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Abstract

Text-attributed graphs (TAGs) present unique
challenges for direct processing by Language
Learning Models (LLMs), yet their extensive com-
monsense knowledge and robust reasoning ca-
pabilities offer great promise for node classifi-
cation in TAGs. Prior research in this field has
grappled with issues such as over-squashing, het-
erophily, and ineffective graph information inte-
gration, further compounded by inconsistencies
in dataset partitioning and underutilization of ad-
vanced LLMs. To address these challenges, we
introduce Similarity-based Neighbor Selection
(SNS). Using SimCSE and advanced neighbor
selection techniques, SNS effectively improves
the quality of selected neighbors, thereby im-
proving graph representation and alleviating is-
sues like over-squashing and heterophily. Be-
sides, as an inductive and training-free approach,
SNS demonstrates superior generalization and
scalability over traditional GNN methods. Our
comprehensive experiments, adhering to standard
dataset partitioning practices, demonstrate that
SNS, through simple prompt interactions with
LLMs, consistently outperforms vanilla GNNs
and achieves state-of-the-art results on datasets
like PubMed in node classification, showcasing
LLMs’ potential in graph structure understand-
ing. Our research further underscores the sig-
nificance of graph structure integration in LLM
applications and identifies key factors for their
success in node classification. Code is available
at https://github.com/ruili33/SNS.

1. Introduction
Large Language Models (LLMs) (OpenAI, 2023; Touvron
et al., 2023; Chowdhery et al., 2022) show remarkable po-
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tential in tackling reasoning-intensive tasks in a wide range
of fields including language understanding (OpenAI, 2023),
multi-hop reasoning (Wei et al., 2022; Fu et al., 2023), vision
(Wang et al., 2023b; Berrios et al., 2023), and robotics (Zeng
et al., 2023; Yu et al., 2023). Beyond these areas, much
real-world data is structured in graph forms, which cannot
be directly transformed into text. Text-attributed graphs
(TAGs), characterized by nodes with textual attributes, rep-
resent a significant subset of such data. In theory, TAGs’
node classification task should significantly benefit from
LLMs: First, its text-based nature could be dramatically
enhanced by LLMs’ ability on text understanding. Addi-
tionally, many node classification tasks require extensive
commonsense knowledge, expert knowledge, and robust
reasoning capabilities, which meet the expertise of LLMs.

Several recent studies have explored the path of integrating
graph structure information into prompts, including directly
encoding node and edge lists (Liu & Wu, 2023; Wang et al.,
2023a), summarization-based methods (Chen et al., 2023;
Guo et al., 2023), γ-hop random neighbor selection and
attention based methods (Huang et al., 2023). Unfortu-
nately, as far as we are concerned, existing LLM-based
node classification approaches still significantly underper-
form traditional supervised graph learning models such as
GCNs (Kipf & Welling, 2017) and GATs (Veličković et al.,
2018). One key reason for the inferior performances of
LLMs is the inherent structure disparity between TAGs and
natural language prompts. Up to date, there hasn’t been a
consensus on how to effectively incorporate graph informa-
tion into LLMs: γ-hop random neighbor selection (without
any neighbor ranking) often leads to issues such as over-
squashing (Topping et al., 2021; Deac et al., 2022; Alon &
Yahav, 2020) and heterophily; while attention based method
using LLMs for top-k neighbor selection is also shown to be
suboptimal (Gatto et al., 2023) and problematic. Moreover,
the partitioning of datasets for some existing research lacks
consistency and standardization.

In response, we propose similarity-based neighbor selection
(SNS) for node classification in TAGs. SNS begins with
Recursive Neighbor Selection to discern labeled neighbors
progressively from closer to more distant hops, tailored to
each node’s specific context. This is followed by Similarity-
based Neighbor Ranking Strategy, drawing inspiration from
the message-passing mechanism in GAT. Given the frequent
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SimCSE

Similarity

Neighbor1       0.78       
Neighbor0       0.73       

Neighbor2       0.62       

Prompt for LLMs:
#Information of Test Node
Title: <title>
Abstract: <abstract>
It has following important neighbors 
which has citation relationship to this 
paper, from most related to least related:
#Neighbor Ranked and Selected by SNS
#Top-2 Similar neighbors 
Neighbor1: <Neighbor1 Information>
Neighbor0: <Neighbor0 Information>
<Task Instruction>Labelled Node Unlabelled Node Test Node

Similarity based Neighbor Selection (SNS)

Top 2 Similar Neighbors

Other Labelled Neighbors

Figure 1. An overview of SNS and the prompt for LLMs. Top 2 Similar Neighbors are ranked and selected according to similarity
determined by SimCSE (Gao et al., 2021), and subsequently incorporated into the prompts sequentially from most to least related.

occurrence of heterophily in graph structures, selecting ap-
propriate neighbors is critical. We employ SimCSE (Gao
et al., 2021) to measure and rank the similarity between text
attributes of nodes and their neighbors. The top-ranking
neighbors are then integrated into our prompts, improving
graph information integration and mitigating issues like het-
erophily and over-squashing. Figure 1 illustrates the SNS
methodology and the prompt structure for LLMs.

