique precedence over 𝑢, denoted by 𝑣 ≺ 𝑢, if the
following conditions are met:

• 𝑅 ∪ {𝑢} is an M-clique due to 𝑢 ∈ 𝐶 , and 𝑅 ∪ {𝑢, 𝑣} is also
an M-clique;

• if there exists an edge (𝑥,𝑦) ∈ EM satisfying𝜓 (𝑥) = 𝜓 (𝑢) ∧
𝜓 (𝑦) = 𝜓 (𝑣), we have (𝑢, 𝑣) ∈ E.

Let I(𝑢) denote the set of vertices in𝐶 that have M-clique prece-

dence over 𝑢, i.e., I(𝑢)={𝑣 ∈ 𝐶 |𝑣 ≺ 𝑢,𝑢 ∈ 𝐶}. In each recursion of

MMCE, the pivot vertex 𝑝 should be able to enlarge the M-cliques

formed in 𝑅 ∪ I(𝑝), which will be further explained in Lemma 6.1.

To ensure this, we introduce the concept of candidate pivot set.

Definition 10 (Candidate pivot set). Given an HINH , a motif
M, and an M-clique 𝑅, we define P𝑅 as a candidate pivot set of 𝑅 if,
for every vertex 𝑣 in P𝑅 , the condition 1 + |D𝑅

𝑣 | > 𝑡 holds, where D𝑅
𝑣

denotes the set of vertices in 𝑅 dominated by 𝑣 , and 𝑡 represents the
number of vertices inM with type𝜓 (𝑣).

It is noted that P𝑅 can be empty, indicating that we cannot prune

any search space in this case. However, in practice, the case when

2952

P𝑅 = ∅ is not common, and as shown in our experiments, the pivot

technique can significantly avoid redundant computation. Based

on the definitions above, we give the following lemma:

Lemma 6.1. For anyM-clique 𝑅 and a vertex𝑢 in P𝑅 , any maximal
M-clique 𝑅′ ⊇ 𝑅 must include either 𝑢 or one of the vertices that are
not M-clique precedence over 𝑢, as otherwise, 𝑅′ could be enlarged by
adding 𝑢.

Proof sketch. We assume that a maximal M-clique 𝑅′ does not
contain vertex 𝑢 or any vertices that are not M-clique precedence

over 𝑢. In other words, 𝑅′ satisfies 𝑅 ⊆ 𝑅′ ⊆ 𝑅 ∪ I(𝑢). Then,
𝑅′ ∪ {𝑢} is also an M-clique, since we each match-set𝑇 in 𝑅′ ∪ {𝑢}
containing 𝑢 is also a motif instance. □

Next, based on Lemma 6.1, we formally introduce our motif-pivot

principle. Given a maximal M-clique, there are only two cases: it

either contains the pivot vertex 𝑝 or one of the vertices not in I(𝑝).
If an M-clique does not contain 𝑝 , then it can only be enlarged by

vertices from 𝐶\I(𝑝). In this situation, the algorithm can safely

prune vertices in I(𝑝) from 𝐶 .

6.2 Efficiently approximating I(𝑝)
Based on the discussion above, for each pivot vertex 𝑝 , we need

to compute its M-clique precedence set I(𝑝). However, as stated
in [38], determining whether a vertex can be incorporated into

an existing M-clique to form a larger one is an NP-hard problem.

Consequently, computing I(𝑝) is also an NP-hard problem, and

it is not feasible to directly obtain. Luckily, we can quickly find

a subset of I(𝑝) via the dominance relationship. However, this

only allows a limited number of vertices to be included in I(𝑝).
To better approximate I(𝑝), we propose additional conditions to
include more vertices in I(𝑝) in the following lemma.

Lemma 6.2 (Approximating I(𝑝)). Given an HINH , a motifM,
an M-clique 𝑅 and a pivot vertex 𝑝 , a vertex 𝑣 in 𝐶 that satisfies at
least one of the following conditions is M-clique precedence over 𝑝 :

• Condition 1. 1 + |D𝑅∪{𝑝 }
𝑣 | > 𝑡 .

• Condition 2. 𝜓 (𝑝) = 𝜓 (𝑣), and there is only one vertex in
M with type𝜓 (𝑝).

• Condition 3. Let 𝐿 = {𝑥 |𝑥 ∈ 𝑅′ ∧ 𝜓 (𝑥) = 𝜓 (𝑣)}, and(︃ ⋃︁
𝑥∈𝐿
(N (𝑥) ∩ 𝑅′)

)︃
⊆ (N (𝑣) ∩ 𝑅′), where 𝑅′ = 𝑅 ∪ {𝑝};

Proof sketch. The Condition 1 is guaranteed by Lemma 6.4 in

[38]. For Condition 2, since all new match-sets will contain 𝑣 but

not 𝑝 , and 𝑅 ∪ {𝑣} is an M-clique, 𝑅 ∪ {𝑝, 𝑣} is an M-clique. For

Condition 3, whether the match-set 𝑇 in 𝑅′ ∪ {𝑣} includes 𝑣 but
not 𝑝 , or both 𝑝 and 𝑣 , 𝑇 is a motif instance. □

The above lemma can be easily incorporated into our pivot prin-

ciple, as discussed in Section 6.1. Specifically, in each recursive call,

for the current M-clique 𝑅, the algorithm first selects a pivot vertex

𝑝 from the P𝑅 . To compute I(𝑝), we applied Lemma 6.2 to quickly

detect an approximated subset of P(𝑝) without subgraph isomor-

phism checking. The following example illustrates that Lemma 6.2

can better approximate I(𝑝) than the dominance relationship.

Example 5. Consider the HIN and motif in Figure 2. Assume that
𝑅 = {𝑎1, 𝑝1, 𝑝2},𝐶 = {𝑎2, 𝑎3, 𝑝3, 𝑝4, 𝑝5}, and 𝑝 = 𝑎2. Here, we need to
compute I(𝑝). However, if we only rely on the dominance relationship
(i.e., Condition 1 of Lemma 6.2), none of the vertices in 𝐶 satisfy this

𝑹 = 𝒂𝟏, 𝒑𝟏, 𝒑𝟐

𝑪 = 𝒂𝟐, 𝒂𝟑, 𝒑𝟑, 𝒑𝟒, 𝒑𝟓 𝑿 = ∅

𝑹 = 𝒂𝟏, 𝒂𝟐, 𝒑𝟏, 𝒑𝟐
𝑪 = 𝒂𝟑, 𝒑𝟑 𝑿 = ∅

𝑹 = 𝒂𝟏, 𝒂𝟐, 𝒂𝟑, 𝒑𝟏, 𝒑𝟐
𝑪 = 𝒑𝟑 𝑿 = ∅

𝑹 = 𝒂𝟏, 𝒑𝟏, 𝒑𝟐, 𝒑𝟒
𝑪 = ∅ 𝑿 = ∅

𝑹 = 𝒂𝟏, 𝒂𝟐, 𝒂𝟑, 𝒑𝟏 , 𝒑𝟐, 𝒑𝟑

𝑪 = ∅ 𝑿 = ∅

⚫ pivot vertices
⚫ pruning vertices

𝑹 = 𝒂𝟏, 𝒑𝟏, 𝒑𝟐, 𝒑𝟓
𝑪 = {𝒂𝟑} 𝑿 = ∅

⚫ maximal M-cliques

𝑹 = 𝒂𝟏, 𝒂𝟑, 𝒑𝟏, 𝒑𝟐, 𝒑𝟓
𝑪 = ∅ 𝑿 = ∅

Figure 5: An enumeration tree for the HIN in Figure 2.

condition. According to Condition 2, 𝑎3 can be appended into I(𝑝),
since there is only one author in the motif. In addition, based on
Condition 3, 𝑝3 can also be added to I(𝑝), as the neighbors of 𝑝1 and
𝑝2 are also neighbors of 𝑝3.

