
On Analyzing Graphs with Motif-Paths

Xiaodong Li†, Reynold Cheng†, Kevin Chen-Chuan Chang‡,
Caihua Shan†, Chenhao Ma†, Hongtai Cao‡

†Department of Computer Science, University of Hong Kong, Hong Kong SAR
‡Department of Computer Science, University of Illinois at Urbana-Champaign, USA

{xdli,ckcheng,chshan,chma2}@cs.hku.hk;{kcchang,hongtai2}@illinois.edu

ABSTRACT

Path-based solutions have been shown to be useful for various
graph analysis tasks, such as link prediction and graph clustering.
However, they are no longer adequate for handling complex and
gigantic graphs. Recently, motif-based analysis has attracted a lot
of attention. A motif, or a small graph with a few nodes, is often
considered as a fundamental unit of a graph. Motif-based analysis
captures high-order structure between nodes, and performs better
than traditional łedge-based” solutions. In this paper, we study
motif-path, which is conceptually a concatenation of one or more
motif instances. We examine how motif-paths can be used in three
path-based mining tasks, namely link prediction, local graph clus-
tering and node ranking. We further address the situation when two
graph nodes are not connected through a motif-path, and develop
a novel defragmentation method to enhance it. Experimental re-
sults on real graph datasets demonstrate the use of motif-paths and
defragmentation techniques improves graph analysis effectiveness.
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1 INTRODUCTION

Motif-based analysis has recently emerged as an important tool for
discovering insight from graphs. A motif, which is also known as
higher-order structure or graphlet, is a small subgraph pattern [2,
34]. As pointed out by [5], a motif is a fundamental building block of
large and complex networks, and it enables łhigher-order semantics”
analysis. Fig. 1(a) illustrates several instances of łtriangle motif” on
a graph G (e.g., 1-2-3, 1-2-4, and 4-7-6). Motifs have been shown to
be more effective than traditional łgraph-edge-based” solutions in
a range of problems, such as link prediction [1, 7], graph clustering
[5, 21, 40, 44], and node ranking [45].

Another important line of graph analysis solutions exploits the
connectivity between graph nodes. In particular, important paths
between two nodes are first extracted, based on which graph ana-
lytics are performed. For example, as proposed in [20, 31], a link is
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Figure 1: Illustration of (a) Graph G; (b) Higher-order graph

of G with triangles. Motif-instances of G are marked in cir-

cles and a link between two circles means that they share at

least one node. Amotif-path between 3 and 9 is highlighted.

predicted to exist between two nodes s and t with a higher prob-
ability, if there are many short paths between s and t . Path-based
solutions are also commonly used in tasks such as graph clustering,
node ranking, and node relationship analysis [27, 28, 44].

In this paper, we ask a question: can we incorporate the use of
motifs in path-based solutions, in order to enhance graph analysis
effectiveness? For example, given two nodes s and t on a graph
G, and a motif τ , it may be useful to find a sequence of τ ’s graph
instances (namely motif-instances) that connect s and t , rather than
a sequence of edges which form the traditional paths between s

and t . We call this sequence motif-path and use the number of
motif-instances in the sequence as the path length, following that
the length of the traditional path is the number of edges. Fig. 1(a)
illustrates the motif-path between nodes 3 and 9, which is a se-
quence of triangle motif-instances (in gray). Fig. 1(b) shows the
higher-order graph of G which organizes all the motif-instances of
triangle (e.g., nodes 1-2-4) in dashed circles, where the link between
two circles means that the corresponding motif-instances share at
least one common node. In this paper, we study how motif-paths
can be incorporated to three major classes of graph analysis tasks,
namely link prediction, local graph clustering, and node ranking.
To achieve this goal, we first propose efficient online and offline
algorithms to find the motif-paths and then develop the metrics
based on motif-paths in several graph mining solutions.

Challenges. To adopt motif-paths in graph analysis tasks, we
face two major challenges. First, as we will explain, the shortest
motif-path between two given nodes needs to be extracted, i.e., the
smallest number of motif-instances in the motif-path, as shown in
Fig. 1(b). However, finding it directly from the higher-order graph is
not possible. On the one hand, the combinatorial number of motif-
instances has to be enumerated, the cost of which can be very high
even for a moderate-size graph; on the other hand, the higher-order
graph can not bematerialized because large amount of space needed.
To tackle this issue, we develop fast offline and online algorithms,
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which enable us to find the shortest motif-path between two nodes
quickly. The second issue is that the higher-order graph is usually
fragmented into many connected components even though the orig-
inal graph is connected. Then for two given nodes s and t on graph
G , a motif-path may not be found between s and t . This can happen
when two motif-instances do not have any nodes in common; con-
sequently, there does not exist a motif-path between s and t that
can traverse a sequence of motif-instances. This łfragmentation”
can affect the effectiveness of our solutions. To tackle this problem,
we propose a solution that connects isolated motif-instances with
the edges in G while preserving the higher-order graph structures.

Contributions.We first formulate the notions of motif-paths.
We then study a framework for incorporating motif-paths in link
prediction, local graph clustering, and node ranking. We also de-
velop novel motif-path-based metrics for these applications. With
a novel indexing framework, we study efficient offline and online
algorithms for finding shortest motif-paths, and address the frag-
mentation problem with a simple but effective solution that links
isolated motif-instances. Extensive experiments on several real
graph datasets reveal that compared with existing path-based solu-
tions, our methods achieve an improvement of up to 41% in terms of
effectiveness for link prediction, 10% for local graph clustering, and
8% for node ranking. Our solutions are also 5 − 10% more effective
than the state-of-the-art motif-based approaches.

The paper is organized as follows. We review the related work
in Section 2. We discuss the definitions and algorithms in Section 3.
Section 4 proposes a new motif-path framework for graph mining
tasks. We handle the higher order graph fragmentation in Section
5. In Section 6 we evaluate the performance. Section 7 concludes.

2 RELATEDWORK

In this section, we survey the work about the motif-based analysis
and the path-based analysis respectively in the graph mining area.

Motif-based analysis. Motifs are small building blocks of a
large graph [5, 18, 26, 32, 36]. Since motifs can capture high-order
structure of a graph, they are used in a number of graph mining
tasks, such as graph clustering [5, 21, 40, 44], node ranking [45], and
link prediction [1, 7]. For example, motif-based graph clustering
extends the notion of graph conductance to motif-conductance, by
enumerating motif-instances rather than edges for a cluster [5, 21,
40, 44]; motif-based node ranking employs motif-based authority,
which is computed by running PageRankwith respect tomotifs [45];
motif-based link prediction finds motif-based feature vectors for
each missing link, e.g., the number of motif-instances that contains
the end points of the missing link [1]. These solutions have been
shown to be better than existing łedge-based” approaches, which
only use graph edges in the mining process.

Path-based analysis.Another branch of works in graphmining
are path-based [6, 11, 12, 14, 20, 22, 25, 31], i.e., the path-based
information of a graph is used in the mining process. For example,
in [20], links are predicted by analyzing the length and number of
the paths that connect the pair of nodes of interest. In [31], nodes
are clustered based on the shortest path distance. The authors in
[6] show that graph nodes can be ranked based on the number of
shortest paths passing through them.

Only a few works study the connectivity between two nodes
with respect to a given motif. Huang et al. [16] develop a k-truss
community model based on the connectivity between triangles.
Two nodes are in the same community if they are reachable from
each other through a series of adjacent triangle-instances. Howev-
er, the concept of a path of motif-instances is not proposed, and
only triangles are supported. Motif-based random walk is designed
to calculate the motif-based conductance and authority, which is
further used for clustering [21, 40, 44] and node ranking [45]. To
perform a motif-based random walk, these papers first generate a
motif-adjacency matrix, where each element in the matrix denotes
the number of motif-instances containing the corresponding pair
of nodes. Then they run a typical random walk on it. However, as
pointed by [40], the time cost of motif-adjacency matrix is high
thus only triangles are supported in the current research scope. To
our best understanding, previous work has not studied motif-path.
In this paper, we propose elegant definitions and fast searching
algorithms of motif-path, as well as the use of it in the three funda-
mental graph mining problems ś link prediction, clustering, and
node ranking. Since a motif-path captures high-order structure
between two nodes, with appropriate adaptations, better effective-
ness can be achieved in these graph mining tasks compared with
motif-based or path-based solutions. We remark that our solution
can support current popular motifs (e.g., 2-5 nodes motifs).

