
13

On Directed Densest Subgraph Discovery

CHENHAO MA, The University of Hong Kong, China

YIXIANG FANG, The Chinese University of Hong Kong, Shenzhen, China

REYNOLD CHENG, The University of Hong Kong, China

LAKS V. S. LAKSHMANAN, The University of British Columbia, Canada

WENJIE ZHANG and XUEMIN LIN, University of New South Wales, Australia

Given a directed graph G, the directed densest subgraph (DDS) problem refers to the finding of a subgraph

from G, whose density is the highest among all the subgraphs of G. The DDS problem is fundamental to a

wide range of applications, such as fraud detection, community mining, and graph compression. However,

existing DDS solutions suffer from efficiency and scalability problems: on a 3,000-edge graph, it takes three

days for one of the best exact algorithms to complete. In this article, we develop an efficient and scalable DDS

solution. We introduce the notion of [x , y]-core, which is a dense subgraph for G, and show that the dens-

est subgraph can be accurately located through the [x , y]-core with theoretical guarantees. Based on the

[x , y]-core, we develop exact and approximation algorithms. We further study the problems of maintaining

the DDS over dynamic directed graphs and finding the weighted DDS on weighted directed graphs, and we

develop efficient non-trivial algorithms to solve these two problems by extending our DDS algorithms. We

have performed an extensive evaluation of our approaches on 15 real large datasets. The results show that

our proposed solutions are up to six orders of magnitude faster than the state-of-the-art.

CCS Concepts: • Theory of computation→ Graph algorithms analysis; • Mathematics of computing

→ Graph algorithms; Network flows;

Additional Key Words and Phrases: Directed graph, densest subgraph discovery

Reynold Cheng and Chenhao Ma were supported by the Research Grants Council of Hong Kong (RGC Projects HKU

17229116 and 17205015), University of Hong Kong (Projects 104005858, 104005994), the Innovation and Technology Com-

mission of Hong Kong (ITF project MRP/029/18), and HKU-TCL Joint Research Center for Artificial Intelligence (Project

no. 200009430). Yixiang Fang was supported by NSFC under Grant 62102341 and CUHK-SZ grant UDF01002139. Laksh-

manan’s research was supported by a grant from the Natural Sciences and Engineering Research Council of Canada

(NSERC). Xuemin’s research was supported by the ARC DP200101338. Wenjie Zhang’s research was supported by the

ARC DP200101116.

Authors’ addresses: C. Ma, Room 430, Chow Yei Ching Building, The University of Hong Kong, Pokfulam Road, Hong Kong,

China; email: chma2@cs.hku.hk; Y. Fang (corresponding author), Room 417d, Dao Yuan Building, The Chinese University

of Hong Kong - Shenzhen, 2001 Longxiang Road, Longgang District, Shenzhen, China; email: fangyixiang@cuhk.edu.cn;

R. Cheng, Room 303, Chow Yei Ching Building, The University of Hong Kong, Pokfulam Road, Hong Kong, China; email:

ckcheng@cs.hku.hk; L. V. S. Lakshmanan, Department of Computer Science, The University of British Columbia, 2366 Main

Mall Vancouver, B.C., Canada; email: laks@cs.ubc.ca; W. Zhang, K17, 502, School of Computer Science and Engineering,

The University of New South Wales, Sydney NSW 2052, Australia; email: wenjie.zhang@unsw.edu.au; X. Lin, K17, 503,

School of Computer Science and Engineering, The University of New South Wales, Sydney NSW 2052, Australia; email:

lxue@cse.unsw.edu.
Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee

provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and

the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored.

Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires

prior specific permission and/or a fee. Request permissions from permissions@acm.org.

© 2021 Association for Computing Machinery.

0362-5915/2021/11-ART13 $15.00

https://doi.org/10.1145/3483940

ACM Transactions on Database Systems, Vol. 46, No. 4, Article 13. Publication date: November 2021.

mailto:permissions@acm.org
https://doi.org/10.1145/3483940

13:2 C. Ma et al.

ACM Reference format:

Chenhao Ma, Yixiang Fang, Reynold Cheng, Laks V. S. Lakshmanan, Wenjie Zhang, and Xuemin Lin. 2021. On

Directed Densest Subgraph Discovery. ACM Trans. Database Syst. 46, 4, Article 13 (November 2021), 45 pages.

https://doi.org/10.1145/3483940

1 INTRODUCTION

In emerging systems that manage complex relationship among objects, directed graphs are often
used to model their relationships [3, 13, 40, 51]. For example, in online microblogging services
(e.g., Twitter and Weibo), the “following” relationships between users can be captured as directed
edges [40]. Figure 3(a) depicts a directed graph of the following relationship for five users in a
microblogging network. Here, Alice has a link to David because she is a follower of David. As
another example, in Wikipedia, each article can be considered as a vertex, and each link between
two articles is represented by a directed edge from one vertex to another [13]. As yet another
example, the Web can also be viewed as a huge directed graph [3].