To compute Γ(𝑝) exactly, we need to check whether a vertex 𝑣

can expand an M-clique via VF3, which invokes a subgraph iso-

morphism algorithm. There is no constant factor approximation

algorithm for it [63]. Our approximation algorithm can quickly de-

tect a subset of Γ(𝑝), which costs𝑂 (𝑛 ·𝑑𝑚𝑎𝑥) time to check whether

a vertex can be added into Γ(𝑝), while the exact algorithm requires

𝑂 (𝑛!) time in the worst case. Besides, the approximate I(𝑢) can
also be used to efficiently update𝐶 and𝑋 . Specifically, in Algorithm

1, after adding vertex 𝑢 into 𝑅, we can compute the I(𝑢) based on

Lemma 6.2. Then, the vertices in I(𝑢) ∩𝐶 and I(𝑢) ∩𝑋 can safely

be added to 𝐶′ and 𝑋 ′, respectively, without any extra checks.

6.3 A pivot-based enumeration algorithm
In this subsection, we develop a pivot-based enumeration algorithm,

called MP-MMC, that fully integrates the proposed motif-pivot prin-

ciple, as shown in Algorithm 5. Specifically, we first compute the

candidate pivot set P𝑅 of 𝑅, and then select a pivot vertex from P𝑅
(lines 3-4). Note that if P𝑅 has multiple vertices, we select the one

with the maximum degree as the pivot vertex. Next, we compute

the M-clique precedence set I(𝑝) based on the Lemma 6.2 (lines

5-8). Then, we iterate over the vertices in 𝐶\I(𝑝) to expand the

current M-clique 𝑅 (lines 9-13). Example 6 further illustrates how

MP-MMC reduces redundant computation.

Algorithm 5: MP-MMC (𝑅, 𝐶 , 𝑋)

input :An HIN H and a motifM
output :All maximal M-cliques ofM in H

1 if 𝐶 ∪𝑋 = ∅ then report 𝑅 as a maximal M-clique;

2 P𝑅 ← compute the candidate pivot set of 𝑅;

3 𝑝 ← select a pivot vertex from P𝑅 ;
4 𝑅′ ← 𝑅 ∪ {𝑝 };
5 foreach 𝑢 ∈ 𝐶 do
6 if ∃(𝑥, 𝑦) ∈ EM ,𝜓 (𝑥) = 𝜓 (𝑝),𝜓 (𝑦) = 𝜓 (𝑢) then
7 if (𝑝,𝑢) ∉ E then continue ;

8 if Lemma 6.2 is satisfied then I(𝑝) ← I(𝑝) ∪ {𝑢} ;
9 foreach 𝑢 ∈ 𝐶\I (𝑝) do
10 𝐶′ ← Refine(𝑅 ∪𝑢,𝐶) ;
11 𝑋 ′ ← Refine(𝑅 ∪𝑢,𝑋) ;
12 MP-MMC(𝑅 ∪𝑢,𝐶′, 𝑋 ′) ;
13 𝑋 ← 𝑋 ∪ {𝑢};

2953

Example 6. Given an HINH and a motifM in Figure 2, assume
that Γ = {𝑎1, 𝑝1, 𝑝2}. The initial parameters of MP-MMC are 𝑅 =

{𝑎1, 𝑝2, 𝑝2}, 𝐶 = {𝑎2, 𝑎3, 𝑝3, 𝑝4, 𝑝5}, and 𝑋 = ∅ respectively. Assume
that the pivot vertex of MP-MMC is 𝑎2 (marked in blue in Figure 5).
Then, {𝑎3, 𝑝3} (marked in orange in Figure 5) can be pruned from
𝐶 , as all the vertices are M-clique precedence over 𝑎2. By our pivot
technique, only vertices in {𝑎2, 𝑝4, 𝑝5} are used to expand the current
M-clique 𝑅. When 𝑅 is expanded with the vertex 𝑎2, the candidate set
is updated to {𝑎3, 𝑝3}, which will be checked in the next recursive call.
In the next recursion, suppose the selected pivot vertex is 𝑎3. Then, 𝑝3
can be pruned from 𝐶 . Thus, the algorithm only picks 𝑎3 to expand
𝑅. The procedure continues until all vertices in 𝐶 of the top recursion
have been processed. The enumeration tree is shown in Figure 5.

textbfDiscussions. Our motif-pivot principle is different from

the pivot strategies of existing MCE methods [9, 29, 58, 75] in two

aspects:

• Pivot-based pruning strategies: In MCE algorithms, when

a pivot 𝑝 is selected, the neighbours of 𝑝 can be pruned

from 𝐶 . However, in MMCE, such a pruning set no longer

exists since a maximal M-clique may not contain the pivot

𝑝 , but only contain its neighbours. Thus, we introduce the

M-clique precedence relationship, then use the M-clique

precedence set of 𝑝 , I(𝑝), as the pruning set, and finally

propose an efficient algorithm to quickly approximate I(𝑝).
• Pivot selection processes. In existing MCE algorithms, the

pivot vertex is directly selected from the candidate set or

not set. However, in MMCE problem, for an M-clique 𝑅, we

can only select the pivot vertex from the candidate pivot

set of 𝑅. In Lemma 6.1, we theoretically prove that when a

pivot vertex 𝑝 is selected, the M-cliques in 𝑅 ∪ I(𝑝) can be

enlarged by 𝑝 .

7 EXPERIMENTS
We now present the experimental results. Section 7.1 discusses the

setup. We discuss the efficiency results in Sections 7.2 and 7.3. We

present the two case studies in Section 7.4.

7.1 Setup
Datasets. We use five real HINs: Instacart2 [38], WordNet3 [72],
DBLP4 [31], DBpedia5 [88], and Freebase6 [88]. Their statistics, in-
cluding the numbers of vertices, edges, vertex types, edge types,

and the degeneracy values 𝛿 , are reported in Table 3. Instacart is
a co-purchasing network, where each product has a type show-

ing its category (e.g., "personal care" and "beverages"), and each

edge between two products means they have been purchased to-

gether more than 200 times. WordNet is a large lexical database,
where nouns, verbs, adjectives and adverbs are grouped into sets of

cognitive synonyms (synsets), each expressing a distinct concept.

DBLP includes publication records in computer science areas, and

the vertex types are authors, papers, venues and topics. DBpedia
contains the data extracted from wikipedia infoboxes using the

mapping-based extraction. Freebase contains all the entities and
relations in the music domain.

2
https://www.instacart.com/datasets/grocery-shopping-2017

3
https://wordnet.princeton.edu/

4
https://www.aminer.cn/citation

5
https://wiki.dbpedia.org/Datasets

6
http://freebase-easy.cs.uni-freiburg.de/dump/

Table 3: Datasets used in our experiments.