3 MOTIF-PATH

In this section, we introduce the definition and searching algorithms.
We define the shortest motif-path search problem in Section 3.1,
and develop offline and online algorithms in Section 3.2.

3.1 Problem Definition

Before defining the motif-path, we first introduce motif-instance

and motif-connectivity in graph G = (V ,E)1.

Definition 1 (Motif-instance [2]). Given a graphG = (V ,E)

and a motif τ = (Vτ ,Eτ ), the motif-instancem = (Vm ,Em ) of τ is a

subgraph of G which is isomorphic to τ , denoted asm ≃ τ .

Definition 2 (Motif-connectivity). Given twomotif-instances

ms ≃ τ andmt ≃ τ in G ,ms andmt are τ -connected, if there exist a

sequence of motif-instances <m1, . . . ,mn> in G, where n ≥ 2, such

thatm1 =ms ,mn =mt , and for 1 ≤ i < n,mi ≃ τ ,Vmi ∩Vmi+1 , ∅.

Motif-instancesmi andmj are τ -adjacent if they are τ -connected with

n = 2, meaning thatmi andmj share at least one common node.

Definition 3 (Higher-Order Graph). Given G = (V ,E) and

motif τ , the higher-order graph ofG , denoted as G, is an organization

of the motif-instances of τ in a graph manner: each node is a motif-

instance and there is an edge if the two motif-instances are τ -adjacent.

As shown in Definition 1, motif-instance is the subgraph of G
that is isomorphic2 to the motif. For example, nodes (1, 2, 3) form
the motif-instance of triangle in Fig. 1(a). Two motif-instances of
motif τ are τ -connected if there is a sequence of motif-instances
between them (i.e., Definition 2). Motif-connectivity, also known as

1Unless otherwise stated, the graph is connected, unweighted and undirected.
2Here we use node-induced subgraph to check isomorphism, which is a popular setup
[2, 30]. The framework can be extended for non-induced subgraphs.
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higher-order connectivity is used in searching higher-order compo-
nents [21] and motif-based random walk [8]. Note that the triangle-
connectivity from [9, 16] is a special case of motif-connectivity.

Thus a motif-path betweenmi andmj is a sequence of τ -adjacent
motif-instances that link mi and mj . Next, we define the length
of the motif-path. In the traditional graph, the path length is the
number of graph edges on the path. Since the original graph G is

a special case of the higher-order graph, e.g., with edge used

as the motif. To make the path length from the two presentations
consistent, we use the number of the motif-instances on the motif-
path as its length. With this definition, it is easy to show that the
shortest path distance always equals to the shortest motif-path
distance when using edge as the motif pattern.

In this paper, we find shortest motif-path from the higher-order
graph, denoted as P, where the number of motif-instances in the
sequence is minimized. Also, to apply the motif-path into graph
mining tasks, we study the shortest motif-path between nodes
(s, t ) ∈ V ×V , denoted asPs,t (i.e., Definition 4).We denote |Ps,t | as
the path length, i.e., the number of motif-instances in the sequence.
For example, |P3,9 | = 4 in Fig. 1(b) (the red path).

Definition 4 (ShortestMotif-path). GivenG = (V ,E), (s, t ) ∈

V ×V and motif τ , the shortest motif-path Ps,t is the motif-path with

minimum number of motif-instancesmi where:

(1) mi ≃ τ , i = 1, 2, ..., |P |;

(2) Two endpoints s ∈ Vm1
and t ∈ Vm |P | .

(3) |Vmi ∩Vmi+1 | ≥ 1, i = 1, 2, ..., |P | − 1.

Whyshortestmotif-path? First, the rise of higher-order graph
[4, 21, 40] calls for the need of developing a theoretical tool to ana-
lyze its properties, and a shortest motif-path algorithm is easy to
be adapted to quantify the properties of the higher-order graph
(e.g., diameter and connected component), which can benefit the
mining methods, e.g., the defragmentation in Section 5. Second, the
shortest path distance is treated as an important feature in graph
mining, and as we will show, the shortest motif-path based solu-
tion can obtain good effectiveness by combining this feature with
higher-order graph structures. Next, we develop offline and online
algorithms to find shortest motif-path efficiently, making it possible
to develop graph mining solutions based on shortest motif-paths.
Finally, the framework introduced in the paper can be extended to
answer several interesting variants. For example, it is interesting
to extend łshortest" into an enriched scoring function (e.g., most
diverse motif-path), and extend the definition of motif-connectivity
(e.g., the neighboring motif-instances should share an edge). The al-
gorithms can also be extended to find motif-paths in labeled graphs,
e.g., heterogeneous information networks.

3.2 Shortest Motif-path Searching

However, it is not feasible to directly search shortest motif-path
Ps,t from the higher-order graph G. We demonstrate the reason in
the baseline algorithm as below.

3.2.1 A BaselineMethod. First, we generate the higher-order graph
G by enumerating the motif-instances of τ . It takes O (θh2) opera-

tions where h = |Vτ | and θ =
(

|V |
h

)

. In the worst case, lines 2-5 of
Algorithm 1 search all-pairs shortest motif-paths in G, which costs
O (θ3) by Floyd-Warshall algorithm [38]. We find that it is even not

possible to run the baseline for a moderate-size graph because of
combinatorial complexity.

3.2.2 A Novel MOD-Index. Since the high complexity of the base-
line, it is reasonable to use index to speed up the searching pro-
cess. However, it is challenging due to the combinatorial number of
motif-instances. For example, the number of 5-node motif-instances
around the single node can be four to six magnitudes bigger than
the size of the original graph [37]. More worse, it is time-consuming
to re-compute the index when the user switches the motifs, thus
a generic indexing framework for different motifs is required. We
notice that even though there are combinatorial number of motif-
instances, many of them are in fact redundant in terms of shared
substructures. To efficiently organize them, we use the motif-orbits.

Algorithm 1 Shortest Motif-Path Baseline (Base)

Input: G = (V , E ), τ , (s, t ) ∈ V ×V ;
Output: |Ps,t |

1: D ← ∞, construct the higher-order graph G from G ;
2: S ← {m |s ∈ Vm,m ≃ τ }, T ← {m |t ∈ Vm,m ≃ τ };
3: formi ∈ S,mj ∈ T do

4: P ←shortest sequence ofm ≃ τ linkingmi andmj in G.
5: Update D ← |P | if D > |P |;

6: return D .

Definition 5 (Motif-orbit[41]). Given motif τ , nodes a ∈ Vτ
and b ∈ Vτ are in the same orbit if there is an injective mapping

f : Vτ → Vτ with fa = b and fb = a such that (u,v ) ∈ Eτ ⇐⇒

( fu , fv ) ∈ Eτ . Motif-orbit is the motif with seed node on each orbit.

For example, triangle only has one motif-orbit (e.g., τ3,1 in Fig. 2)
and the tailed-triangle has three motif-orbits (e.g., τ4,1, τ4,2 and τ4,3
in Fig. 2). Based on these motif-orbits, we propose the Motif-Orbit-
Decomposition Index, namely MOD-Index. It is a triplet (s,T ,M ),
where s ∈ V is the seed node and M = {m |s ∈ Vm } is the set of
motif-instances to be indexed. T = (B,T ) is the organization of the
index, where B is the set of motif-orbits andT is the index structure,
e.g., the linkages among different motif-orbits. For each node, we
construct a MOD-Index to organize the motif-instances around it.

For each motif-orbit τi, j ∈ B, there is a set of motif-instances
Mi, j ⊆ M attached to it, where Mi, j = {m |m ≃ τi, j&fs = seed }.
Here fs = seed means that node s from the motif-instance should
be mapped to the seed of the motif-orbit. To handle possible queries
with different motifs, we need to index all the motif-orbits from
the possible motifs. In this paper, we focus on the motifs τ where
|Vτ | < 6, which is a common set up in the motif counting and
analysis area3 [2, 10, 15, 37, 39]. For example, Fig. 2 shows part of
the index, which indexes seven motifs:

τ1 , τ2 , τ3 , τ4 , τ5 , τ6 and τ7 .