We conducted extensive experiments across 5 widely-used
node classification datasets. For a fair comparison with
supervised GNN baselines, we adhered rigorously to the
data partitioning strategies outlined in the graph community
(Veličković et al., 2018; Hu et al., 2020a). Throughout these
experiments, we identified several critical factors that are
pivotal for the success of LLMs in node classification:

1. Recursive Neighbor Selection and Similarity-based
Neighbor Ranking are crucial, as shown in Sections
2.3 and 4.

2. The capabilities of LLMs matter. GPT-4 significantly
outperforms GPT-3.5 in many datasets.

3. Incorporating textual information from neighboring
nodes generally enhances performance, though label
inclusion’s efficacy varies by dataset.

SNS consistently outperforms supervised graph learning
baselines (GCN, GAT, and GraphSAGE (Hamilton et al.,
2017)) and all existing prompt-based methods across five
widely-used benchmarks, achieving state-of-the-art results
on PubMed. To the best of our knowledge, SNS is the first
prompt-based approach that could achieve performance su-
perior to vanilla GNNs on node classification. Meanwhile,
LLMs significantly benefit from graph structure integra-
tion, showing marked improvements over vanilla zero-shot
scenarios.

Our extensive experiments reveal that, despite utilizing a
linear training object, LLMs exhibit initial proficiency in
handling node classification on graph-structured data. Com-
pared to GNN-based methods, SNS offers several advan-
tages: it requires no training or fine-tuning, is inherently
inductive and easily generalizes to new nodes and graphs,
demonstrates better scalability to large graphs, and main-
tains constant time complexity for single-node prediction.
Building upon this observation, we highlight that with the
extensive pre-trained knowledge base and advanced reason-
ing capabilities, LLMs hold the potential for generalizing to
some tasks in TAGs without the necessity for external tools
or additional fine-tuning.

2. Similarity based Neighbor Selection
2.1. Preliminaries

Text-Attributed Graphs: A text-attributed graph (TAG) is
a graph G = (V, E), where V denotes the set of vertices
and E denotes the set of edges. Each node v ∈ V possesses
an associated text attribute Tv = {w1, ..., wn}, where n
denotes the length of the text sequence.
Node Classification: In a partially labeled graph, where
only a subset of nodes L ∈ V have labels yL, the objective is
to deduce the labels yU for the unlabeled nodes U = V\L,
utilizing the graph’s structure and the text attributes.

2.2. Challenges

Challenges current LLMs face for the node classification
task are four folds:

(1) Discerning neighbor importance: Directly incorpo-
rating information about randomly sampled 1-hop or 2-hop
neighbors into prompts (Chen et al., 2023; Huang et al.,
2023) without any ranking or selection has not yielded satis-
factory results. The reason behind this is that it is hard for
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Table 1. Results for five node classification datasets across Zero-shot, Zero-shot CoT, Few-shot and Few-shot CoT using GPT-3.5.

Experiment Settings Cora PubMed CiteSeer Ogbn-arxiv Ogbn-products

Zero-shot 66.5 89.2 69.6 73.4 79.0
Zero-shot CoT 62.8 90.8 67.2 68.9 72.7

Few-shot 66.9 88.2 66.0 71.5 80.8
Few-shot CoT 65.4 86.4 64.7 69.4 73.8

LLMs to distinguish between varying levels of importance
and relatedness when it comes to their neighbors.

(2) Over-squashing (Topping et al., 2021; Deac et al., 2022;
Alon & Yahav, 2020) denotes the situation where the model
fails to leverage all available information when excessive
neighbor information is supplied. Over-squashing occurs
when a large graph’s information is compressed into a lim-
ited number of dimensions, resulting in information loss
and potentially diminishing the effectiveness. While preva-
lent in traditional graph learning methods like GCNs, over-
squashing is particularly pronounced in LLMs when graph
information is not adequately filtered, due to their intrin-
sic limited capacity for long-term dependencies (Liu et al.,
2022) and the hard token limit on input length.

(3) Struggles with heterophilous graphs: Heterophily
describes a situation where connected nodes in a graph are
more likely to differ than resemble, a scenario contrasting
with homophily. For LLMs, given that their attention mech-
anisms fundamentally rely on similarity (Vaswani et al.,
2017), heterophilous graphs present a significant challenge.

(4) The dilemma of balancing increased information
against the potential noise from distant neighbors. Previ-
ous research often focuses on providing LLMs with nodes
within γ-hop (e.g. γ = 2), potentially leading to subopti-
mal graph information utilization. For nodes with abundant
labeled 1-hop neighbors, this proximity may be sufficient
for accurate LLM predictions, rendering the inclusion of
2-hop neighbors, which typically convey less relevance and
more noise, unnecessary. In contrast, for nodes with sparse
labeled 2-hop neighbors, expanding to more distant neigh-
bors can reveal additional labeled nodes, thereby enhancing
the decision-making data available to LLMs.

2.3. Similarity based Neighbor Selection

To address the challenges above, we draw inspiration from
GAT. GAT assigns varying weights to different neighbors
based on attention scores through message passing. This se-
lective attention enables GAT to focus on a subset of nodes,
thereby alleviating the over-squashing issue. Additionally,
this approach is advantageous in addressing the heterophily
issue, as the model can assign lower weights to neighbors
that exhibit heterophilous characteristics, allowing for more
nuanced information aggregation.