Dataset Vertices Edges Vertex
types

Edge
types 𝛿 Motifs

Instacart 49,688 12,770 21 237 30 100

WordNet 76,853 240,798 5 25 10 100

DBLP 881,039 2,247,195 4 7 14 100

DBpedia 8,970,120 71,403,844 414 79,397 52 100

Freebase 347,463,729 1,110,001,528 10, 801 620,307 168 100

Queries. For each dataset, to generate a motif, we perform a

random walk on the data graph to obtain a connected subgraph,

following the approach in [7, 72]. For evaluation purposes, we

generate five motif sets for each dataset, which contain 100 motifs

with 3, 4, 5, 6, and 7 vertices respectively, in line with the range

of motif sizes (from 3 to 7) typically encountered in various real-

world applications [34, 56, 84, 89]. The default motif size is 4. The

structures of motifs used in our paper are shown in our technical

report [90]. For example, a motif with two users liking the same

genre of movie or item shows value for recommendation purposes,

and it can be found in both DBpedia and Freebase [57, 79, 91].

We implement all the algorithms in C++ with STL used and run

experiments on a machine having an Intel(R) Xeon(R) Gold 6338R

2.0GHz CPU and 512GB of memory, with Ubuntu installed. If an

algorithm cannot finish in 30 days, we mark its runtime as INF.

7.2 Overall efficiency results
In this section, we compare the efficiency of POMA and META.

1. Effect of motif sizes. Figure 6 compares the efficiency of

these two algorithms by varying motif sizes. Clearly, POMA is up

to three orders of magnitude faster than META, because it not only
ensures that a maximal M-clique will not be enumerated multi-

ple times but also dramatically reduces the search space, while

META includes numerous redundant computation. Besides, as motif

size becomes larger, the running time of all algorithms generally

increases, since a larger motif means checking subgraph isomor-

phism is more time-consuming. POMA, on average, only requires a

few tens of seconds to enumerate all maximal M-cliques for motifs

with three vertices. In addition, on the largest two datasets, META
could not complete its run for any motif within one month.

2. Scalability test. For each HIN, we first randomly select 20%,

40%, 60%, 80%, and 100% of its edges and then obtain five sub-HINs

induced by these edges, respectively. We then report the average

efficiency of POMA and META on these sub-HINs in Figure 7. The time

costs of both POMA and META scale almost exponentially with the

number of vertices in the graph, but the growth rate of the curve

of POMA is smaller, so POMA exhibits better scalability and META.
3. Comparing the search space of META and POMA. To measure

the size of search space, we count the total number of branches that

need to be enumerated by META and POMA (i.e., the number of nodes

in the recursive tree), we use “N/A” to denote that the algorithm

could not be finished within one month. Figure 8 shows the results

on five datasets. Clearly, POMA is more effective for reducing the

search space than META, thus achieving higher efficiency.

4. Comparing the space usage of META and POMA. We examine

the memory usage of META and POMA on all datasets with motif size

4, reporting their results in Figure 9. The META and POMA have the
same space complexity𝑂 (Δ), where Δ denotes the number of motif

instances. Nevertheless, in practice, POMA usually takes slightly

more memory than META, since it adapts a string hash operation

in the selectCand step. This is an optimization technique at the

2954

3 4 5 6 7

10
0

10
1

10
2

10
3

10
4

motif size

ti
m
e
(s
)

META POMA

(a) Instacart

3 4 5 6 7
10

1

10
2

10
3

10
4

motif size
ti
m
e
(s
)

META POMA

(b) WordNet

3 4 5 6 7

10
2

10
3

10
4

10
5

INF

motif size

ti
m
e
(s
)

META POMA

(c) DBLP

3 4 5 6 7

10
2

10
3

10
4

10
5

INF

motif size

ti
m
e
(s
)

META POMA

(d) DBpedia

3 4 5 6 7

10
2

10
3

10
4

10
5

INF

motif size

ti
m
e
(s
)

META POMA

(e) Freebase

Figure 6: Efficiency results of MMCE algorithms.

20% 40% 60% 80% 100%

10
−2

10
−1
10

0

10
1

10
2

10
3

percentage

ti
m
e
(s
)

META POMA

10
2

10
3

10
4

10
5

10
6

#
of

m
ot
if
in
st
an

ce
s

of motif instances

(a) Instacart

20% 40% 60% 80% 100%
10
−3

10
−2

10
−1
10

0

10
1

10
2

10
3

10
4

percentage

META POMA

10
1

10
2

10
3

10
4

of motif instances

(b) WordNet

20% 40% 60% 80% 100%

10
0

10
1

10
2

10
3

10
4

10
5

percentage

META POMA

10
2

10
3

10
4

10
5

10
6

10
7

of motif instances

(c) DBLP

20% 40% 60% 80% 100%

10
0

10
2

10
4

INF

percentage

META POMA

10
2

10
3

10
4

10
5

10
6

of motif instances

(d) DBpedia

20% 40% 60% 80% 100%

10
0

10
2

10
4

INF

percentage

META POMA

10
2

10
3

10
4

10
5

10
6

10
7

of motif instances

(e) Freebase

Figure 7: Scalability test for MMCE algorithms.

In
sta

ca
rt

W
or
dN

et

DB
LP

DB
pe
di
a

Fr
ee
ba
se

10
5

10
6

10
7

10
8

datasets

#
of

br
an

ch
es

META POMA

N
/A

N
/A

Figure 8: Search space.

In
sta

ca
rt

W
or
dN

et

DB
LP

DB
pe
di
a

Fr
ee
ba
se

10
1

10
2

10
3

10
4

datasets

Sp
ac
e
(M

B
)

META POMA

N
/A

N
/A

Figure 9: Memory usage.

implementation level, which will increase the constant size of the

space required by POMA, but will not increase its space complexity.

7.3 Detailed analysis of POMA
We extensively evaluate and analyze POMA from different angles.

1. Time cost of different steps in POMA. Recall that POMA se-

quentially performs the following five steps: (1) reducing the orig-

inal HIN (reduceHIN), (2) computing all the motif instances (VF3

[11]), (3) identifying the candidate sets selectCand, (4) dividing
the candidate sets and not vertex sets Order-Divide, and (5) per-

forming the recursive search (MP-MMC). Figure 10 shows the time

cost of these five steps (assuming the graph has been loaded into

memory) on five datasets. We see that MP-MMC is the most compu-

tationally expensive step on all datasets. On DBpedia and Freebase

datasets, the time cost of reduceHIN is significantly larger than

that on other datasets. This is because these two datasets contain a

much larger number of vertex types, allowing more vertices to be

pruned since each motif includes a limited number of diverse vertex

types. Besides, running the VF3 algorithm and Order-Divide only

account for a relatively small portion of the total time during the

execution of POMA, so we should focus on optimizing other steps.

2. Ablation study. To evaluate the effect of four key steps, we

design four variants by adding reduceHIN, selectCand, ordering
framework, and motif-pivot into META, which are denoted by

META+R, META+C, META+O, and META+P respectively. We then run

META and these variants on all datasets and report the efficiency

results in Figure 11. We can see that POMA significantly outperforms

the baseline META and the other variants. Moreover, these four

variants are faster than META, further substantiating the efficacy of

our four proposed techniques, especially on larger HINs. We also

design other four variants by removing the four key steps above

from POMA, and report their results in our technical report [90].

3. Effect of graph reduction technique. We present the av-

erage numbers of vertices and edges before and after the graph

reduction for different motifs across all datasets. Clearly, our graph

reduction method can substantially reduce the size of the original

HIN. The details are shown in our technical report [90].

4. Effect of different vertex ordering strategies. In this ex-

periment, we consider two widely used vertex orders: degree order

and degeneracy order. Clearly, both orders significantly outperform

the case without vertex ordering, and the degeneracy order usually

achieves better performance, and results are shown in [90].