In this article, we study the problem of finding the densest subgraph from a directed graph G,
which was first proposed by Kannan and Vinay [41]. Conceptually, this directed densest sub-

graph (DDS) problem aims to find two sets of vertices, S∗ andT ∗, fromG, where (1) vertices in S∗

have a large number of outgoing edges to those inT ∗, and (2) vertices inT ∗ receive a large number
of edges from those in S∗. To understand DDS, let us explain its usage in fake follower detection
[35, 65] and community mining [43]:
• Fake follower detection [35, 65] aims to identify fraudulent actions in social networks [35].

Figure 1 illustrates a microblogging network, with edges representing the “following” relationship.
By issuing a DDS query, two sets of users, S∗ and T ∗, are returned. Compared with other users, d
(inT ∗) has unusually a huge number of followers (a, e, f ,д,h) in S∗. It may be worth investigating
whether d has bribed the users in S∗ for following him/her.
• Community mining [43]. In Reference [43], Kleinberg proposed the hub-authority concept for

finding web communities, based on a hypothesis that a web community is often comprised of a
set of hub pages and a set of authority pages. The hubs are characterized by the presence of a large
number of edges to the authorities, while the authorities often receive a large number of links from
the hubs. A DDS query can be issued on this network to find hubs and authorities. In Figure 2, for
example, websites in S∗ can be viewed as hubs providing car rankings and recommendations, while
websites in T ∗ play the roles of authorities as the official websites for well-known automakers.

DDS queries are also useful for graph compression, as discussed in Reference [12]. Particularly,
Buehrer and Chellapilla [12] proposed to reduce the number of edges by introducing virtual nodes
linking to S∗ and T ∗ without sacrificing the connectivity of G. Gionis and Tsourakakis provide
more applications of the DDS problem in Reference [31].

Now let us give more details about the DDS query [6, 15, 41, 42]. Given a directed graph G =
(V ,E) and sets of (not necesssarily disjoint) vertices S,T ⊆ V , the density of the directed subgraph
induced by (S,T) is the number |E (S,T) | of edges linking vertices in S to the vertices in T over

the square root of the product of their sizes, i.e., ρ (S,T) = |E (S,T) |√
|S | |T | . Based on this definition, the

DDS problem aims to find a pair of sets of vertices, S∗ andT ∗, such that ρ (S∗,T ∗) is the maximum
among all possible choices of S,T ⊆ V . For instance, for the directed graph in Figure 3(a), the DDS
is the subgraph induced by S∗ = {a,b} andT ∗ = {c,d }, (see Figure 3(b)). Its density is ρ∗ = 4√

2×2
= 2.

The DDS is exactly what the above applications need. In the DDS definition, we do not impose
restrictions on the overlap between S∗ and T ∗, because it would be interesting to see whether S∗

andT ∗ will overlap with each other by nature. Restricting S∗ ∩T ∗ is hard to set the threshold and
may lose some interesting results. We have a case study discussing this issue in Section 9.

ACM Transactions on Database Systems, Vol. 46, No. 4, Article 13. Publication date: November 2021.

https://doi.org/10.1145/3483940

On Directed Densest Subgraph Discovery 13:3

Fig. 1. An example of fake follower detection. Fig. 2. An example of web community.

Fig. 3. Illustrating the directed densest subgraph problem (or DDS problem) on the directed graph.

In undirected graphs, the density of a graphG = (V ,E) is defined to be ρ (G) = |E |
|V | [32], which is

different from that in directed graphs. Hence, finding the densest subgraph in undirected graphs
(DS problem for short) amounts to finding the subgraph with the highest average degree [32].
For example, for the undirected graph G in Figure 3(c), the DS is G itself, and its density is 6

5 ,
since there is no subgraph with higher density. We can observe that when S = T , the density of a
directed graph reduces to the classical notion of the density of undirected graphs. Thus, it naturally
generalizes the notion of the density of undirected graphs. However, the DDS problem returns two
sets, S∗ andT ∗, which provide the advantage to distinguish different roles of vertices in the above
applications.