To adapt this line of thinking to LLMs, we propose Sim-
ilarity based Neighbor Selection (SNS in short) shown in
Figure 1. SNS is composed of two strategies:

2.3.1. RECURSIVE NEIGHBOR SELECTION:

SNS commences with a Recursive Neighbor Selection pro-
cess, beginning with the retrieval of a node’s 1-hop neigh-
bors, followed by an exploration of successive neighboring
hops. The search terminates upon identifying a sufficient
number of labeled neighbors or reaching a pre-established
maximum number of search layers γ ( γ = 5 in our experi-
ments). The threshold number of neighbors, denoted as α,
is a layer-specific hyperparameter. In our experiments, we
set α = 2 for the first layer, and α = 1 for the rest layers.

The strategy of recursive neighbor selection resolves the
challenge of incorporating distant neighbors. It allows for
tailored decisions regarding neighbor selection for each
node based on their specific context. For example, a node
surrounded by numerous labeled neighbors may limit its
search to a smaller hop distance. In contrast, nodes with
fewer labeled neighbors may extend their search to more
distant neighbors. This strategy effectively minimizes noise
while ensuring adequate information is captured for accurate
decision-making.

2.3.2. SIMILARITY-BASED NEIGHBOR RANKING
STRATEGY:

SNS proceeds with a Similarity-based Neighbor Ranking
Strategy, selectively integrating neighbor nodes into the
prompt, prioritizing those with higher similarity to the tar-
get node’s attributes. We adopt SimCSE (Gao et al., 2021)
as our similarity metric, calculating the cosine similarity
between the text attribute of each node and that of its neigh-
bors. Neighbors are then ranked based on this similarity
score. Subsequently, we select the top-k neighbors (where k
is a hyperparameter, shown in Table 7) demonstrating the
highest similarity. Upon identifying the top-ranking neigh-
bors, they are sequentially added to the prompt, arranged by
descending order of their cosine similarity scores.

The integration of SimCSE into our Similarity-based Neigh-
bor Ranking Strategy adeptly addresses the difficulty LLMs
face in evaluating neighbor importance. By prioritizing
neighbors with high similarity scores, this method effi-
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Table 2. Prompts used in experiments across different settings. M represents the method to select neighbors, which could be SNS, γ-hop
Random (γ-hop random neighbor selection) or 1-hop attention. The neighbors obtained by SNS are incorporated into the prompt in
descending order of their cosine similarity scores. The {Neighbor Instruction for M} is shown in Table 8 in Appendix C.2. The {Task
Instruction w/o Neighbor} and {Task Instruction w/ Neighbor} for each dataset are shown in Table 9 and 10 in Appendix C.2.

Experiment Settings Prompts

Vanilla Zero-shot Title: {title}\nAbstract: {abstract}\n{Task Instruction w/o Neighbor}
M+label Title: {title}\nAbstract: {abstract}\n{Neighbor Instruction for M}\nNeighbor Paper0:

{{Category: {Neighbor Paper0 Label}}}\n\n... (More Neighbors) ...\n{Task Instruction w/
Neighbor}

M+text Title: {title}\nAbstract: {abstract}\n{Neighbor Instruction for M}\nNeighbor Paper0: {{Title:
{Neighbor Paper0 Title}}}\n\n... (More Neighbors) ...\n{Task Instruction w/ Neighbor}

M+text+lebel Title: {title}\nAbstract: {abstract}\n{Neighbor Instruction for M}\nNeighbor Paper0:
{{Category: {Neighbor Paper0 Label}\nTitle: {Neighbor Paper0 Title}}}\n\n... (More

Neighbors) ...\n{Task Instruction w/ Neighbor}

ciently filters out lower-quality graph information, optimiz-
ing the use of limited context capacity and mitigating over-
squashing. Additionally, it skillfully addresses heterophily
by excluding dissimilar neighbors, as the similarity metric
inherently selects nodes with analogous characteristics, thus
elevating the relevance and quality of integrated neighbor
data.

2.4. Discussion

SNS exhibits several advantageous properties compared to
traditional GNN-based methods:

(1) First, SNS offers a zero-shot solution for node classifica-
tion with LLMs, delivering promising performance without
the need for training or fine-tuning.

(2) Second, as a prompt-based approach, SNS is inherently
inductive, facilitating straightforward generalization to new
nodes and graphs.

(3) Third, the method boasts superior scalability, with a con-
stant time complexity for single-node processing, in contrast
to the significant increase in time complexity and memory
usage experienced by GNNs in larger graph applications.

(4) Finally, SNS effectively leverages the extensive com-
monsense knowledge and robust reasoning capabilities of
cutting-edge LLMs.

3. Experiments
3.1. Datasets

In this study, we evaluate SNS and baselines on five widely-
used node classification benchmarks: Cora (McCallum et al.,
2000), PubMed (Sen et al., 2008), CiteSeer (Giles et al.,
1998), Ogbn-arxiv and Ogbn-products (Hu et al., 2020a). To

enable apple-to-apple comparisons, our experimental setup
adheres closely to the methodologies outlined in Veličković
et al. (2018); Hu et al. (2020a). Specifically, for Cora,
PubMed and CiteSeer, our experimental design includes
20 training examples per class, alongside a validation set of
500 nodes and a test set of 1,000 nodes. For Ogbn-arxiv and
Ogbn-products, we maintain the original dataset partitions
as established in Hu et al. (2020a). Considering the high
cost associated with the OpenAI API, we randomly sampled
a subset of 1,000 nodes from the test sets of Ogbn-arxiv and
Ogbn-products for our evaluation.