5. Efficiency of the I(𝑝) approximation algorithm. To show
the efficiency of the I(𝑝) approximation algorithm, we denote the

POMA that does not employ the algorithm proposed in Section 6.2

as POMA∗. Then, we report the sum running time and the number

of pruning vertices of POMA and POMA∗ on all datasets in Table 4.

It is noted that if the algorithm cannot finish within three days,

we mark its running time as ≥ 259,200s. Clearly, POMA significantly

outperforms POMA∗ on larger HINs, as it obviates the need for sub-

graph isomorphism checking. More specifically, on the two largest

datasets (DBpedia and Freebase), POMA∗ cannot finish within three

days. Besides, from a theoretical perspective, POMA can only prune

a subset of vertices that are pruned by POMA∗. However, in practice,

we observe that POMA can prune nearly the same number of vertices

as POMA∗, which underscores the practical effectiveness of POMA.

Table 4: Comparing different pivot techniques.

Dataset Instacart WordNet DBLP DBpedia Freebase

POMA∗ 1,804.5s 1,877.1s 6,262.3s ≥ 259,200s ≥ 259,200s

POMA 136.2s 827.1s 4,117.9s 4,866.3s 12,097.8s

Speedup 13.2 × 14.4 × 1.5 × ≥ 53 × ≥ 21.4 ×
POMA∗ 36.5 117.0 6.37 − −
POMA 35.6 117.0 6.37 161.8 50.0

ratio 97.5 % 100.0 % 100.0 % − −
6. The parallel version of POMA. Recall that in POMA, we need to

enumerate the maximal M-cliques containing each motif instance,

so the enumeration for all the motif instances can be performed

2955

0 20 40 60 80 100

Instacart

WordNet

DBLP

DBpedia

Freebase

Time proportion (%)
reduceHIN VF3 selectCand Order-Divide MP-MMC

Figure 10: Proportion of the time cost of
each step in POMA.

Instacart WordNet DBLP DBpedia Freebase

10
1

10
2

10
3

10
4

INF

datasets

ti
m
e
(s
)

META META+R META+C META+O META+P POMA

Figure 11: Efficiency comparison of MMCE algorithms.

Instacart WordNet DBLP DBpedia Freebase

1 2 4 8 16
10

0

10
1

10
2

10
3

number of threads

ti
m
e
(s
)

(a) Efficiency of POMA

1 2 4 8 16

10
0

10
1

10
2

10
3

number of threads

ti
m
e
(s
)

(b) Efficiency of MP-MMC in POMA

Figure 12: Effect of the number of threads.

Table 5: Actual running time of 𝛾 and 𝛼 .

Instacart WordNet DBLP DBpedia Freebase
𝛾 0.15 s 0.19 s 46.13 s 19.48 s 6.52 s

𝛼 3.25 us 6.34 us 3.24 us 1.03 us 0.17 us

in parallel. Specifically, we have implemented a parallel version

of POMA by paralleling the MP-MCC step, denoted by POMA-Par, in
which each thread is scheduled for enumerating the maximal M-

cliques containing a specific motif instance. Figure 12(a) shows

the time cost of the five steps of POMA and POMA-Par, and Figure

12(b) only shows the running time of MP-MMC step, by varying the

number of threads from 1 to 16 across all datasets. Clearly, with

an increasing number of threads, the overall runtime of POMA-Par
exhibits a reduction, and if MP-MCC takes up a large portion of the

whole running time, POMA-Par shows a strong parallel scalability.
For example, onWordNet dataset, using 16 threads allows POMA-Par
to achieve self-speedups of 13 times.

7. Statistical of the hyper-parameters. We mainly use five

parameters, i.e., 𝛾 , 𝛼 , Δ, 𝛿 , and 𝛽 . For 𝛾 and 𝛼 , they denote the time

costs of computing all motif instances and checking whether a

vertex can expand to M-clique respectively. Table 5 reports their

actual running time costs. ForΔ, 𝛿 , and 𝛽 , they represent the average
number of motif instances in the HIN, the degeneracy value of the

graph, and the degeneracy multiplying the number of vertex types,

respectively. The values of 𝛿 are included in Table 3. We report

the values of Δ in Figure 7, which range from a few to two million.

We observe that the running time of META and POMA on all datasets

is proportional to the motif instance numbers since we need to

enumerate the maximal M-cliques for each motif instance, which

is aligned with our complexity analysis in Section 5.3.

7.4 Case studies
In this section, we present two case studies on real-world HINs.

Table 6: Community quality analysis on Instacart.

Method Diameter
Similarity

Babies Household Breakfast Frozen

R-com 3.45 0.15 0.22 0.22 0.19

POMA 2.01 0.45 0.53 0.49 0.42

(1) Community detection. As the SOTA method of HIN com-

munity detection, R-com [42] takes input from a set of relational

constraints which can be regarded as a motif, and finds communi-

ties with multiple vertex types. In this experiment, we compare the

quality of communities detected by POMA and R-com on Instacart

and DBLP datasets. The Specifically, we first randomly select 20

motifs with each having 4 vertices. Then, for each motif, we run

POMA to detect the corresponding maximal M-cliques, and R-com
to get the communities to adhere to the relation constraints in the

motif. Finally, we compare the quality of communities in terms

of community member similarity and closeness of communities,

which are used for measuring community quality [30, 40, 42]. For

the former one, we compute the Jaccard similarity for different

types of vertices by following the method in [42]; for the latter

one, we compute the diameter by following the method in [31, 40].

As shown in Table 6, we observe that the communities of POMA
achieve both higher similarity values and smaller diameters than

those of R-com on Instacart dataset. The results on DBLP dataset

are shown in our technical report [90]. Thus, POMA is able to detect

communities with higher quality.

Table 7: Statistics of datasets for bundle recommendation.

Dataset

of vertices # of edges

#User (U) #Item (I) #Bundle (B) #U-I #U-B

Netease 18,528 123,628 22,864 1,128,065 302,303

Youshu 8,039 32,770 4,771 138,515 51,377

Table 8: The Recall@K values on BGCN and BGCN-M.

Dataset Method Recall@10 Recall@20 Recall@30 Recall@40

Netease
BGCN 0.0369 0.0642 0.0845 0.1013

BGCN-M 0.0391 0.0650 0.0863 0.1033

Youshu
BGCN 0.1596 0.2410 0.2984 0.3416

BGCN-M 0.1600 0.2463 0.3018 0.3453

Table 9: The NDCG@K values on BGCN and BGCN-M.

Dataset Method NDCG@10 NDCG@20 NDCG@30 NDCG@40

Netease
BGCN 0.0202 0.0274 0.0321 0.0356

BGCN-M 0.0209 0.0278 0.0327 0.0362

Youshu
BGCN 0.0934 0.1165 0.1303 0.1398

BGCN-M 0.0955 0.1198 0.1331 0.1427

2956

(2) Bundle recommendation. Our proposed algorithm POMA can
be used to enhance the performance of the SOTA bundle recom-

mendation method BGCN, which aims to recommend a bundle of

items to a single user [10, 12, 37]. BGCN [12] trains a Graph Neural

Networks (GNN)-based recommendation model using three net-

works, including the user-bundle interaction network, user-item

interaction network, and bundle-item affiliation network, and then

predict whether a user will interact with a certain bundle. However,

due to exposure bias and item diversity imbalance [15, 83], the

bundle-item affiliation network cannot capture the precise relation-

ships between bundles and items, which may cause some items to

be overlooked and not considered for the bundle, leading to sparse

connections between bundles and items.