Impact. The densest subgraph problem lies at the core of large-scale data mining [6]. DDS is
an important primitive for real-world applications, such as fake follower detection [35, 65] and
community detection [43]. Theoretically, the densest subgraph problem closely connects to funda-
mental graph problems such as network flow and bipartite matching [69]. Hence, the DDS problem
receives much attention from the communities of the database, data mining, theory, and network
analysis.

State-of-the-art. For a directed graph G = (V , E), we denote its number of vertices and edges
by n andm, respectively. In the literature, both exact [15, 42] and approximation algorithms [6, 15,
41] have been studied. The state-of-the-art exact algorithm is a flow-based algorithm [42], which

mainly involves two nested loops: The outer loop enumerates all the n2 possible values of |S ||T |
(1 ≤ |S |, |T | ≤ n), while the inner loop computes the maximum density by using binary search

on a flow network, regarding a specific value of |S ||T | . The inner and outer loops take O (n2
√
m)

and O (n2) time, respectively, so its overall time complexity is O (n4
√
m), which is prohibitively

expensive for large graphs.
To improve efficiency, approximation algorithms have been developed, the most efficient one

being the algorithm in Reference [42], which only costs O (n +m) time, since it iteratively peels
the vertex with the smallest indegree or outdegree. However, it was misclaimed to achieve an
approximation ratio of 2, as we will show in Section 4.2. Here, the approximation ratio is defined

ACM Transactions on Database Systems, Vol. 46, No. 4, Article 13. Publication date: November 2021.

13:4 C. Ma et al.

Table 1. Summary of Exact DDS Algorithms

Algorithm Time complexity

LP-Exact [15] Ω(n6)
Exact [42] O (n2 · tmax−flow)

DC-Exact (Ours) O (k · tmax−flow)

Note: Theoretically, k ≤ n2. But, k � n2, in practice. tmax−flow denotes the time complexity of maximum flow

computation. In our implementation [2], tmax−flow = O (n2√m).

Table 2. Summary of Approximation DDS Algorithms

Algorithm Approx. ratio Time complexity

KV-Approx [41] O (logn) O (s3n)

PM-Approx [6] 2δ (1 + ϵ) O (
log n

log δ
log1+ϵ n(n +m))

KS-Approx [42] >2 O (n +m)
BS-Approx [15] 2 O (n2 · (n +m))

BS-Approx-δ [15] 2δ O (
log n

log δ
(n +m))

Core-Approx (Ours) 2 O (
√
m(n +m))

Note: s is the sample size; ϵ > 0, δ > 1 are the error tolerance parameters. KS-Approx [42] made a misclaim that its

approximation ratio is 2, which is actually larger than 2.

as the ratio of the density of the DDS over that of the subgraph returned. This makes the algorithm
proposed by Charikar in Reference [15] the best available 2-approximation algorithm, and its time
complexity isO (n2 (n+m)). Clearly, it is still very expensive, warranting more efficient algorithms.
Tables 1 and 2 summarize the properties of the exact and approximation algorithms, respectively.

Our technical contributions. To improve the state-of-the-art exact algorithm [42], we opti-
mize its inner and outer loops. Specifically, for the inner loop, we introduce a novel dense subgraph
model on directed graphs, namely, [x , y]-core, inspired by the k-core [71] on undirected graphs.
That is, given two sets of vertices S and T of a graph G, the subgraph induced by S and T in G is
the [x , y]-core, if each vertex in S has at least x outgoing edges to vertices in T , and each vertex
in T has at least y incoming edges from vertices in S . Theoretically, we show that DDS can be
accurately located through the [x , y]-cores, which are often much smaller than the entire graph.
As a result, we can build the flow networks on some [x , y]-cores, rather than the entire graph,
which greatly improves the efficiency of computing the maximum flow. For the outer loop, we

propose a divide-and-conquer strategy, which dramatically reduces the number of values of |S ||T |
examined from n2 to k . In other words, the number of iterations in the outer loop is k , instead of
n2. Theoretically, k ≤ n2, but in practice k � n2. Based on the two optimization techniques above,
we develop an efficient exact algorithm DC-Exact.

In addition, the edges of directed graphs in real applications often carry weights. For example,
in the flight network [60] where the airports are represented by vertices and the flights between
airports are represented by edges, the weight of an edge denotes the flight frequency between
two airports. In the literature, the DS problem on the edge-weighted undirected graphs has been
extensively studied [5, 37]. However, the problem of finding the weighted DDS (or WDDS) on
weighted directed graphs has not been studied yet; thus, this motivates us to study efficient so-
lutions to tackle this problem. To find the WDDS, we extend the [x , y]-core to support weighted
directed graphs, namely, [xw , yw]-wcore. Then, we theoretically establish the connection between

ACM Transactions on Database Systems, Vol. 46, No. 4, Article 13. Publication date: November 2021.