3.2. Preliminary Experiments

To identify the most suitable prompting methods for node
classification, we conducted trials on all 5 datasets using
mainstream approaches: Zero-shot, Zero-shot with Chain-
of-Thought (Zero-shot CoT) (Kojima et al., 2022), Few-
shot (Brown et al., 2020), Few-shot CoT (Wei et al., 2022),
employing GPT-3.5. The results are shown in Table 1.

Our findings align with Huang et al. (2023); Wei et al.
(2022), reveal limited or negative benefits of few-shot and
CoT prompting on node classification tasks. Few-shot
prompting’s limited effectiveness is due to the node classifi-
cation task’s complexity, which demands more specialized
knowledge compared to standard text classification tasks.
For example, Ogbn-arxiv involves classifying 40 subfields
in computer science, which requires a breadth of knowl-
edge beyond the boundary of few-shot learning. Another
possible explanation comes from Li et al. (2023), which sug-
gest that LLMs can attain few-shot performance levels even
in zero-shot settings, highlighting LLM’s zero-shot ability.
CoT techniques, meanwhile, prove less effective due to the
knowledge-driven rather than reasoning-driven nature of
node classification, potentially introducing extraneous noise.
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Table 3. Comparison of SNS with γ-hop random neighbor selection (γ-hop Random in the table, γ = 1, 2, 3), 1-hop attention (Huang
et al., 2023), vanilla zero-shot in text+label scenarios, alongside SNS performance across text-only, label-only, and combined text and
label scenarios. Considering the memory issue, the GAT results on Ogbn-products are derived through GAT with NeighborSampling
(Veličković et al., 2018; Hamilton et al., 2017).

Experiment Settings Cora PubMed CiteSeer Ogbn-arxiv Ogbn-products

GPT3.5

Vanilla Zero-shot 66.5 89.5 69.6 73.4 79.0
1-hop Attention+text+lebel 72.4 90.6 71.5 72.3 82.0
1-hop Random+text+lebel 72.2 90.7 71.6 72.7 82.5
2-hop Random+text+lebel 75.6 91.0 72.9 71.6 82.0
3-hop Random+text+lebel 70.5 90.8 73.0 72.6 80.4

SNS+text+lebel 78.5 91.4 75.0 74.4 84.6
SNS+label 78.5 90.6 73.6 74.4 83.8
SNS+text 69.0 92.1 71.4 73.7 80.5

GPT4

Vanilla Zero-shot 67.4 92.8 72.3 72.9 80.1
SNS+text+lebel 82.5 93.8 74.6 74.2 88.3

GNNs

GCN (Kipf & Welling, 2017) 79.3 ± 0.2 79.9± 0.2 72.1± 0.5 70.1± 0.3 76.2± 0.3
GAT (Veličković et al., 2018) 81.4 ± 0.4 79.9± 0.9 72.3± 0.1 71.0 ± 0.3 81.3± 0.3*

GraphSAGE (Hamilton et al., 2017) 80.4 ± 0.5 79.3± 0.2 73.4± 0.1 71.3± 0.2 78.4± 0.4

Hence, we employed zero-shot prompting in our primary
experiments for its relative effectiveness and simplicity.

3.3. Experimental Settings and Baselines

We compare SNS against three baselines: γ-hop random
neighbor selection (γ-hop Random in short, γ = 1, 2, 3),
1-hop attention1 (Huang et al., 2023) and vanilla zero-shot
scenario. γ-hop random neighbor selection involves inte-
grating data from randomly selected neighbors within a
γ-hop radius (aka the 1-hop and 2-hop prompting in Huang
et al. (2023)), while vanilla zero-shot scenario does not in-
corporate any graph information. As mentioned in Section
3.2, our evaluation focuses on zero-shot prompting. Addi-
tionally, we assessed SNS against three baselines under the
text+label scenario and explored various strategies for incor-
porating neighbor information into SNS, namely text-only,
label-only, and text+label approaches. The prompts used in
our main experiments are shown in Table 2. For compari-
son with traditional graph-based methods, we utilize GCN
(Kipf & Welling, 2017), GAT (Veličković et al., 2018) and
GraphSAGE (Hamilton et al., 2017) as our graph baselines.

In our main experiments, we utilize GPT3.5 (gpt-3.5-turbo),
GPT4 (OpenAI, 2023)2 as the model backbone. GPT-3.5

1Limited by LLMs’ context capacity, attention-based methods
operate within a 1-hop range, consistent with Huang et al. (2023).

2https://platform.openai.com/docs/models

serves as the default model for our ablation studies, unless
stated otherwise.

3.4. Results

The results summarized in Table 3 demonstrate that the
integration of graph structures and neighbor information
leads to LLMs consistently outperforming Vanilla GNNs by
considerable margins in zero-shot scenarios, achieving state-
of-the-art performance on PubMed. Moreover, across all
datasets, LLMs show enhanced performance when includ-
ing SNS-augmented graph information within the prompts,
significantly exceeding the results in vanilla zero-shot sce-
narios. These findings underscore the potential of LLMs,
with suitably crafted prompts and judicious neighbor se-
lection, to effectively utilize graph information and exhibit
emerging capabilities in node classification tasks within
TAGs.