To alleviate the sparsity issue above, we propose to detect the

maximal M-cliques from the network of items, and then use these

maximal M-cliques to argument the bundle-item affiliation network,

thereby enhancing the performance of BGCN. Specifically, we first
build a co-purchasing network between items, where each edge

between two items means they have been purchased together more

than 5 times. Then, we use POMA to enumerate maximal M-cliques

by using motifs formed by items in the bundles. Next, in the bundle-

item affiliation network, we link items in the same maximal M-

cliques to their respective bundles. Finally, we run BGCN on the

augmented networks, and denote this approach by BGCN-M.
We have compared BGCN and BGCN-M on two real-world datasets,

i.e., Netease and Youshu, whose statistics are shown in Table 7.

The former one was collected [10] from the largest music platform

7
in China, which enables users to bundle songs with a specific

theme, while the latter one was collected by [18] from Youshu plat-

form, a Chinese book review site
8
, where each bundle is a list of

books selected by some users. We use Recall@K and NDCG@K

[37, 83] to judge the performance of the ranking list, where Re-

call@K measures the ratio of test bundles that have been contained

by the top-K ranking list, while NDCG@K complements Recall

by assigning higher scores to the hits at higher positions of the

list. As shown in Tables 8 and 9, BGCN-M significantly outperforms

BGCN in terms of Recall@K and NDCG@K. This is because it uses

maximal M-cliques to augment the bundle-item affiliation network,

which alleviates the sparsity issue by more precisely capturing the

relationships between bundles and items.

8 RELATEDWORKS
This section mainly reviews the existing works of maximal clique

enumeration (MCE) in both homogeneous and heterogeneous graphs.

•MCE in homogeneous graphs. As a fundamental problem

for graph data analysis, the MCE problem has garnered plenty of

research attention. The well-known solutions to the MCE prob-

lem are the classic BK algorithm [9] and its pivot-based variants

[9, 29, 58, 75]. The BK algorithm [9], proposed by Bron and Kerbosch

in 1973, enumerates maximal cliques in a recursive backtracking

manner. Tomita et al. [75] showed that the time overhead to the

MCE problem is optimal in the worst case using their pivot tech-

nique. Eppstein et al. [29] further derived a tighter worst-case time

complexity for MCE based on the degeneracy order [52]. Naudé et

al. [58] revised the pivot algorithm by refining the pivot selection

process. Besides, the I/O efficient algorithms [21, 22], distributed

algorithms [86], parallel [27, 67] algorithms, and output-sensitive

7
https://music.163.com

8
http://www.yousuu.com

algorithms [14, 23, 55] have also been developed for the MCE prob-

lem. In addition, many variants of the MCE problem have been

formulated for different types of homogeneous graphs, such as

temporal [78], signed [20, 49], uncertain networks [24, 50], and

efficient solutions have also been studied.

• MCE in heterogeneous graphs. Generally, the heteroge-

neous graphs can be classified as bipartite graphs and other general

HINs [30]. On bipartite graphs, the problem of maximal bi-clique

enumeration (MBCE) has received much attention. David Eppstein

[28] developed a linear MBCE algorithm for any graph of bounded

arboricity. In [65], the MBCE problem is solved by exhaustively list-

ing subsets of vertices in one layer, subsequently identifying vertices

in the other layer as their common neighbors, and then identifying

the bicliques. Li et al. [47] applied efficient algorithms for mining

closed patterns to the MBCE problem. Zhang et al. [93] proposed an

algorithm iMBEA by fusing backtracking with a branch-and-bound

framework. Recently, several approaches [1, 17] have employed

the pivot principle to speed up the MBCE, and a special case of

the MBCE problem, called maximum biclique search, has attracted

much attention [16, 54, 68]. Besides, MCE on multi-partite graphs

has also been studied [60]. For general HINs, Hu et al. [38] intro-

duced the concept of motif-clique and proposed the META algorithm
for the MMCE problem. However, META cannot efficiently process

large HINs, calling for a faster solution.

In addition, many other works also find maximal solutions, such

as maximal frequent itemset [5, 6, 33, 35, 36, 76], maximal indepen-

dent set [32, 44, 53, 74, 85], maximal 𝑘-plex [2, 25, 41, 82], etc.

9 CONCLUSIONS
In this paper, we investigate the problem of efficient maximal motif-

clique enumeration (MMCE) over large HINs. The existing MMCE

algorithm, following the classic BK algorithm, which explores all

the possible subgraphs of a maximal motif-clique (M-clique) and

checks whether each maximal M-clique has been enumerated at

each recursive step, is very time-consuming. To improve the ef-

ficiency of MMCE, we introduce an order-based framework and

propose a pivot-based pruning strategy. We further propose a series

of optimization techniques. Our experimental results on five real

large HINs show that our algorithm achieves up to three orders of

magnitude faster than the state-of-the-art algorithm. In the future,

we will develop a more generic definition of M-clique, that can

incorporate various kinds of graph isomorphism, such as subgraph

monomorphism [64], supergraph isomorphism [69], and graph ho-

momorphism [63]. We will also study how to efficiently enumerate

maximal M-cliques efficiently on large dynamic HINs since many

real-world HINs are evolving over time.

ACKNOWLEDGMENTS
This workwas supported in part by NSFC under Grant 62102341 and

62302421, Guangdong Talent Program under Grant 2021QN02X826,

and Shenzhen Science and Technology Program under Grants

JCYJ20220530143602006 and ZDSYS 20211021111415025. This work

was supported by Guangdong Provincial Key Laboratory of Mathe-

matical Foundations for Artificial Intelligence (2023B1212010001),

and Hong Kong RGC grants No. GRF/12201923 and CRF/C2003-23Y.

This work was also supported by Basic and Applied Basic Research

Fund in Guangdong Province under Grant 2023A1515011280, and

the Guangdong Provincial Key Laboratory of Big Data Computing,

The Chinese University of Hong Kong, Shenzhen.

2957

https://music.163.com
http://www.yousuu.com

REFERENCES
[1] Aman Abidi, Rui Zhou, Lu Chen, and Chengfei Liu. 2020. Pivot-based Maximal

Biclique Enumeration.. In IJCAI. 3558–3564.
[2] Balabhaskar Balasundaram, Sergiy Butenko, and Illya V Hicks. 2011. Clique

relaxations in social network analysis: The maximum k-plex problem. Operations
Research 59, 1 (2011), 133–142.

[3] Vladimir Batagelj and Matjaz Zaversnik. 2003. An o (m) algorithm for cores

decomposition of networks. arXiv preprint cs/0310049 (2003).
[4] Christoph Benzmüller, Chad E Brown, and Michael Kohlhase. 2004. Higher-

order semantics and extensionality. The Journal of Symbolic Logic 69, 4 (2004),
1027–1088.

[5] Thomas Bernecker, Reynold Cheng, David W Cheung, Hans-Peter Kriegel,

Sau Dan Lee, Matthias Renz, Florian Verhein, Liang Wang, and Andreas Zue-

fle. 2013. Model-based probabilistic frequent itemset mining. Knowledge and
Information Systems 37 (2013), 181–217.

[6] Thomas Bernecker, Hans-Peter Kriegel, Matthias Renz, Florian Verhein, and An-

dreas Zuefle. 2009. Probabilistic frequent itemset mining in uncertain databases.