On Directed Densest Subgraph Discovery 13:5

the [xw ,yw]-wcores and the WDDS. Based on the connection and the divide-and-conquer strategy
in DC-Exact, we propose an exact algorithm called WDC-Exact.

We further show that, theoretically, the [x∗w , y∗w]-wcore, where x∗wy
∗
w is the maximum value

among the values of xw and yw for all the [xw , yw]-wcores, provides a 2-approximation solution
to the WDDS problem. The cardinality of xw and yw in [xw , yw]-wcores can be extremely large
because xw ,yw ∈ R+. Thus, it will be impractical to emumrate all possible [xw , yw]-wcores.
To enable the efficient computation of the [x∗w , y∗w]-wcore, we propose a fast approximation
algorithm, denoted by WCore-Approx, based on a stair-climbing strategy. For the unweighted
case, we introduce several novel core number pair concepts. Based on the new concepts, we
propose an optimized algorithm for unweighted graphs, called Core-Approx, which completes
in O (

√
m · (n +m)) time. Therefore, compared to existing 2-approximation algorithms, it has the

lowest time complexity.
Furthermore, in the aforementioned applications, the directed graphs are inherently dynamic.

For example, new users join the following/follower relationship network of Twitter, and the fol-
lowing/follower relationships also evolve frequently, which makes the whole network update dy-
namically. However, the DS problem in dynamic undirected graphs has been extensively studied
[5, 9, 18, 37, 68]. A straightforward method to address this problem is to recompute the DDS
from scratch each time whenever a new update is made on the network, which obviously is
time-consuming, rendering it impractical, especially for large graphs whose updates are highly
frequent. To improve the efficiency, we propose novel efficient algorithms for maintaining the
2-approximation DDS under edge updates, since the vertex insertion (respectively, deletion) can
be treated as a sequence of edge insertions (respectively, deletions). The algorithms are free of
extra memory usage due to their index-free property and unlikely to iterate the whole graph by
exploiting the locality of the DDS, so they are able to process large graphs efficiently.

We have experimentally compared our proposed DDS solutions with the state-of-the-art solu-
tions on more than 10 real graphs, where the largest one consists of around 2 billion edges. The
results show that for the exact DDS algorithms, our proposed DC-Exact is over six orders of mag-
nitude faster than the baseline algorithm on a graph with around 6,500 vertices and 51,000 edges.
Besides, for approximation DDS algorithms, our proposed Core-Approx can scale well on billion-
scale graphs and is also up to six orders of magnitude faster than the existing 2-approximation
algorithm. Furthermore, the experimental results on dynamic directed graphs show that our pro-
posed DDS maintenance algorithms could be up to five orders of magnitude faster than recomput-
ing from scratch. In addition, we have evaluated our exact and approximation algorithms for the
WDDS problem and conduct a case study about fake review detection using the exact algorithm
WDC-Exact, which shows that the WDDS on directed graphs can provide valuable insights towards
detecting fraudulent behaviors.

Outline. The rest of the article is organized as follows: We review the related work in Section 2.
In Section 3, we formally present the DDS problem and the WDDS problem. Section 4 reviews the
state-of-the-art DDS algorithms and discusses their limitations. Section 5 introduces the formal
definitions of the [x , y]-core and the [xw , yw]-wcore and their density bounds in unweighted and
weighted graphs, respectively. We present our exact DDS and WDDS algorithms in Section 6 and
approximation DDS and WDDS algorithms in Section 7. Section 8 presents how to maintain the
DDS over dynamic directed graphs. Experimental results are presented in Section 9. We conclude
the article in Section 10.

2 RELATED WORK

The densest subgraph can be regarded as one type of cohesive subgraphs. Gionis and Tsourakakis
provide a comprehensive study over the applications on the densest subgraph discovery [31]. Other

ACM Transactions on Database Systems, Vol. 46, No. 4, Article 13. Publication date: November 2021.

13:6 C. Ma et al.

related topics contain k-core [71, 78], k-truss [17, 39], cliques and motifs [36, 49, 50, 52], as well
as community search [19–26, 38, 77] based on k-core and k-truss. In the following, we focus on
two groups of work on densest subgraph discovery on undirected graphs [32] and directed graphs
[41], respectively.