On the other hand, the consistent superiority of LLMs us-
ing SNS over γ-hop random neighbor selection and 1-hop
attention is evident. This demonstrates the superiority of
SNS in enhancing textual graph representation and graph
information utilization.

Notably, in PubMed, the incorporation of neighbor informa-
tion remains efficacious even at an advanced stage of model
performance, enhancing accuracy from 92.8% in the vanilla
zero-shot scenario to 93.8%, thereby achieving state-of-the-
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Figure 2. Top-k neighbors accuracy of SNS, random neighbor se-
lection, and LLMs’ vanilla zero-shot accuracy across 3 datasets.

Table 4. Failure (failed to find labeled neighbors) rate of each selec-
tion method in Cora. γ-hop Ran represents γ-hop random neighbor
selection.

1-hop Ran 2-hop Ran 3-hop Ran SNS

Cora 40.3 10.6 5.3 4.9

art results3. This observation compellingly suggests that,
in many scenarios, graph information retains its utility for
LLMs even after achieving substantial initial success.

Furthermore, our results consistently demonstrate that in-
corporating textual information into the prompts enhances
performance in all scenarios for GPT3.5. This aligns with
our intuition that neighbors’ textual attributes offer valuable
context about the subject paper and its neighbors. However,
the impact of integrating label information varies across
datasets. It significantly enhances performance in Cora and
Ogbn-products, but leads to a decline in PubMed. This
disparity likely stems from differences in top-k neighbor
accuracy among datasets, as illustrated in Figure 7.

4. Ablation Studies
Quality of Neighbors between SNS and Random Neigh-
bor Selection. To evaluate the neighbor selection quality
of SNS and γ-hop random neighbor selection, we investi-
gate top-k neighbor accuracy, reflecting the proportion of
top-k neighbors sharing the same label with the test node, as

3The previous state-of-the-art method on PubMed, ACM-
Snowball-3 (Luan et al., 2021), achieved an accuracy of 91.44%
(is surpassed by our performance, 93.8%), as reported on
https://paperswithcode.com/sota/node-classification-on-pubmed.
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Number of hops ( )

72

73

74

75

76

77

78

79

80

Ac
cu

ra
cy

 (%
)

Comparision between Different Neighbor Selection Strategy
Recursive Neighbor Selection
Direct Neighbor Selection

Figure 3. Comparison between Recursive Neighbor Selection and
Direct Selection across different hops (γ).

shown in Figure 2. Additionally, Table 4 presents the failure
rates for each method in Cora, indicating the frequency at
which these methods fail to identify a labeled neighbor.

Despite including distant neighbors and greatly enriching
graph information (shown in Table 4), SNS maintains com-
petitive top-k accuracy relative to 1-hop random selection,
underscoring its superior neighbor quality. Besides, SNS
effectively mitigates the issue of heterophily in distant neigh-
bors, as evidenced by its superior top-k neighbor accuracy
compared to 2-hop and 3-hop random neighbor selection.

Furthermore, the observation that the zero-shot accuracy
significantly exceeds the top-k neighbor accuracy in Ogbn-
arxiv and PubMed (see Figure 7) might potentially explain
why there is little increase in accuracy, or even a decrease,
after adding the labels of neighbors.

SimCSE: Comparative analysis of SNS performance with
and without the ranking of SimCSE (Gao et al., 2021), as
presented in Table 5. Besides, the top-k accuracy of neigh-
bors selected by SNS with and without ranking by SimCSE
are shown in Figure 7 in Appendix B.1. The findings, en-
compassing both overall performance and top-k neighbor
accuracy, consistently demonstrate the enhanced efficacy of
SNS with SimCSE, highlighting the critical role of SimCSE
in neighbor ranking.

Recursive Neighbor Selection vs Direct Selection. We
contrast Recursive Neighbor Selection with Direct Selection,
the latter being a simple method in γ-hop random neighbor
selection (Chen et al., 2023; Huang et al., 2023), character-
ized by the inclusion of all labeled neighbors within γ-hop,
without customizing for each node. This comparative analy-
sis focuses on their respective performances across varying
hop counts (denoted as γ). After selecting neighbors, we
apply Similarity-based Neighbor Ranking Strategy for both
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Table 5. Comparison of SNS performance with and without SimCSE in a zero-shot scenario using GPT-3.5.

Experiment Settings Cora PubMed CiteSeer Ogbn-arxiv Ogbn-products

SNS w/o SimCSE+label 77.2 90.4 73.6 73.6 82.4
SNS w/ SimCSE+label 78.5 90.6 73.6 74.4 83.8
SNS w/o SimCSE+text 68.8 91.1 70.0 73.3 79.5
SNS w/ SimCSE+text 69.0 92.1 71.4 73.7 80.5

SNS w/o SimCSE+text+lebel 77.8 90.8 74.1 73.8 82.7
SNS w/ SimCSE+text+lebel 78.5 91.4 75.0 74.4 84.6

100 101 102

Number of Neighbors (log scale)

73

74

75

76

77

78

Ac
cu

ra
cy

 (%
)

Cora

SNS
2-hop Random

Figure 4. The results of SNS and 2-hop random neighbor selection
for Cora across different numbers of neighbors (k).

methods. The results on cora are delineated in Figure 3.