We describe the building process of the MOD-Index in Algorithm
2. Given the graphG , a set of motifsM, the first step is to construct
the organization of motif-orbits T = {B,T }. As mentioned before,
we detect motif-orbits following Definition 5 (line 1), and organize
them in two directions in order to detect common sub-structures
(line 2). In the vertical direction, the motif-orbits are organized by
the shared common sub-structures (marked by dashed rectangle in

3Theoretically speaking, the framework supports arbitrary size ofmotif, but the number
of motifs increases exponentially as the size of motif rises. Thus the motifs of 2-5 nodes
provide good tradeoff between the practical usage and complexity [8].
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Figure 2: Indexing the orbits of motifs {τi |i=1, ..., 7}
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Fig. 2), e.g., τ5,2 and τ4,3 share τ3,1. To detect the shared common
sub-structures, we expand from the seed in each motif-orbit step
by step and see if there is any common sub-structure. If so, we
merge the corresponding motif-orbits by the same parent. Note
that in each step, we only expand one layer from the seed. In the
horizontal direction, the motif-orbits of the same parent are or-
ganized by the number of edges, e.g., from τ1,1 to τ2,1 and finally
τ5,1 (marked by dashed arrow in Fig. 2). There are two benefits for
such organizations in the following materializing operations. First,
the incremental searching manner reuses the current searching
results, which are then extended to bigger motif-orbits. Second,
the motif-instances sharing common sub-structures are thus com-
pressed to reduce space cost. Note that T is independent from
the data graph and it can be calculated in constant time since the
number of motif-orbits are small and fixed.

Next, we materialize the motif-instances into the corresponding
motif-orbits. For each node s ∈ V , we use it as the seed node
and initialize a queue Q for it. In the queue, each motif-orbit τ̄ is
associated with the matched motif-instances by τ̄ .ins (lines 4-11).
For each motif-orbit popped out from the queue, its child motif-
orbit τ̄ ′ will be enumerated in the horizontal order. Then the motif-
instances of τ̄ ′ can be expanded from two direction: its parent τ̄
(vertical direction) or its precursor τ̄ ′.last (horizontal direction).
We compare the cost of the two directions and use the one with
smaller cost to expand. For example, τ4,1 is better expanded from
τ3,1 rather than from the seed. We record the expanding trace and
thus only need to materialize the new nodes and edges from last

motif-instances. There are at most N s
τ ′
=

(

d
ϕτ ′
max

|Vτ ′ |

)

motif-instances

that contain node s to be materialized, where ϕτ ′ is the biggest
shortest path distance that starts from the seed in the motif-orbit
τ ′ ∈ B (e.g., ϕτ5,1 = 1 and ϕτ5,2 = 2) and dmax is the maximum
degree. Therefore, the space cost of MOD-Index is

∑

s ∈V
∑

τ ′∈B N s
τ ′
.

We demonstrate the materializing process of τ6 in Table 1. Given
s as node 9 from Fig. 1(a), we find from B that τ6 has four motif-
orbits τ6, j , j = 1, ..., 4, and extract their organizations from T , e.g.,
Fig. 3(a). It is easy to find that there is no motif-instances of τ2,1, τ4,1
or τ5,1, thus no motif-instances can be materialized for τ6,1 or τ6,2.

4Here we use τi, j to denote a motif-orbit, where i is the id of the motif and j is the
orbit-id of motif τi .

Instead, τ1,1 and τ3,1 get materialized in the first layer, then τ2,2 and
τ4,3 got materialized in the second layer, and finally τ6,3 and τ6,4
got materialized in the third layer. In this process, we do not need to
enumerate all the permutations and terminate the searching process
when there is no further instances to be matched. Though we show
all the nodes of each motif-instance in Table 1, only new nodes need
to be materialized in the index, since the common substructures
are already materialized in layers above.

Algorithm 2 MOD-Index Construction (MODC)

Input: G = (V , E ),M, k

Output: Φ

1: B ← {τi, j |τi, j is motif-orbit of τi , τi ∈ M};
2: T ←organizations of B from vertical and horizontal directions;
3: T ← (B, T ), Φ← ∅;
4: for s ∈ V do

5: M ← ∅, Q ← ∅, seed .ins ← {s }, Q .enqueue (seed );
6: while Q , ∅ do

7: τ̄ ← Q .dequeue (), H ← τ̄ .ins, M ← M ∪ H ;
8: if τ̄ .level < k then

9: for each child τ̄ ′ of τ̄ in horizontal order do
10: H ′ ← expanding from τ̄ .ins and τ̄ .last .ins ;
11: τ̄ ′.ins ← H ′, Q .enqueue (τ̄ ′);

12: Φ← Φ ∪ (s, T , M );

13: return Φ.

After materializing the motif-orbits, we can directly query the
motif-instances around a specific node, as well as the ones that are
τ -adjacent to them, simply by switching the seed node. However,
sometimes it is suggested to only materialize part of the index to
reach a better tradeoff between the query time and the space cost,
especially when the space is limited. In Algorithm 2, we control it by
a parameter k , e.g., only materializing the motif-orbits in the top-k
layers of T . Then in the online querying process, there are two
cases when accessing the MOD-Index: the motif-instancesm ≃ τ

can be directly accessed if all motif-orbits of τ are materialized in
the top-k layers; otherwise, we need to expand from the current
materialized motif-orbits to findm ≃ τ .

Algorithm 3 MOD-Index Query (MODQ)

Input: τ , q ∈ V , Φ

Output: M

1: M ← {τ ′ |τ ′ is a motif-orbit of τ }, M ← ∅;
2: for τ ′ ∈ M do

3: if ϕτ ′ ≤ Φ.k then M ← M ∪ Φq .τ
′.ins ;

4: else τ̂ ← nearest precursor of τ ′ in Φ that is materialized;
5: form ∈ Φq .τ̂ .ins do

6: M ← M ∪ {m′ |m′ ≃ τ ′&m′ ∈ m };

7: return M .

We summarize the accessing of MOD-Index in Algorithm 3. Giv-
en the query node q and the motif τ , the algorithm returns the set
of motif-instances that contain q and isomorphic to τ with the help
of the MOD-Index Φ. For the motif-orbit τ ′ which is materialized
in Φ (i.e., ϕτ ′ ≤ Φ.k where Φ.k is the materializing level of Φ), we
directly access the motif-instances around node q in O (1), denoted
as Φq .τ ′.ins (line 3); for those not materialized, we expand from the
current materialized motif-orbits (lines 4-6). To help expand from
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of the index to find organizations of τ6,3 (top) and τ6,4 (bot-

tom). (b) Detect expansive nodes and their expansive degree

by edge-cover from i-th hop to (i + 1)-th hop from the seed.

current materialized motif-orbits, we define the expansive nodes, i.e.,
the nodes in the motif-orbit whose neighbors will be searched for
further expansion. The expansive nodes are marked dashed pink in
Fig. 2. For example, given the motif-instances of τ2,2 materialized
in the index, the instances of τ6,3 can be found by expanding the
corresponding dashed pink node of τ2,2. To detect the expansive
nodes automatically, we first rank the nodes in the motif-orbit ac-
cording to its distance to the seed. Then we only search for the
neighbors of the nodes at the bottom of the motif-orbit (e.g., i-th
hop of τ̄ in Fig. 3(b)). In other words, the expansive nodes must be
the furthest nodes from the seed in the current motif-orbit. Then
we use minimum number of edges from these nodes to cover the
nodes in the (i + 1)-th hop of τ̄ ′, where τ̄ ′ is the child of τ̄ in T . For
example, we can discover all the new nodes by the solid lines in
Fig. 3(b), and the endpoints of the solid lines in τ̄ are the expansive
nodes of τ̄ . In this manner, the expanding strategy does not discov-
er motif-instances repeatedly. Therefore, we do not need to check
whether the discovered motif-instances are duplicated (the motif
enumerating algorithms that allow duplicates will lead to wrong
results in the motif-path based applications), and thus time is saved.