In Proceedings of the 15th ACM SIGKDD international conference on Knowledge
discovery and data mining. 119–128.

[7] Fei Bi, Lijun Chang, Xuemin Lin, Lu Qin, and Wenjie Zhang. 2016. Efficient

subgraph matching by postponing cartesian products. In Proceedings of the 2016
International Conference on Management of Data. 1199–1214.

[8] Vladimir Boginski, Sergiy Butenko, and Panos M Pardalos. 2005. Statistical

analysis of financial networks. Computational statistics & data analysis 48, 2
(2005), 431–443.

[9] Coenraad Bron and Joep Kerbosch. 1973. Finding all cliques of an undirected

graph (algorithm 457). Commun. ACM 16, 9 (1973), 575–576.

[10] Da Cao, Liqiang Nie, Xiangnan He, Xiaochi Wei, Shunzhi Zhu, and Tat-Seng

Chua. 2017. Embedding factorization models for jointly recommending items and

user generated lists. In Proceedings of the 40th international ACM SIGIR conference
on research and development in information retrieval. 585–594.

[11] Vincenzo Carletti, Pasquale Foggia, Alessia Saggese, and Mario Vento. 2017.

Challenging the time complexity of exact subgraph isomorphism for huge and

dense graphs with VF3. IEEE transactions on pattern analysis and machine
intelligence 40, 4 (2017), 804–818.

[12] Jianxin Chang, Chen Gao, Xiangnan He, Depeng Jin, and Yong Li. 2020. Bundle

recommendation with graph convolutional networks. In Proceedings of the 43rd
international ACM SIGIR conference on Research and development in Information
Retrieval. 1673–1676.

[13] Lijun Chang. 2019. Efficient maximum clique computation over large sparse

graphs. In Proceedings of the 25th ACM SIGKDD International Conference on
Knowledge Discovery & Data Mining. 529–538.

[14] Lijun Chang, Jeffrey Xu Yu, and Lu Qin. 2013. Fast maximal cliques enumeration

in sparse graphs. Algorithmica 66 (2013), 173–186.
[15] Jiawei Chen, Hande Dong, Xiang Wang, Fuli Feng, Meng Wang, and Xiangnan

He. 2023. Bias and debias in recommender system: A survey and future directions.

ACM Transactions on Information Systems 41, 3 (2023), 1–39.
[16] Lu Chen, Chengfei Liu, Rui Zhou, Jiajie Xu, and Jianxin Li. 2021. Efficient

exact algorithms for maximum balanced biclique search in bipartite graphs. In

Proceedings of the 2021 International Conference on Management of Data. 248–260.
[17] Lu Chen, Chengfei Liu, Rui Zhou, Jiajie Xu, and Jianxin Li. 2022. Efficient maximal

biclique enumeration for large sparse bipartite graphs. Proceedings of the VLDB
Endowment 15, 8 (2022), 1559–1571.

[18] Liang Chen, Yang Liu, Xiangnan He, Lianli Gao, and Zibin Zheng. 2019. Matching

user with item set: Collaborative bundle recommendation with deep attention

network.. In IJCAI. 2095–2101.
[19] Xiaowei Chen, Yongkun Li, Pinghui Wang, and John CS Lui. 2016. A General

Framework for Estimating Graphlet Statistics via Random Walk. Proceedings of
the VLDB Endowment 10, 3 (2016).

[20] Zi Chen, Long Yuan, Xuemin Lin, Lu Qin, and Jianye Yang. 2020. Efficient

maximal balanced clique enumeration in signed networks. In Proceedings of The
Web Conference 2020. 339–349.

[21] James Cheng, Yiping Ke, AdaWai-Chee Fu, Jeffrey Xu Yu, and Linhong Zhu. 2011.

Finding maximal cliques in massive networks. ACM Transactions on Database
Systems (TODS) 36, 4 (2011), 1–34.

[22] James Cheng, Linhong Zhu, Yiping Ke, and Shumo Chu. 2012. Fast algorithms

for maximal clique enumeration with limited memory. In Proceedings of the 18th
ACM SIGKDD international conference on Knowledge discovery and data mining.
1240–1248.

[23] Alessio Conte, Roberto Grossi, Andrea Marino, and Luca Versari. 2016. Sublinear-

space bounded-delay enumeration for massive network analytics: Maximal

cliques. In 43rd International Colloquium on Automata, Languages, and Program-
ming (ICALP 2016). Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik.

[24] Qiangqiang Dai, Rong-Hua Li, Meihao Liao, Hongzhi Chen, and Guoren Wang.

2022. Fast maximal clique enumeration on uncertain graphs: A pivot-based

approach. In Proceedings of the 2022 International Conference on Management of
Data. 2034–2047.

[25] Qiangqiang Dai, Rong-Hua Li, Hongchao Qin, Meihao Liao, and Guoren Wang.

2022. Scaling Up Maximal k-plex Enumeration. In Proceedings of the 31st ACM
International Conference on Information & Knowledge Management. 345–354.

[26] Maximilien Danisch, Oana Balalau, and Mauro Sozio. 2018. Listing k-cliques in

sparse real-world graphs. In Proceedings of the 2018 World Wide Web Conference.

589–598.

[27] Apurba Das, Seyed-Vahid Sanei-Mehri, and Srikanta Tirthapura. 2018. Shared-

memory parallel maximal clique enumeration. In 2018 IEEE 25th International
Conference on High Performance Computing (HiPC). IEEE, 62–71.

[28] David Eppstein. 1994. Arboricity and bipartite subgraph listing algorithms.

Information processing letters 51, 4 (1994), 207–211.
[29] David Eppstein, Maarten Löffler, and Darren Strash. 2013. Listing all maximal

cliques in large sparse real-world graphs. Journal of Experimental Algorithmics
(JEA) 18 (2013), 3–1.

[30] Yixiang Fang, Xin Huang, Lu Qin, Ying Zhang, Wenjie Zhang, Reynold Cheng,

and Xuemin Lin. 2020. A survey of community search over big graphs. The
VLDB Journal 29, 1 (2020), 353–392.

[31] Yixiang Fang, Yixing Yang, Wenjie Zhang, Xuemin Lin, and Xin Cao. 2020.

Effective and efficient community search over large heterogeneous information

networks. Proceedings of the VLDB Endowment 13, 6 (2020), 854–867.
[32] Mohsen Ghaffari. 2016. An improved distributed algorithm for maximal inde-

pendent set. In Proceedings of the twenty-seventh annual ACM-SIAM symposium
on Discrete algorithms. SIAM, 270–277.

[33] Gösta Grahne and Jianfei Zhu. 2005. Fast algorithms for frequent itemset mining

using fp-trees. IEEE transactions on knowledge and data engineering 17, 10 (2005),

1347–1362.

[34] Saket Gurukar, Sayan Ranu, and Balaraman Ravindran. 2015. Commit: A scalable

approach to mining communication motifs from dynamic networks. In Proceed-
ings of the 2015 ACM SIGMOD international conference on management of data.
475–489.

[35] Jiawei Han, Hong Cheng, Dong Xin, and Xifeng Yan. 2007. Frequent pattern

mining: current status and future directions. Datamining and knowledge discovery
15, 1 (2007), 55–86.

[36] Jiawei Han, Jian Pei, and Hanghang Tong. 2022. Data mining: concepts and
techniques. Morgan kaufmann.