The findings reveal that Recursive Neighbor Selection signif-
icantly surpasses Direct Selection in efficacy, particularly as
the number of hops (γ) increases. Notably, the performance
of Recursive Neighbor Selection improves with larger values
of γ, suggesting its effective utilization of distant neighbors’
information. Conversely, Direct Selection demonstrates a
decline in performance with increased hop counts, indicative
of an over-squashing problem inherent to this approach.

Number of Neighbors We examined the impact of varying
neighbor count (parameter k in Section 2.3) on the per-
formance of SNS and 2-hop random neighbor selection
for Cora, as depicted in Figure 4. The results reveal that
LLMs benefit from an increased number of neighbors when
the initial count is low. However, performance reaches a
plateau beyond a certain threshold, with minor fluctuations.
This finding aligns with our discussion on over-squashing
in LLMs in Section 2.2, highlighting LLMs’ limited util-
ity from excessive neighbor information at high k values,
resulting in performance stagnation.

Comparison between SNS with TAPE (He et al., 2023).
To elucidate the differential roles of LLMs in enhancement
and prediction, we conducted a comparative analysis of SNS
and TAPE. It is important to note that due to the differing

Table 6. Comparison between TAPE (on GCN, GraphSAGE,
RevGAT (Li et al., 2021)) and SNS.

Cora PubMed

TAPE+GCN 79.0 ± 0.7 81.8 ± 1.0
TAPE+SAGE 79.2 ± 0.4 86.1 ± 2.1

TAPE+RevGAT 78.4 ± 1.2 85.9 ± 1.9

SNS-GPT3.5 78.5 91.4
SNS-GPT4 82.5 93.8

text-davinci-002 text-davinci-003 gpt-3.5-turbo gpt-4
Model
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SNS+text
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Figure 5. The performance of SNS across LLMs with varying ca-
pabilities on Cora.

dataset splits from our study to He et al. (2023), the results
of TAPE vary from their study. The comparative results are
detailed in Table 6.

Our analysis reveals that when LLMs are employed primar-
ily for prediction, as in our method, they are more adept at
addressing challenges in low labeling settings where insuffi-
cient data is available for fine-tuning Pre-trained Language
Models (PLMs). Furthermore, our approach demonstrates
superior scalability compared to the method employed by
He et al. (2023). Their high-cost approach for generating
LLM explanations led to challenges in processing the ogbn-
products dataset, necessitating subgraph sampling. In con-
trast, our method scales more efficiently to larger datasets,
maintaining a computational complexity of O(1) for single-
node prediction.
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SNS on Different Models: Figure 5 and 6 display SNS’s
performance across four notable LLMs, ranging from less
to more advanced models, including text-davinci-002, text-
davinci-003, gpt-3.5-turbo, and gpt-4, evaluated on Cora and
Ogbn-products datasets. The results strongly indicate SNS’s
efficacy across various models, underscoring the importance
of graph information. Further details and discussions are
provided in Appendix A.

5. Related Work
5.1. GNNs for TAGs

GNNs have been developed to process graph data, building
upon the message-passing framework (Gilmer et al., 2017).
This has led to the creation of various GNN variants. GCN
(Kipf & Welling, 2017) adapts convolutional structures to
graph data, while GAT (Veličković et al., 2018) leverages
the attention mechanism for enhanced message-passing ex-
pressiveness (Liu et al., 2023b). GraphSAGE (Hamilton
et al., 2017) provides a scalable inductive approach for gen-
erating embeddings for new data. However, some of these
methods often require training on entire graphs, potentially
limiting scalability and generalization to new graphs.

5.2. PLMs for TAGs

PLMs (Devlin et al., 2018; Lewis et al., 2020; Radford
et al., 2019) could further enhance GNNs by enriching node
embeddings. One notable methodology is the cascaded ar-
chitecture (Zhu et al., 2021; Chien et al., 2021; Hu et al.,
2020b; Duan et al., 2023), where the generation of node
embeddings is independent from the training of GNNs. Be-
sides, some works belong to iterative architecture, such as
DRAGON (Yasunaga et al., 2022), Graphormer (Yang et al.,
2021) and Heterformer (Jin et al., 2023). This architecture
trains PLMs and GNNs in an iterative strategy, enabling
PLMs to get insights from the graph structure. Since these
studies are initially designed for the link-prediction task,
which lacks solid semantic interpretation, they are not in-
cluded as our baselines.

5.3. LLMs for TAGs

The integration of LLMs and graph data has received in-
creasing attention across the community. InstructGLM (Ye
et al., 2023) and GraphGPT (Tang et al., 2023) adopted in-
struction tuning to apply LLMs to TAGs. LLMtoGraph (Liu
& Wu, 2023) and NLGraph (Wang et al., 2023a) integrate
graph structures by crafting prompts containing node and
edge lists. GraphText (Zhao et al., 2023) generates graph-
syntax trees to encapsulate knowledge in the graph structure.
GPT4Graph (Guo et al., 2023) uses LLMs with prompts
that include context summarization and format explanation.
Another study, examining LLMs as Enhancers and Predic-

tors, reveals initial efficacy in incorporating neighbors’ text
summarization (Chen et al., 2023).