Note that each expansive node is associated with an expansive

degree, denoting the number of nodes to be expanded. For example,
the expansive degree of the expansive nodes in Fig. 3(b) are 1,2,2

respectively. Therefore, each expansion costs
(

dmax

de

)

where de is the

maximum expansive degree. We show in the supplement material
thatde ≤ 2 in most expansion cases [24]. Since there are at mostϕτ ′

times expansion, the expansion costs O (
(

dmax

de

)ϕτ ′

). Therefore, par-

tial materialization decreases the space cost from
∑

s ∈V
∑

τ ′∈B N s
τ ′

to
∑

s ∈V
∑

τ ′∈Bk N
s
τ ′
, in the cost of another O (

(

dmax

de

)ϕτ ′−k
) expan-

sion in the online querying phase when ϕτ ′ > k . Here Bk is the set
of motif-orbits in the top-k levels of T . Note that we can also use
the expansive nodes to construct the MOD-Index, which means the

time complexity of MODC is O (
∑

s ∈V
∑

τ ′∈Bk

(

dmax

τ ′ .de

)k
) where τ ′.de

is the expansive degree of motif-orbit τ ′. We report the proof in sup-
plemental material [24]. The MOD-index provides more chances
for direct access when more layers of T are materialized, in the cost
of more space overhead. As we will show in the experiment part,
the time-space tradeoff can be balanced by tuning the parameter k .

5Here p.g. denotes pattern graph (the branch of T in the MOD-Index) and d.g. denotes
data graph (the matching results).

Table 1: Demonstration of materializing τ6 from Fig. 2, with

node 9 as the seed and expansive nodes marked bold5.

τ6,3

p.g. α → α β → α βγ → α βγδϵ

d.g.
9 → 98 → 987 → terminate.
→ 96 → 967 → terminate.

→ 964 → 96412

τ6,4

p.g. α → α βγ → α βγδ → α βγδϵ

d.g.
9 → 986 → 9864 → 98641

→ 98642

→ 968 → terminate.

3.2.3 A Heuristic Algorithm. Given the source node s , we first
search all motif-instances containing s with the help of the MOD-
Index. After that, we use another node in the motif-instance as the
seed for searching motif-instances. The process is repeated until tar-
get node t is discovered. However, it is possible to detect motif-path
containing redundant motif-instances. For example, from node 3 in
Fig. 1(a), the 2-hop (3→ 1→ 2) and (3→ 2→ 1) actually find the
same triangle. Removing duplicates is expensive. We avoid adding
duplicate motif-instances into motif-path by introducing Lemma
1, with three status marked on each node: łsearchedž, łdiscoveredž
and łundiscoveredž. We call a node łsearched” if it has been used
as the seed and thus all motif-instances containing this node has
been searched. A node is marked as łdiscovered” once this node
has been discovered by any motif-instance at the current time. For
other nodes, we call it łundiscovered”.

Lemma 1. An incremental search fulfilling c1, c2 and c3 will find

the shortest motif-path without exploring redundant motif-instances.

c1. motif-instance containing any łsearchedž-node should not be

added into any shortest motif-path candidate;

c2. only select node with status łdiscoveredž as next seed;

c3. only add the motif-instances with at least one łundiscoveredž

node into the shortest motif-path candidate.

Limited by the space, we put the proof of Lemma 1 in supplemen-
tal material [24]. Besides the incremental search manner described
above, the searching direction may be far from optimal. In other
words, it is essential to develop a method to select better seeds
to pass to the MOD-Index for processing in the next step, which
may lead the motif-path to reach target node t earlier. To reduce
the searching space, we generalize the heuristic search to support
shortest motif-path search. It can speed up the searching process
by selecting seed smartly from candidates of Ps,t . We maintain a
priority queue to store the nodes marked as łdiscovered" currently,
and for each node p in the priority queue, we estimate its shortest
motif-path distance to t from s via the current łdiscovered" node
p. Then we select the node in the priority queue with shortest es-
timated motif-path distance as the next seed, since this candidate
may obtain higher probability to be the shortest motif-path.

We achieve the shortestmotif-path estimation by |P
p
s,t | = |Ps,p |+

h(p, t ),h(p, t ) ≤ |Pp,t |. Here Ps,p is the shortest motif-path from
s to the current łdiscovered" node p, which is already found out,
and h(p, t ) is the heuristic function which can estimate the lower
bound of |Pp,t |. Therefore, the length of shortest motif-path via

node p, denoted as |P
p
s,t | can be estimated.
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We use h(p, t ) = |Pp,t |/Θτ to provide lower bound for |Pp,t |,
where |Pp,t | is the shortest path distance between p and t in graph
G, and Θτ is the diameter of the motif τ . The function uses the
diameter of the motif to cover the shortest path, thus providing a
lower-bound to the shortest motif-path distance. Since the shortest-
path distance are widely supported in the popular graph databases
nowadays, the lower-bound can be calculated efficiently. In this
paper, we pre-calculate the shortest-path distances in the offline
phase when building the MOD-Index and attach them into the
MOD-Index for further queries. The pseudocodes of shortest motif-
path search is described in Algorithm 4. According to Lemma 1,
SMP will call function MODQ at most |V | times, each with a cost of
O (1) with materialized motif-orbits in the MOD-Index, or with a
higher expanding cost. We analyze the complexity in supplemental
material [24].

Algorithm 4 Shortest Motif-Path (SMP)

Input: G = (V , E ), τ , (s, t ) ∈ V ×V

Output: |Ps,t |

1: Q ← ∅, d ← ∞;
2: Q .enqueue (s );
3: while Q , ∅ & t is not discovered do

4: Rank p ∈ Q according to |P
p
s,t |;

5: q ← Q .dequeue ();
6: M ←MODQ(τ , q, Φ), and remove m from M where m contains

łsearched” nodes or all node inm are marked łdiscovered”;
7: Mark q as łsearched”;
8: for v ∈ Vm,m ∈ M , v is łundiscovered” do
9: Mark v as łdiscovered”;
10: if v = t then return |Ps,t |;

11: Q .enqueue (v );

12: return∞.

3.2.4 A Two-Phase Algorithm. Aswewill discuss in Section 4, some
graph mining tasks ask for all-pairs shortest paths, rather than a
single path. Thus we propose a two-phase algorithm which is more
efficient when there is a need for all-pairs shortest motif-paths.

In this first phase, we compute the motif-adjacency matrixW
with the help of the MOD-Index. We define Wi, j = 1 if ∃m ≃

τ , (vi ,vj ) ∈ Vm × Vm , i , j and otherwise 0. In lemma 2, we
prove that the shortest motif-path distance is equal to the shortest
path distance inW , denoted as dW (s, t ). Limited by the space, we
put the proof in supplemental material [24]. For example, P3,9
is highlighted in Fig. 1(b), and the number of dashed edges in
each motif-instance (i.e. triangle) forms dW (3, 9). In this example,
|Ps,t | = dW (s, t ) = 4.

Lemma 2. |Ps,t | = dW (s, t ).

Lemma 3. Given motif τ , the construction of its motif-adjacency

matrixW only requires materializing one motif-orbit τ̄ .

Thus in the second phase, the all-pairs shortest motif-path dis-
tance can be calculated by a traditional unweighted algorithm, e.g.,
breadth-first search of |V |-rounds. Therefore, the key point of the
two-phase algorithm is the construction of the motif-adjacency
matrix W . As shown in Lemma 3, we only need to match one
motif-orbit of τ to buildW . Limited by space, we prove it in sup-
plement [24]. To reduce the possible expanding cost, we choose
the motif-orbit in the top layer of T , demoted by τ ∗, because it

is of higher probability to be materialized, and of less expanding
cost if not so. For example, τ6,1 in Fig. 2 should be used when
τ6 serves as the query motif. Every time we find a new motif-
instancemτ ∗ , we mark the corresponding elements in the matrix,
e.g.,Wi, j =Wj,i = 1, (i, j ) ∈ Emτ ∗

. Therefore, for the first phase, it

costs O (
(

d
ϕτ
max

|Vτ |

)

) to getWi, j if the motif-orbits of τ are materialized

in the index; otherwise, we call MODQ(τ ∗,q,Φ) of O ( |V |) times to

search for the motif-instances and another O (
(

d
ϕτ
max

|Vτ |

)

) cost to obtain

Wi, j . Note that we pass τ ∗ to MODQ to makeM ← {τ ∗} (line 1 in
Algorithm 3) for speedup. For the second phase, the all-pair shortest
path search costs O ( |V |( |V | + |EW |)) where |EW | is the edge set of
the motif-adjacency matrix.