[37] Xiangnan He, Lizi Liao, Hanwang Zhang, Liqiang Nie, Xia Hu, and Tat-Seng

Chua. 2017. Neural collaborative filtering. In Proceedings of the 26th international
conference on world wide web. 173–182.

[38] Jiafeng Hu, Reynold Cheng, Kevin Chen-Chuan Chang, Aravind Sankar, Yixiang

Fang, and Brian YH Lam. 2019. Discovering maximal motif cliques in large

heterogeneous information networks. In 2019 IEEE 35th International Conference
on Data Engineering (ICDE). IEEE, 746–757.

[39] Xiaocheng Hu, Yufei Tao, and Chin-Wan Chung. 2013. Massive graph trian-

gulation. In Proceedings of the 2013 ACM SIGMOD international conference on
Management of data. 325–336.

[40] Xin Huang, Hong Cheng, Lu Qin,Wentao Tian, and Jeffrey Xu Yu. 2014. Querying

k-truss community in large and dynamic graphs. In Proceedings of the 2014 ACM
SIGMOD international conference on Management of data. 1311–1322.

[41] Said Jabbour, Nizar Mhadhbi, Badran Raddaoui, and Lakhdar Sais. 2022. A declar-

ative framework for maximal k-plex enumeration problems. In 21st International
Conference on Autonomous Agents and Multiagent Systems, AAMAS.

[42] Xun Jian, Yue Wang, and Lei Chen. 2020. Effective and efficient relational

community detection and search in large dynamic heterogeneous information

networks. Proceedings of the VLDB Endowment 13, 10 (2020), 1723–1736.
[43] Rui Jiang, Zhidong Tu, Ting Chen, and Fengzhu Sun. 2006. Network motif

identification in stochastic networks. Proceedings of the National Academy of
Sciences 103, 25 (2006), 9404–9409.

[44] David S Johnson, Mihalis Yannakakis, and Christos H Papadimitriou. 1988. On

generating all maximal independent sets. Inform. Process. Lett. 27, 3 (1988),

119–123.

[45] Jure Leskovec and Julian Mcauley. 2012. Learning to discover social circles in

ego networks. Advances in neural information processing systems 25 (2012).
[46] Boxuan Li, Reynold Cheng, Jiafeng Hu, Yixiang Fang, Min Ou, Ruibang Luo,

Kevin Chen-Chuan Chang, and Xuemin Lin. 2020. Mc-explorer: Analyzing

and visualizing motif-cliques on large networks. In 2020 IEEE 36th International
Conference on Data Engineering (ICDE). IEEE, 1722–1725.

[47] Jinyan Li, Guimei Liu, Haiquan Li, and Limsoon Wong. 2007. Maximal biclique

subgraphs and closed pattern pairs of the adjacency matrix: A one-to-one corre-

spondence and mining algorithms. IEEE Transactions on Knowledge and Data
Engineering 19, 12 (2007), 1625–1637.

[48] Ronghua Li, Sen Gao, Lu Qin, Guoren Wang, Weihua Yang, and Jeffrey Xu Yu.

2020. Ordering Heuristics for k-clique Listing. Proc. VLDB Endow. (2020).
[49] Rong-Hua Li, Qiangqiang Dai, Lu Qin, Guoren Wang, Xiaokui Xiao, Jeffrey Xu

Yu, and Shaojie Qiao. 2018. Efficient signed clique search in signed networks.

In 2018 IEEE 34th International Conference on Data Engineering (ICDE). IEEE,
245–256.

[50] Rong-Hua Li, Qiangqiang Dai, GuorenWang, ZhongMing, Lu Qin, and Jeffrey Xu

Yu. 2019. Improved algorithms for maximal clique search in uncertain networks.

In 2019 IEEE 35th International Conference on Data Engineering (ICDE). IEEE,
1178–1189.

[51] Xiaodong Li, Reynold Cheng, Kevin Chen-Chuan Chang, Caihua Shan, Chenhao

Ma, and Hongtai Cao. 2021. On analyzing graphs with motif-paths. Proceedings
of the VLDB Endowment 14, 6 (2021), 1111–1123.

[52] Don R Lick and Arthur T White. 1970. k-Degenerate graphs. Canadian Journal
of Mathematics 22, 5 (1970), 1082–1096.

[53] Michael Luby. 1985. A simple parallel algorithm for the maximal independent

set problem. In Proceedings of the seventeenth annual ACM symposium on Theory

2958

of computing. 1–10.
[54] Bingqing Lyu, Lu Qin, Xuemin Lin, Ying Zhang, Zhengping Qian, and Jingren

Zhou. 2020. Maximum biclique search at billion scale. Proceedings of the VLDB
Endowment (2020).

[55] Kazuhisa Makino and Takeaki Uno. 2004. New algorithms for enumerating all

maximal cliques. In Algorithm Theory-SWAT 2004: 9th Scandinavian Workshop on
Algorithm Theory, Humlebæk, Denmark, July 8-10, 2004. Proceedings 9. Springer,
260–272.

[56] Ron Milo, Shai Shen-Orr, Shalev Itzkovitz, Nadav Kashtan, Dmitri Chklovskii,

and Uri Alon. 2002. Network motifs: simple building blocks of complex networks.

Science 298, 5594 (2002), 824–827.
[57] Cataldo Musto, Pierpaolo Basile, and Giovanni Semeraro. 2019. Embedding

knowledge graphs for semantics-aware recommendations based on dbpedia.

In Adjunct Publication of the 27th Conference on User Modeling, Adaptation and
Personalization. 27–31.

[58] Kevin A Naudé. 2016. Refined pivot selection for maximal clique enumeration in

graphs. Theoretical Computer Science 613 (2016), 28–37.
[59] Gergely Palla, Imre Derényi, Illés Farkas, and Tamás Vicsek. 2005. Uncovering

the overlapping community structure of complex networks in nature and society.

nature 435, 7043 (2005), 814–818.
[60] Charles A Phillips, Kai Wang, Erich J Baker, Jason A Bubier, Elissa J Chesler, and

Michael A Langston. 2019. On finding and enumerating maximal and maximum

k-partite cliques in k-partite graphs. Algorithms 12, 1 (2019), 23.
[61] Ali Pinar, Comandur Seshadhri, and Vaidyanathan Vishal. 2017. Escape: Effi-

ciently counting all 5-vertex subgraphs. In Proceedings of the 26th international
conference on world wide web. 1431–1440.

[62] Nataša Pržulj and Noël Malod-Dognin. 2016. Network analytics in the age of big

data. Science 353, 6295 (2016), 123–124.
[63] Kenneth H Rosen. 2007. Discrete mathematics and its applications. The McGraw

Hill Companies,.

[64] Michael Rudolf. 1998. Utilizing constraint satisfaction techniques for efficient

graph pattern matching. In International Workshop on Theory and Application of
Graph Transformations. Springer, 238–251.

[65] Michael J Sanderson, Amy C Driskell, Richard H Ree, Oliver Eulenstein, and

Sasha Langley. 2003. Obtaining maximal concatenated phylogenetic data sets

from large sequence databases. Molecular biology and evolution 20, 7 (2003),

1036–1042.

[66] Seyed-Vahid Sanei-Mehri, Ahmet Erdem Sariyuce, and Srikanta Tirthapura. 2018.

Butterfly counting in bipartite networks. In Proceedings of the 24th ACM SIGKDD
International Conference on Knowledge Discovery & Data Mining. 2150–2159.

[67] Matthew C Schmidt, Nagiza F Samatova, Kevin Thomas, and Byung-Hoon Park.