Huang et al. (2023) introduce 1-hop and 2-hop random
neighbor selection as well as 1-hop attention prompting,
positing that structural data can improve LLM performance,
especially with limited textual node attributes. However,
their results show 1-hop attention often underperforms com-
pared to 1-hop and 2-hop random selection. Their approach
also lacks a thorough integration of distant neighbors and
uses LLMs for neighbor ranking, a method critiqued for in-
efficiency (Gatto et al., 2023) and problematic given LLMs’
context limitations.

Consequently, these studies fall short of optimally lever-
aging graph information. Furthermore, some previous re-
search, including Chen et al. (2023); Huang et al. (2023),
due to not following the same training and testing set parti-
tion as Veličković et al. (2018), their results are not directly
comparable with those of GNNs and ours. To the best of our
knowledge, our method is the first prompt-based approach to
consistently outperform the simplest GNNs, namely GCN,
GAT and GraphSAGE.

Besides, there is also a line of work that utilizes LLMs
to strengthen existing graph learning frameworks, such as
enhancing node features (He et al., 2023; Chen et al., 2023).
Liu et al. (2023a) employ LLMs to standardize node features
across diverse domains. Also, some previous study also
tries to utilize external tools, such as Iterative Reading-then-
Reasoning in StructGPT (Jiang et al., 2023) and Graph-
ToolFormer (Zhang, 2023).

6. Conclusion
In this paper, we present Similarity based Neighbor Selec-
tion (SNS), a straightforward yet versatile and efficacious
high-quality neighbor filtration technique for prompt-based
solutions to node classification. SNS offers a potential miti-
gation to challenges such as over-squashing and diminished
performance on heterophilous graphs.

Our comprehensive experimental analysis across diverse
datasets and neighbor integration methods show that SNS
not only markedly outperforms existing prompt-based ap-
proaches, but also surpasses Vanilla GNNs in zero-shot
predictions, and even achieves state-of-the-art results on
PubMed. A fine-grained analysis further underscores the
importance of graph integration and the effectiveness of each
component of the SNS method, and particularly highlights
SNS’s effectiveness in sparse labeling scenarios. These re-
sults illuminate the potential of LLMs, when equipped with
carefully designed prompts and strategic neighbor selection,
to proficiently harness graph information, thereby exhibit-
ing advanced capabilities in node classification tasks within
TAGs.
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Impact Statement
This paper presents work whose goal is to advance the appli-
cation of LLMs on the graph area. There are many potential
societal consequences of our work, none which we feel must
be specifically highlighted here.
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Figure 6. The performance of SNS across LLMs with varying capabilities on Ogbn-products.

A. SNS on Different Models
To further evestigate the performance of SNS across LLMs with varying capabilities, we conducted experiments utilizing four
renowned LLMs, ranging from less powerful to more advanced models. These include text-davinci-002, text-davinci-003,
gpt-3.5-turbo, and gpt-4. The datasets employed for this study were Cora and Ogbn-products4. The outcomes of these
experiments are presented in Figure 5 and 6.

In our analysis of both datasets, it is evident that all four models significantly benefit from the incorporation of graph
information. Notably, in the case of the Cora dataset, the davinci models exhibit better performance compared to GPT-3.5
when graph information is added. This is in contrast to the zero-shot scenario, where GPT-3.5 surpasses the davinci models.
Conversely, in the Ogbn-products dataset, GPT-3.5 consistently outperforms the davinci models.

B. Details of Ablation Study
B.1. SimCSE

the top-k accuracy of neighbors selected by SNS with and without ranking by SimCSE are shown in Figure 7.

C. Details of Main Experiments
C.1. Details of Experimental Setup

The upper limit of the number of neighbors selected for each dataset (k) are shown in Table 7.

Table 7. The upper limit of the number of neighbors selected for each dataset (k).

Cora PubMed CiteSeer Ogbn-arxiv Ogbn-products

number of neighbors (k) 4 4 8 4 100

4To accommodate the token limitations of the text-davinci-002 and text-davinci-003 models in the Ogbn-products dataset, our
experimental setup was adjusted to a setting of k=1.
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Figure 7. Top-k neighbors accuracy of SNS with and without SimCSE as well as the vanilla zero-shot performance of LLMs across all 5
datasets.

C.2. Details of Prompts Design

The prompts used in the main experiments are as shown in the Table 2. In the table, M represents the method to select
neighbors, could be SNS, γ-hop Random (γ-hop random neighbor selection) or 1-hop attention. The {Neighbor Instruction
for M} for SNS, 1-hop attention and γ-hop Random are shown in Table 8. The {Task Instruction w/o Neighbor} is shown in
Table 9. The {Task Instruction w/ Neighbor} is shown in Table 10. Some ideas in designing our prompts are inspired by
Huang et al. (2023); Chen et al. (2023); He et al. (2023)

Table 8. The {Neighbor Instruction for M} for SNS, 1-hop attention and γ-hop Random in Table 2.

M SNS & 1-hop attention γ-hop Ran

{Neighbor
Instruction for M}

It has following important neighbors which has
citation relationship to this paper, from most

related to least related:

It has following important neighbors which
has citation relationship to this paper:

13



Similarity-based Neighbor Selection for Graph LLMs

Table 9. The {Task Instruction w/o Neighbor} in Table 2.