4 MOTIF-PATH BASED GRAPH MINING

In this section, we start applying motif-path into graph mining,
including missing link prediction (cf. Section 4.1), local graph clus-
tering (cf. Section 4.2) and node ranking (cf. Section 4.3).

4.1 Motif-path based Link Prediction

In this section, we use motif-path to predict the missing link be-
tween two nodes, by extending the popular path-based approaches,
Katz Index and Graph Distance, into motif-path based versions.
Katz Index (KI) [17]. A potential missing link is likely to have
more short paths between the query nodes.
Graph Distance (GD) [20]. A potential missing link is likely to
have small shortest path distance between the query nodes.

Given a pair of nodes (x ,y) to be predicted, each approach will
generate a score д(x ,y), denoting the probability that there is a
missing link between x and y, which can be formally defined as
below: дKI (x ,y) =

∑L
l=1

ϵl−1 · |Plx,y |, дGD (x ,y) = 1
|Px,y |

;

дMKI (x ,y) =
∑L
l=1

ϵl−1 · |MPlx,y |, дMGD (x ,y) = 1
|Px,y |

.

Here Plx,y = {Px,y | |Px,y | = l } is the set of all length-l paths
between x and y, and ϵ is the weighting parameter (ϵ < 1). Obvi-
ously, the pair of nodes with higher д(x ,y) value is more possible
to form links. Then we extend KI into Motif-path-based Katz Index

(MKI), and GD into Motif-path-based Graph Distance (MGD). Here
MP

l
x,y = {Px,y | |Px,y | = l } is the set of motif-paths between x and

y with length l . The pseudocodes of applying motif-path in link pre-
diction is described in Algorithm 5. Note that L and ϵ are the system
parameters in MKI. We use SMP to answer MGD (so MGD shares the

Algorithm 5 Motif-path based link prediction

Input: G = (V , E ), τ , (s, t ) ∈ V ×V & (s, t ) < E

Output: д (s, t )

1: #Motif-path based Graph Distance (MGD)
2: |Ps,t | =SMP(G, τ , s, t );
3: return дMGD (s, t ) = 1

|Ps,t |
.

1: #Motif-path based Katz Index (MKI)
2: C1 ← {s };
3: for l ← 1 : L do

4: M ←MODQ(τ , p, Φ), p ∈ Cl ;
5: |MPls,t | ← | {t

′ |t ′ ∈ Vm,m ∈ M, t ′ = t . } |;
6: Cl+1 ← {x |x < Cl , x ∈ Vm,m ∈ M . };

7: return дMKI (s, t ) =
∑L
l=1

ϵ l−1 · |MPls,t |.
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Figure 4: PPI complex discovery in EXTE by (a) shortest path

distance and (b) shortest motif-path distance with triangle.

same complexity as SMP) and its variant to answer MKI. For MKI, we
search L layers with respect to motifs, each in a round of calculation.
In the l-th round, we calculateM, |MPlx,y | and update the layer of
searched nodes into Cl+1. Note thatM is the motif-instances that
contain x ∈ Cl , and |MP

l
x,y | is calculated by counting the number

of motif-instancesm such that t ∈ Vm&m ∈ M . Since MKI needs
to enumerate multiple motif-paths, the node status described in
Lemma 1 need to be removed from MKI. For example, the status
łsearched” should not work in MKI, because MKI may pass the seed
node multiple times even though the motif-instances containing it
have been enumerated. Therefore, MKI at most calls MODQ for O ( |V |)
times in each layers of searching. Limited by space, we analyze the
time and space complexities in the supplemental material [24].

4.2 Motif-path based Local Graph Clustering

Recently, many studies [40, 44] demonstrate that using motifs as
higher-order structure can improve the effectiveness of graph clus-
tering. In this section, we demonstrate that motif-path can improve
the effectiveness of ordinary path-based Local Graph Clustering
(LGC), which typically finds the k-nearest neighbors as the local
cluster. In other words, given a query node s ∈ V , LGC aims to find
the local cluster of s by searching k-nearest neighbors of s with
respect to shortest path distance.

Algorithm 6 Motif-path based Local Graph Clustering (MLGC)

Input: G = (V , E ), τ , k, s ∈ V

Output: C

1: Run SMP(G, τ , s, ∞) until k nodes are marked as łdiscovered";
2: C ← {c |c is marked as łdiscovered"};
3: return C .

Thus we extend LGC by finding k-nearest neighbors with respect
to shortest motif-path distance, namely Motif-path based Local
Graph Clustering (MLGC). It is described in Algorithm 6. Therefore,
MLGC at most calls function MODQ for O (k ) times. Limited by space,
we analyze the time and space complexities in supplement [24]. In
Fig. 4, we show a protein complex composed of four dense sub-
complexes (α , β,γ ,δ ). The value of each pixel is calculated by the
pairwise shortest path distance 1/|Ps,t | (Fig. 4(a)) and shortest motif-
path distance 1/|Ps,t | (Fig. 4(b)) respectively. Observe that the
protein complex is clearly represented based on the motif-path
approach while the shortest path based version is noised.

4.3 Motif-path based Node Ranking

Recently it has been proven that the node ranking results can be
improved with the involvement of motifs [45]. The authors use
motif-based PageRank to measure the authority of the nodes then
rank them accordingly. In this paper, we propose a new method
to rank the nodes based on motif-path. Centrality is an important
property for the graphs, which can select the influential nodes
and thus output a proper ranking. Although there are different
definitions of centrality, betweenness centrality (namely BET) is
seen as one of the most important one [6]. It measures the influence
C (v ) of a given node v by calculating the times that a node appears

in the shortest paths passing it: C (v ) =
∑

s,v,t ∈V
δs,t (v )

δs,t
.

Here δs,t denotes the number of shortest paths from s ∈ V to
t ∈ V and δs,t (v ) denotes the number of shortest paths from s to t
that pass v . After changing the shortest path into shortest motif-
path in BET, we get the motif-path-based betweenness centrality,
namely MBET. Note that MBET requires all-pairs shortest motif-
path, thus we use the two-phase algorithm to calculate the result.
We describe the pseudocodes in Algorithm 7. It is of the same
complexity as the Two-Phase algorithm in Section 3.2.4.

Algorithm 7 Motif-path based Betweenness Centrality (MBET)

Input: G = (V , E ), τ , v ∈ V

Output: C (v )

1: δv ← 0, δ ← 0, generateW from G ;
2: for s, t ∈ V ×V , s , t , v do

3: l ← 1;
4: while t is not discovered inW do

5: Calculate Pls,t onW ;

6: if |Pls,t | > 0 then

7: δv ← δv + | {P
l
s,t |v ∈ P

l
s,t , P

l
s,t ∈ P

l
s,t } |;

8: δ ← δ + |Pls,t |, break;

9: l ← l + 1;

10: return C (v ) = δv /δ .

5 DEFRAGMENTATIONWITH MOTIF-PATH

Recently, it is found that higher-order graph fragmentation is a com-
mon issue for higher-order graph [21, 40, 44, 45]. The performance
of applications like motif-based clustering degrades when higher-
order graph fragmentation occurs [21]. For example, authors in
[21] found that the clustering accuracy is raised by 11% on average
of the four datasets evaluated, after fixing the motif-fragmentation
issue by injecting original graph edges into the higher-order graph.
In this section, we study the defragmentation with motif-path.