2009. A scalable, parallel algorithm for maximal clique enumeration. Journal of
parallel and distributed computing 69, 4 (2009), 417–428.

[68] Eran Shaham, Honghai Yu, and Xiao-Li Li. 2016. On finding the maximum edge

biclique in a bipartite graph: a subspace clustering approach. In Proceedings of
the 2016 SIAM International Conference on Data Mining. SIAM, 315–323.

[69] Haichuan Shang, Ke Zhu, Xuemin Lin, Ying Zhang, and Ryutaro Ichise. 2010.

Similarity search on supergraph containment. In 2010 IEEE 26th International
Conference on Data Engineering (ICDE 2010). IEEE, 637–648.

[70] Chuan Shi, Xiangnan Kong, Philip S Yu, Sihong Xie, and BinWu. 2012. Relevance

search in heterogeneous networks. In EDBT. 180–191.
[71] Chuan Shi, Chong Zhou, Xiangnan Kong, Philip S Yu, Gang Liu, and Bai Wang.

2012. Heterecom: a semantic-based recommendation system in heterogeneous

networks. In KDD. 1552–1555.
[72] Shixuan Sun and Qiong Luo. 2020. In-memory subgraph matching: An in-

depth study. In Proceedings of the 2020 ACM SIGMOD International Conference on
Management of Data. 1083–1098.

[73] Yizhou Sun, Jiawei Han, Xifeng Yan, Philip S. Yu, and Tianyi Wu. 2011. Path-

Sim: Meta Path-Based Top-K Similarity Search in Heterogeneous Information

Networks. Proc. VLDB Endow. 4, 11 (2011), 992–1003.

[74] Robert Endre Tarjan and Anthony E Trojanowski. 1977. Finding a maximum

independent set. SIAM J. Comput. 6, 3 (1977), 537–546.
[75] Etsuji Tomita, Akira Tanaka, and Haruhisa Takahashi. 2006. The worst-case time

complexity for generating all maximal cliques and computational experiments.

Theoretical computer science 363, 1 (2006), 28–42.
[76] Yongxin Tong, Lei Chen, Yurong Cheng, and Philip S Yu. 2012. Mining Frequent

Itemsets over Uncertain Databases. Proceedings of the VLDB Endowment 5, 11
(2012).

[77] Ngoc Hieu Tran, Kwok Pui Choi, and Louxin Zhang. 2013. Counting motifs in

the human interactome. Nature communications 4, 1 (2013), 2241.
[78] Tiphaine Viard, Matthieu Latapy, and Clémence Magnien. 2016. Computing

maximal cliques in link streams. Theoretical Computer Science 609 (2016), 245–
252.

[79] Michael Matthias Voit and Heiko Paulheim. 2021. Bias in Knowledge Graphs–an

Empirical Study with Movie Recommendation and Different Language Editions

of DBpedia. arXiv preprint arXiv:2105.00674 (2021).
[80] Chenxu Wang, Minnan Luo, Zhen Peng, Yixiang Dong, and Huaping Liu. 2023.

Heterogeneous graph attention network with motif clique. Neurocomputing 555

(2023), 126608.

[81] Kai Wang, Xuemin Lin, Lu Qin, Wenjie Zhang, and Ying Zhang. 2019. Vertex

Priority Based Butterfly Counting for Large-scale Bipartite Networks. PVLDB
(2019).

[82] Bin Wu and Xin Pei. 2007. A parallel algorithm for enumerating all the maximal

k-plexes. In Pacific-Asia conference on knowledge discovery and data mining.
Springer, 476–483.

[83] Shiwen Wu, Fei Sun, Wentao Zhang, Xu Xie, and Bin Cui. 2022. Graph neural

networks in recommender systems: a survey. Comput. Surveys 55, 5 (2022), 1–37.
[84] StephanWuchty, Zoltán N Oltvai, and Albert-László Barabási. 2003. Evolutionary

conservation of motif constituents in the yeast protein interaction network.

Nature genetics 35, 2 (2003), 176–179.
[85] Mingyu Xiao and Hiroshi Nagamochi. 2017. Exact algorithms for maximum

independent set. Information and Computation 255 (2017), 126–146.

[86] Yanyan Xu, James Cheng, Ada Wai-Chee Fu, and Yingyi Bu. 2014. Distributed

maximal clique computation. In 2014 IEEE International Congress on Big Data.
IEEE, 160–167.

[87] Jianye Yang, Yun Peng, Dian Ouyang, Wenjie Zhang, Xuemin Lin, and Xiang

Zhao. 2023. (p, q)-biclique counting and enumeration for large sparse bipartite

graphs. The VLDB Journal (2023), 1–25.
[88] Yixing Yang, Yixiang Fang, Xuemin Lin, and Wenjie Zhang. 2020. Effective

and efficient truss computation over large heterogeneous information networks.

In 2020 IEEE 36th International Conference on Data Engineering (ICDE). IEEE,
901–912.

[89] Hao Yin, Austin R Benson, Jure Leskovec, and David F Gleich. 2017. Local higher-

order graph clustering. In Proceedings of the 23rd ACM SIGKDD international
conference on knowledge discovery and data mining. 555–564.

[90] Chenhao Ma Tianci Hou Xin Huang Yingli Zhou, Yixiang Fang. 2023. Efficient

Maximal Motif-Clique Enumeration over Large Heterogeneous Information

Networks (technical report). https://github.com/EnderturtleOrz/VLDB2024-

Mclique/blob/master/VLDB2024-Mclique-Technique-Report.pdf.

[91] Xiao Yu, Hao Ma, Bo-June Hsu, and Jiawei Han. 2014. On building entity recom-

mender systems using user click log and freebase knowledge. In Proceedings of
the 7th ACM international conference on Web search and data mining. 263–272.

[92] Xiao Yu, Xiang Ren, Yizhou Sun, Bradley Sturt, Urvashi Khandelwal, Quanquan

Gu, Brandon Norick, and Jiawei Han. 2013. Recommendation in heterogeneous

information networks with implicit user feedback. In Proceedings of the 7th ACM
conference on Recommender systems. 347–350.

[93] Yun Zhang, Charles A Phillips, Gary L Rogers, Erich J Baker, Elissa J Chesler,

and Michael A Langston. 2014. On finding bicliques in bipartite graphs: a novel

algorithm and its application to the integration of diverse biological data types.

BMC bioinformatics 15 (2014), 1–18.

,

2959

https://github.com/EnderturtleOrz/VLDB2024-Mclique/blob/master/VLDB2024-Mclique-Technique-Report.pdf
https://github.com/EnderturtleOrz/VLDB2024-Mclique/blob/master/VLDB2024-Mclique-Technique-Report.pdf

	Abstract
	1 Introduction
	2 Problem definition
	3 Existing approach
	3.1 The META algorithm
	3.2 Limitations of META

	4 Our POMA algorithm
	4.1 Overview of POMA
	4.2 Graph reduction
	4.3 Fast candidate set calculation

	5 An order-based search framework
	5.1 Our order-based search framework
	5.2 Ordering heuristics
	5.3 Theoretical correctness analysis for POMA

	6 Pivot-based enumeration techniques
	6.1 The motif-pivot principle
	6.2 Efficiently approximating I(p)
	6.3 A pivot-based enumeration algorithm

	7 Experiments
	7.1 Setup
	7.2 Overall efficiency results
	7.3 Detailed analysis of POMA
	7.4 Case studies

	8 Related works
	9 Conclusions
	Acknowledgments
	References