{Task Instruction w/o Neighbor}
Cora Task: \nThere are following categories: \n[’Rule Learning’, ’Case Based’, ’Genetic

Algorithms’, ’Theory’, ’Reinforcement Learning’, ’Probabilistic Methods’, ’Neural
Networks’]\nWhich category does this paper belong to?\nOutput the most 1 possible category

of this paper as a python list, like [’XX’]

PubMed Question: Does the paper involve any cases of [’Type 1 diabetes’], [’Type 2 diabetes’], or
[’Experimentally induced diabetes’]? Output the most 1 possible category of this paper as a

python list and in the form Category: [’XX’].

CiteSeer Task: \nThere are following categories: \n[’Agents’, ’Machine Learning’, ’Information
Retrieval’, ’Database’, ’Human Computer Interaction’, ’Artificial Intelligence’]\nWhich

category does this paper belong to?\nOutput the most 1 possible category of this paper as a
python list, like [’XX’]

Ogbn-arxiv Please predict the most appropriate arXiv Computer Science (CS) sub-category for the paper.
The predicted sub-category should be in the format [’cs.XX’].

Ogbn-products Task: \nThere are following categories: \n[’Home & Kitchen’, ’Health & Personal Care’,
’Beauty’, ’Sports & Outdoors’, ’Books’, ’Patio, Lawn & Garden’, ’Toys & Games’, ’CDs &
Vinyl’, ’Cell Phones & Accessories’, ’Grocery & Gourmet Food’, ’Arts, Crafts & Sewing’,
’Clothing, Shoes & Jewelry’, ’Electronics’, ’Movies & TV’, ’Software’, ’Video Games’,

’Automotive’, ’Pet Supplies’, ’Office Products’, ’Industrial & Scientific’, ’Musical
Instruments’, ’Tools & Home Improvement’, ’Magazine Subscriptions’, ’Baby Products’, ’label

25’, ’Appliances’, ’Kitchen & Dining’, ’Collectibles & Fine Art’, ’All Beauty’, ’Luxury
Beauty’, ’Amazon Fashion’, ’Computers’, ’All Electronics’, ’Purchase Circles’, ’MP3 Players
& Accessories’, ’Gift Cards’, ’Office & School Supplies’, ’Home Improvement’, ’Camera &

Photo’, ’GPS & Navigation’, ’Digital Music’, ’Car Electronics’, ’Baby’, ’Kindle Store’, ’Buy a
Kindle’, ’Furniture & Decor’, ’#508510’]\nPlease predict the most likely category of this

product from Amazon. Please output in the form [’your category’].
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Table 10. The {Task Instruction w/ Neighbor} in Table 2.

{Task Instruction w/ Neighbor}
Cora Task: \nThere are following categories: \n[’Rule Learning’, ’Case Based’, ’Genetic

Algorithms’, ’Theory’, ’Reinforcement Learning’, ’Probabilistic Methods’, ’Neural
Networks’]\nWhich category does this paper belong to?\nPlease comprehensively consider the
information from the categories of the neighbors, and output the most 1 possible category of

this paper. Please output in the form: Category: [’category’]

PubMed Question: Does the paper involve any cases of Type 1 diabetes, Type 2 diabetes, or
Experimentally induced diabetes? Please give one of either [’Type 1 diabetes’], [’Type 2
diabetes’], or [’Experimentally induced diabetes’]. Please comprehensively consider the
information the information from the title, abstract and neighbors, and do not give any

reasoning process. Output the most 1 possible category of this paper as a python list and in the
form Category: [’XX’].

CiteSeer Task: \nThere are following categories: \n[’Agents’, ’Machine Learning’, ’Information
Retrieval’, ’Database’, ’Human Computer Interaction’, ’Artificial Intelligence’]\nWhich

category does this paper belong to?\nPlease comprehensively consider the information from
the article and its neighbors, and output the most 1 possible category of this paper as a python

list and in the form Category: [’XX’]

Ogbn-arxiv Please comprehensively consider the information from the categories of the neighbors and
predict the most appropriate arXiv Computer Science (CS) sub-category for the paper. The

predicted sub-category should be in the format [’cs.XX’].

Ogbn-products Task: \nThere are following categories: \n[’Home & Kitchen’, ’Health & Personal Care’,
’Beauty’, ’Sports & Outdoors’, ’Books’, ’Patio, Lawn & Garden’, ’Toys & Games’, ’CDs &
Vinyl’, ’Cell Phones & Accessories’, ’Grocery & Gourmet Food’, ’Arts, Crafts & Sewing’,
’Clothing, Shoes & Jewelry’, ’Electronics’, ’Movies & TV’, ’Software’, ’Video Games’,

’Automotive’, ’Pet Supplies’, ’Office Products’, ’Industrial & Scientific’, ’Musical
Instruments’, ’Tools & Home Improvement’, ’Magazine Subscriptions’, ’Baby Products’, ’label

25’, ’Appliances’, ’Kitchen & Dining’, ’Collectibles & Fine Art’, ’All Beauty’, ’Luxury
Beauty’, ’Amazon Fashion’, ’Computers’, ’All Electronics’, ’Purchase Circles’, ’MP3 Players
& Accessories’, ’Gift Cards’, ’Office & School Supplies’, ’Home Improvement’, ’Camera &

Photo’, ’GPS & Navigation’, ’Digital Music’, ’Car Electronics’, ’Baby’, ’Kindle Store’, ’Buy a
Kindle’, ’Furniture & Decor’, ’#508510’]\nPlease predict the most likely category of this

product from Amazon. Please output in the form [’your category’].
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