As shown in Fig. 5, we calculate the size and the diameter (i.e., the
longest shortest motif-path distance) for each connected component
in the higher-order graph (called motif-component) of AMAZ, a
popular co-purchasing dataset from Amazon [42]. There is only
one point for original graph (marked red) since AMAZ is connected.
Although the original graph is connected, the higher-order graph
tends to be fragmented into a large number of motif-components
and isolated nodes. Also, the motif-components tend to be with
bigger diameter values since many weak edges (e.g., the edges
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that cannot form triangles) are removed when building the higher-
order graph. The connectivity between nodes within different motif-
components disappears in the higher-order graph.
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Figure 5: The effect of higher-order graph fragmentation

from AMAZ with triangle as the motif pattern.

Recently, researchers from [21] propose a defragmentation ap-
proach, which detects motif-components first, then injects the edges
fromG into the higher-order graph to obtain higher clustering effec-
tiveness. However, this approach has a big influence on the higher-
order graph structure, thus is not suitable for use with motif-paths.
As we will show in the evaluations, this approach performs bad
when using motif-path with it. Also, the approach only supports
triangles. Therefore, there is a need to propose a new method to
handle the defragmentation issue, in order to find meaningful motif-
paths for nodes within different motif-components. To preserve
the inner structure of each motif-component, we only inject the
edges from the original graph whose endpoints are within different
motif-components into the higher-order graph, namely bridging

edges. For example, the higher-order graph of Fig. 6(a) is broken in-
to two motif-components when triangle is used as the motif pattern.
To connect the two motif-components into a connected one, edge
(4, 6) is used as the bridging edge and injected into the higher-order
graph G in Fig. 6(b). After injecting the bridging edge (4, 6) from
Fig. 6(a) into the higher-order graph G, the shortest motif-path dis-
tance becomes |P3,9 | = 4. Besides, this approach is more efficient
than the approach from [21]. As we will show in Section 6, the
number of bridging edges is much smaller than the number of the
injected edges from [21], making it applicable for large graphs.
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Figure 6: Connect the motif-components by injecting the

bridging edges (marked red) from (a) graph G to (b) higher-

order graph G. The shortest motif-path between nodes (3, 9)

is highlighted. The triangle is used as the motif pattern.

After injecting the edges, we search shortest motif-path, namely
enhanced shortest motif-path (ESMP) with respect to both motif-
instances and the injected bridging edges. To search the enhanced
shortest motif-path, we first search the τ -connectedmotif-instances,
and only employ bridging edges when the target node is not reach-
able from the source node via motif-instances. In Fig. 6, starting
from node 3, we search bridging edges to discover node 9 after
searching all the nodes in the motif-component that contains node
3. The pseudocodes are described in Algorithm 8. ESMP calls MODQ
at most O ( |V |) times during the path search with another O ( |E |)
searching for bridging edges.

Algorithm 8 Enhanced Shortest Motif-path (ESMP)

Input: G = (V , E ), τ , (s, t ) ∈ V ×V

Output: |Ps,t |

1: Q ← ∅, d ← ∞, Q .enqueue (s );
2: while Q , ∅ do

3: q ← Q .dequeue (), |Pq,t | ←SMP(G, τ , q, t );
4: if |Pq,t | , ∞ then

5: |Ps,t | ← |Ps,q | + |Pq,t |.

6: if |Ps,t | < d then

7: d ← |Ps,t |;
8: if q = s then return d .

9: else

10: for v ∈ {p |p is discovered by q, p , q } do
11: for p’s neighbor w , w is not discovered yet do
12: Q .enqueue (w ), |Ps,w | ← |Ps,p | + 1;

13: return d .

Note that ESMP is an online algorithm but it may visit the w-
hole higher-order graph if s and t are located in different motif-
components. If offline pre-processing is allowed (e.g., MOD-Index
construction), a practical approach is to develop ESMP into a two-
phase algorithm. In the offline phase, the motif-components are
detected and the list of bridging edges is written down. These op-
erations are involved in the process of MOD-Index construction,
since the switching of seed nodes is naturally a motif-component
detection process. In the online process, given a pair of query nodes
(s, t ), the algorithm runs in the same manner of SMP if s and t are
located in the same motif-component. Otherwise, the algorithm wil
enumerate both motif-instances and bridging edges that contain
the seed. In other words, motif-instances and bridging edges are
treated equally in this case (e.g., Fig. 6(b)).

6 EXPERIMENTS

In this section, we evaluate the efficiency and effectiveness of the
proposed algorithms. Two kinds of real-world datasets are used:
protein-protein interaction (PPI) networks and social networks.
PPI networks.We use two PPI networks in which nodes denote
proteins and edges denote the interactions. GAVI [13] is the PPI
network of yeast cell. EXTE [19] is the PPI dataset of bacterias.
Social networks. We use three social networks with ground-truth
communities from [42]. DBLP is a co-authorship network from
computer science bibliography where two authors are linked if
they publish at least one paper together. AMAZ is a co-purchasing
network fromAmazon, where each node is a product and two nodes
are linked if these two products are frequently co-purchased. YOUT
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Table 2: Datasets for link predication and local graph clus-

tering (top), and node ranking (bottom).

Name |V | |E | Deg. Θ |E+
b
| Θb |E+c | Θc

GAVI 1,727 7,534 8.7 13 998 15 419K 10
EXTE 3,642 14,300 7.9 10 10K 11 573K 8
DBLP 317,080 1,049,866 6.6 23 106K 25 - -
AMAZ 334,863 925,872 5.5 47 324K 48 - -
YOUT 1,134,890 2,987,624 5.3 24 1.2M 24 - -

Name |V | |VH | |E | Θ |E+
b
| Θb |E+c | Θc

DBLP1 54,732 16,556 83,208 37 67K 37 1,976K 32
DBLP2 40,846 13,298 59,591 40 52K 40 478K 36

is a friendship network from YouTube, where each node denotes a
user and there is an edge if the two users are friends.

We show the details of these datasets in Table 2, whereΘ is the di-
ameter of the original graph. |E+ | is the number of edges injected to
enhance the higher-order graph, with triangle as the motif pattern:
|E+
b
| is the number of bridging edges injected to the higher-order

graph based on motif-path search and Θb is the diameter of the en-
hanced higher-order graph after injecting the bridging edges; |E+c |
is the number of injected edges by the defragmentation algorithm
from [21] and Θc is the diameter of the enhanced higher-order
graph after injecting these edges. As shown in Table 2, |E+

b
| is much

smaller than |E+c |, which means the bridging edge approach has
less modification on the structure of the higher-order graph than
the defragmentation approach from [21]. Note that the algorithm
from [21] cannot terminate in one day for the social networks, thus
we omit the results for these datasets. As shown in the table, Θc is
much smaller than Θb because of the vast number of edges injected.
We have implemented the algorithms with the higher-order graph
defragmentation approach from [21]. However, this defragmenta-
tion method cannot terminate on the large datasets (e.g., DBLP,
AMAZ and YOUT). For the mediate-size networks (e.g., GAVI and
EXTE), the algorithms based on such defragmentation perform sig-
nificantly worse than the version based on bridging edges. Limited
by the space, we report its results in the supplemental material [24].

We implement the algorithms in Java, and run experiments on
a machine with 4-core Intel i7-3770 3.40GHz processor and 16G-
B of memory. Codes and datasets are released in [23]. Next, we
evaluate the efficiency of the algorithms in Section 6.1, and the
effectiveness of using motif-path in three applications (link predic-
tion, local graph clustering and node ranking) in Section 6.2, 6.3 and
6.4 respectively. In each application, we test the algorithms from
different aspects (see Fig. 7, where BE denotes bridging edge based
defragmentation and EM denotes the defragmentation approach
from [21]). We illustrate a case study in Section 6.5.

Node-based

Path-based

Motif-based

Motif-path 
(MP)-based

MP with BE

MP with EM

Link Prediction
Local Graph Clustering

Node Ranking

Figure 7: Hierarchy of solutions for the three applications

tested in the paper.
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6.1 Efficiency Evaluation

In this section, we report the efficiency and scalability of search-
ing Shortest Motif-Path (SMP) and Enhanced Shortest Motif-Path
(ESMP) when tuning the MOD-Index. We skip the baseline algo-
rithm since it even cannot terminate on a moderate-size dataset
(e.g., GAVI and EXTE). In this section, the numbers are averaged
from 500 random (s, t ) queries through the graph.

First, we evaluate the materializing strategy of MOD-Index with
motif τ7, whose motif-orbits are distributed in different layers of the
MOD-Index. As shown in Fig. 8, the SMP algorithm’s query time is
reduced in the online phase when more layers are materialized into
the MOD-Index. In general, the indexing time is small, but as more
layers are materialized, the space cost rises. Thus in the following
sections, we materialize one layer of the MOD-Index, which is
lightweight in the time cost and space cost and powerful in saving
the query time. Note that the cost of calculating shortest paths
are not involved in Fig. 8, since calculating shortest path distances
will not change the complexity of MOD-Index construction, and it
weights little in the total construction cost; hence we only analyze
the materialization cost in this section. Limited by the space, we
report the breakdown of the indexing cost in supplement [24].

Next, we evaluate the scalability of the framework by generating
five synthetic graphs, namely Si−1 with the number of nodes as
2 × 10i , i = 2, 3, 4, 5, 6. We fix the average degree as 4 and employ
Barabási-Albert model [3], a widely used method to simulate real
graphs. As the size of graph grows, the indexing time and space
cost are increased in the similar trends. Also, we notice that the
performance is even better for large graphs (e.g., S4 and S5). We
guess it is from the fact that large networks are sparser and thus
SMP obtains better efficiency with the help of the MOD-Index.

Then we evaluate the efficiency of ESMP on real-world datasets.
Note that we assume that the bridging edges have been found out
beforehand for ESMP. As shown in Fig. 9, the ESMP algorithm is
quite efficient, e.g., most queries are finished in seconds for different
motifs and different datasets. Especially, we show the performance
of i-cycle and i-clique motifs on AMAZ where i = 3, 4, 5. Note that
the motif-path based on triangle is more costly since triangle is
more significant in the graph and thus more motif-instances need
to be enumerated [30]. We also report the two complex motifs τ6
and τ7 from Fig. 2, which are more costly to search in both SMP
and ESMP. Then we report the query time and MOD-Indexing
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Figure 9: Efficiency evaluation on real world datasets.

time on different real-world datasets when triangle is used. We
notice that the cost of ESMP is only a little more than the SMP
algorithm. However, as we show in the following sections, higher
graph mining effectiveness is obtained when ESMP is used.

6.2 Motif-path based Link Prediction

Following [29, 43], we restrict L = 4 and ϵ = 0.01 for both KI and
MKI. After the higher-order graph defragmentation by injecting
bridging edges, we runMKI andMGDon the enhanced higher-order
graph, namely MKI-b and MGD-b respectively. Following the setup
of [20], in each iteration we randomly pick a missing link (x+,y+)

(positive sample) and a non-existent link (x−,y−) (negative sample)
in the graph and compare their scores, denoted as д+ and д− respec-
tively. After c iterations, we denote c1 as the number of iterations
with д+ > д− and c2 as the number of iterations with д+ = д−. In
this section, we set the number of iterations c = 1000. Then we use
the standard metrics Area Under Curve (AUC) [20] to measure the
effectiveness: AUC = 2·c1+c2

2·c . Following [20], we independently
sample the positive and negative pairs which come from the same
shortest-path-distance distribution. In other words, the expected
values of |Px+,y+ | and |Px−,y− | are same. Otherwise, positive pairs
will be much nearer to each other than the negative pairs, making
any predicting method easy to obtain high effectiveness.

We also compare the effectiveness of our methods with the state-
of-the-arts, which are generally divided into two classes. First, we
evaluate the traditional missing link prediction methods, including
Common Neighbors (CN), Jaccard Coefficient (JC), Adaminc/Adar
(AA), Preferential Attachment (PA), Friends Measure (FM), Hitting
Time (HT) and Rooted PageRank (RPR). Following the standard
setup, we use the damping parameter α = 0.85 in RPR [1]. Theses
methods are easily to be adopted but the AUC score only varies
from 0.5 to 0.7 in most cases. Note that HT and RPR are the Markov-
chain-based approach to approximate KI by random walk. Second,
we evaluate the approaches which employs motif-based features.
Motif-basedCommonNeighbor (MCN) [7] is the extendedwork
from CN to predict missing links, with scoring function дMCN =

|Γm (x ) ∩ Γm (y) |, where Γm (x ) = {m |x ∈ m&m ≃ τ } denotes the
set of motif-instance which contains the node x . We use τ5, which
obtains best performance among the motifs listed in the paper.
Motif-based LinkPrediction (MLP) [1] counts themotif-instances
around the missing link and generate motif distribution as feature
vector. All 3-5 node motifs are used in this work. Then classifiers are
trained for prediction. We choose Gradient Boosting (GB), which
obtains best effectiveness among all classifiers listed in the paper.

Table 3: MKI/MGD performance with AUC reported. Num-

bers of top-3 highest are marked bold.

Method GAVI EXTE DBLP AMAZ YOUT Time

CN 0.72 0.56 0.77 0.62 0.54 0.1s

JC 0.70 0.48 0.55 0.52 0.44 0.1s

AA 0.75 0.57 0.81 0.65 0.52 0.1s

PA 0.59 0.76 0.64 0.63 0.76 0.2s

FM 0.65 0.65 0.59 0.64 0.69 0.1s

HT 0.60 0.70 0.64 0.59 0.53 0.1s

RPR 0.61 0.51 0.76 0.62 0.48 0.1s

MCN 0.67 0.62 0.75 0.61 0.65 10.9m

MLP+GB 0.89 0.83 0.82 0.72 0.83 > 24h

KI 0.69 0.60 0.69 0.60 0.63 39.1s
MKI 0.71 0.66 0.74 0.63 0.66 3.7m

MKI-b 0.76 0.87 0.77 0.73 0.76 4.9m
GD 0.50 0.50 0.50 0.50 0.50 1.2s

MGD 0.67 0.63 0.65 0.66 0.55 52.2s

MGD-b 0.75 0.84 0.72 0.81 0.87 71.0s

AMAZ
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Figure 10: Evaluation of generic motifs (edge, cliques, quasi-

cliques, stars and cycles) for link prediction on AMAZ.

As shown in Table 3, the motif-path based approach can achieve
pretty high effectiveness among all the methods listed. Compared
with the path-based methods (KI and GD), the effectiveness is sig-
nificantly improved. From the table, the prediction performance can
be further improved after the bridging edges are injected (cf. MKI-b
and MGD-b). MGD obtains good effectiveness in most datasets,
which means that the shortest motif-path distance itself is an im-
portant indicator for missing link prediction. Note that MLP+GB
obtains outstanding results in most datasets, at the cost of expensive
feature learning and classifier training. As shown in the table, our
methods are competitive. Here łTime” is averaged from different
datasets6, e.g., Time(CN)=

∑

G ∈DTimeG (CN)×|VG |/
∑

G′∈D |VG′ |

where D is the set of datasets and TimeG (CN) is the running time
of CN on dataset G.

In Fig. 10, we evaluate the cliques, quasi-cliques (minimum de-
gree bigger than 2), stars and cycles in the link predication by
motif-path based Graph Distance. They are usually called gener-

ic motifs [8]. As shown in the figure, the involving of motifs do
help improve the predication accuracy. However, the fragmenta-
tion issue is serious when using 4-clique or 5-clique, leading to low
effectiveness in MGD but high effectiveness in MGD-b.

6For fair comparison, we assume that there is no motif-orbits materialized in the
MOD-index, which means that the triangle-based applications are totally online in the
evaluation of Section 6.2, 6.3 and 6.4.
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Table 4: MLGC performance with F1-score reported. Num-

bers of top-3 highest are marked bold.

Method GAVI EXTE DBLP AMAZ YOUT Time

TECTONIC 0.39 0.44 - 0.37 - > 24h

MAPPR 0.39 0.42 0.34 0.35 0.15 12.4s

EdMot 0.33 0.38 - - - > 24h

LGC 0.42 0.36 0.33 0.63 0.17 0.9s

MLGC 0.41 0.30 0.35 0.59 0.16 5.4s

MLGC-b 0.42 0.38 0.35 0.65 0.23 8.9s

6.3 Motif-path based Local Graph Clustering

In this section, we evaluate the effectiveness of motif-path based
local graph clustering (MLGC) and MLGC with bridging edge de-
fragmentation (MLGC-b).

To evaluate the local graph clustering effectiveness, we use Sac-
charomyces Genome Database (SGD) 7, a well-known protein com-
plex dataset, as the ground truth communities for PPI datasets, in
which each protein complex is regarded as a cluster for the nodes
in PPI. We also use researcher communities as the ground-truth
communities for DBLP, product communities as those for AMAZ,
and user communities as those for YOUT [42].

Given a node from the ground truth community P , we find its k-
nearest neighbors as the cluster P ′. Then precision (|VP ∩VP ′ |/k), re-
call (|VP∩VP ′ |/|VP |) and F1-score (2×Precision×Recall/(Precision+
Recall )) are calculated. In Fig. 11, we report them when varying the
value of k from 1 to 100. In these datasets, MLGC usually obtains
higher effectiveness than ordinary path-based method (LGC), since
motif-path can effectively control the searching area of k-nearest
neighbor with proper compactness. In all results obtained, MLGC-b
outperforms LGC and MLGC. Also, we compare MLGC with the
state-of-the-arts, which use motifs for graph clustering. For each
method, we follow their default setting to evaluate the performance.
Motif-Aware Graph Clustering (TECTONIC) [40] clusters the
graph by reweighed motif-conductance [5] with triangles.
Local Higher-Order Graph Clustering (MAPPR) [44] use motif-
based PageRank to perform local graph clustering.
Edge Enhancement Motif Clustering (EdMot) [21] enhances
the higher-order graph by injecting edges and partitions it finally.

We use triangle in the metrics above, and report the results in
Table 4. For the evaluations which cannot terminate within one
day, we mark with a dash ("-"). All numbers are averaged from 500
queries. In the table, we fix k = 15 for LGC and all MLGC based
approaches. As shown in Table 4, the F1-score of MLGC-b is higher
than LGC and MLGC. However, MLGC is beaten by LGC in most
datasets. It means that the fragmentation issue of the higher-order
graph makes the performance of MLGC degrades.

Compared with the motif-based graph clustering approaches,
MLGC-b outperforms the competitors in most datasets. For EXTE,
the dataset is sparse, and the ground truth communities are small,
thus motif-conductance based approaches obtain advantage. In
general, the competitors require more time to answer the query,
while the motif-path based approaches are more efficient because
of the efficient algorithms to search the k-nearest neighbors.

7https://paccanarolab.org/static_content/clusterone/additional_information.html
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Figure 11: Local graph clustering results on EXTE and DBLP

with Precision, Recall and F1-score reported.

6.4 Motif-path based Node Ranking

To evaluate the effectiveness of the ranking result, we compare
the top-k users obtained from different methods by Normalized
Discounted Cumulative Gain (NDCG), which is a popular metric for

ranking qualitymeasurement [45]:NDCGk =
DCGk
Dk
, where DCGk =

∑k
i=1

r eli
loд2 (i+1)

. Here reli denotes the relevance score of the i-th n-

ode and Dk is the DCGk for the ideal ranking of the nodes. The
ideal list is ranked by the relevance score. Higher NDCGk score
means the ranking is closer to the ideal one thus is of higher quality.

Following [45], we use H-index of each author from DBLP as the
relevance score. Both DBLP dataset8 and H-index values are up to
2017. We report the details of the data in Table 2 and release them
together with the codes [23]. To increase the percentage of nodes
with H-index labels, we generate DBLP1 by removing the edges
whose weight is smaller than 7 and DBLP2 by removing the edges
whose weight is smaller than 8. In the table, we report the number
of authors with H-index crawled (denoted as |VH |), with 16556 and
13298 ground truth nodes in DBLP1 and DBLP2 respectively. We
compare our method with metrics as below.
Betweenness Centrality based node ranking (BET) [6] ranks
the nodes by their centrality values.
PageRank based node ranking (PR) [45] ranks the nodes by run-
ning PageRank on the original graph. We also implement Weighted
PageRank (WPR), with the number of coauthored papers on edges.
Motif PageRank based node ranking (MPR) [45] first mixes the
adjacency matrix A and motif adjacency matrixW (mixing param-
eter α = 0.4 as suggested in the paper), then ranks the nodes by
running PageRank on the mixed adjacency matrix.

Again, we compare BET with MBET-b (rank the nodes by run-
ning Algorithm 7 with bridging edges injected) and MBET (no
defragmentation). As shown in the first line of Fig. 12, MBET and
MBET-b both perform better than BET in DBLP1. However, MBET
drops quickly in DBLP2 while MBET-b keeps stable. It is from the

8http://konect.uni-koblenz.de/networks/dblp_coauthor
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Table 5: Node ranking performance with NDCG reported.

Numbers of top-3 highest are marked bold. T denotes the

running time (in minutes).

Method DBLP1 DBLP2
Top-k 10 30 50 T 10 30 50 T

PR 0.57 0.47 0.46 0.8 0.55 0.52 0.47 0.5
WPR 0.61 0.49 0.46 3.3 0.65 0.50 0.48 2.1
MPR 0.62 0.47 0.47 0.8 0.59 0.51 0.48 0.6
BET 0.60 0.48 0.48 8.4 0.60 0.48 0.50 5.2
MBET 0.67 0.47 0.41 0.5 0.41 0.31 0.32 0.4
MBET-c 0.23 0.27 0.30 36.0 0.18 0.26 0.23 13.5
MBET-b 0.68 0.55 0.50 5.5 0.63 0.54 0.51 4.1

fact that DBLP2 is much sparser than DBLP1 and thus the higher-
order graph fragmentation issue is more severe in DBLP2.

Then in the second line of Fig. 12, we compare MBET-b with
Motif-based PageRank (MPR) [45] and Edge-based PageRank (PR).
As the result shows, MPR twists with PR and both methods fall
behind MBET-b. Interestingly, the top-10 ranking results of MBET-b
are much better. It may come from the fact that MBET-b preserves
higher-order structure thus can filter the noises in the graph, and
also keeps good reachability through the graph.
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Figure 12: Node ranking comparison on DBLP datasets.

We report more results in Table 5, including the NDCG scores and
running time of each method. Motif-based PageRank and weight-
ed PageRank are normally better than the traditional PageRank
approach. Also, MBET-b outperforms other approaches in most
cases. The evaluation result shows that motif-path is important
to reveal higher-order graph semantics and our method to handle
the higher-order graph fragmentation is meaningful. We also re-
port the running time of each algorithm. Compared to LGC, MLGC
terminates earlier since the fragmentation issue stops its further ex-
pansion. MLGC-b needs more time to terminate since the bridging
edges are injected and thus obtains better effectiveness.
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Figure 13: Demonstration of (a) shortest paths and (b) en-

hanced shortest motif-paths from DBLP1.

6.5 Case Study

Finally, we show that a motif-path can facilitate the analysis of the
relationship between two graph nodes. As shown in Fig. 13, we find
out three shortest paths and eight shortest motif-paths from DBLP1,
given the query nodes as s=Jiawei_Han and t=Donald_Kossmann
(marked as blue). Triangle is used as the motif pattern τ . Since the
nodes s and t are not τ -connected in the higher-order graph, we
inject bridging edges and find the enhanced shortest motif-paths.
We draw the subgraph reduced from the nodes and edges within
these shortest paths (Fig. 13a) and shortest motif-paths (Fig. 13b) re-
spectively. Note that the bridging edges are marked red dashed. The
subgraph in Fig. 13(b) shows that Jiawei Han and Donald Kossmann
are connected by two groups: (1) data science researchers closely
related to Han; and (2) industrial / system researchers related to
Kossmann. These two groups are connected by Rakesh Agrawal.
However, this pattern cannot be revealed by the shortest paths.

7 CONCLUSIONS

In this paper, we propose motif-path, which can discover the high-
order semantics from the given graph. We develop efficient al-
gorithms to search shortest motif-paths and then use it in graph
mining tasks, with evaluations on effectiveness and scalability. De-
fragmentation, which connects different connected components in
the higher-order graph, improves the effectiveness. In the future, we
plan to explore more variants of motif-path for more applications.
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