Densest subgraph discovery on undirected graphs. In Reference [32], Goldberg introduced
the densest subgraph discovery problem (DS problem), which aims to find the subgraph
whose edge-density is the highest among all the subgraphs where the edge-density of a graph

G = (V , E) is defined as |E ||V | , and proposed a max-flow-based algorithm to compute the exact dens-

est subgraph. Tsourakakis [74] and Mitzenmacher et al. [56] generalized the above edge-density
as clique-density and developed efficient exact algorithms for finding the corresponding DS. Sun
et al. [72] studied the clique-density based DS problem with larger cliques and provided a simple
but efficient near-optimal algorithm. Recently, Fang et al. [27] have proposed efficient DS algo-
rithms by exploiting k-cores that are able to find the densest subgraphs for a wide range of graph
density definitions such as edge-density, clique-density, and pattern-density. Generally, the exact
DS algorithms [27, 32, 74] work well on small or moderate-size graphs, but they are inefficient for
processing large graphs, as shown in Reference [27]. To remedy this issue, several efficient approxi-
mation algorithms have been developed. In Reference [15], Charikar developed a 2-approximation
algorithm that takes linear time cost. Fang et al. [27] improved the algorithm by exploiting k-cores.
In Reference [6], Bahmani et al. designed a parameterized approximation algorithm, which achives
an approximation of 2(1+ϵ) where ϵ > 0. Boob et al. [11] present an iterative peeling algorithm to
output near-optimal solutions fast by adding a few more passes to Charikar’s greedy algorithm. Be-
sides, many variants of the DS problem have been studied. In Reference [8], Bhaskara et al. studied
the densest k-subgraph problem, where a k-subgraph means a subgraph consisting of k vertices.
Qin et al. [66] developed solutions for finding the top-k locally densest subgraphs. In Reference
[56], Mitzenmacher et al. studied the (p, q)-biclique densest subgraph problem on bipartite graphs.
Tsourakakis et al. [75] developed algorithms for discovering quasi-cliques with quality guarantees.
Recently, Tatti and Gionis [73] and Danisch et al. [16] have studied the topic of density-friendly
graph decomposition, which decomposes a graph into a chain of subgraphs, where each subgraph
is nested within the next one and the inner one is denser than the outer ones.

For undirected graphs whose edges are associated with weights, Hu et al. [37] and Angel et al.
[5] have developed some efficient algorithms to find the densest subgraphs. Hu et al. [37] ex-
tended Goldberg’s max-flow-based algorithm [32] to support weighted undirected graphs. Angel
et al. [5] studied the efficient maintenance of dense subgraphs under streaming edge weight up-
dates. Tsourakakis et al. [76] shows that the DS problem for weighted graphs is polynomial-time
solvable when the weights are non-negative and is NP-hard for negative weights. Besides, there
are some works [5, 9, 18, 37, 68, 69] about maintaining the densest subgraphs on dynamic graphs,
where every update comes online and can either insert an edge to, or remove an existing edge
from the graph. Angel et al. [5] proposed a DS maintenance algorithm for processing streaming
edge weight updates in a weighted undirected graph. Epasto et al. [18] dynamically maintained the
approximate DS where edge insertions are adversarial and deletions are randomly picked. Hu et al.
[37] considered the dynamic maintenance of approximate DS in weighted hypergraphs, where an
edge can join any number of vertices. Bhattacharya et al. [9] proposed a fully dynamic (4 + ϵ)-
approximation algorithm that uses sublinear space and poly-logarithmic amortized time per up-
date, where ϵ > 0. Sawlani and Wang [69] gave the fully dynamic algorithm that maintains a
(1 + ϵ)-approximation densest subgraph in worst-case time poly(logn, ϵ−1) per update.

Densest subgraph discovery on directed graphs. Kannan and Vinay [41] were the first
to introduce the notion of density and the problem of the densest subgraph on directed graphs

ACM Transactions on Database Systems, Vol. 46, No. 4, Article 13. Publication date: November 2021.

On Directed Densest Subgraph Discovery 13:7

(DDS problem). In Reference [15], Charikar developed an exact algorithm for this problem,
which completes in polynomial time cost by solving O (n2) linear programs. Later, in Reference
[42], Khuller and Saha proposed a flow-based algorithm, which also takes polynomial time
cost. Table 1 summarizes the time complexities of these exact algorithms. Nevertheless, all
these exact algorithms are computationally expensive for large graphs, so researchers have
developed efficient approximation algorithms. In Reference [41], Kannan and Vinay proposed an
O (logn)-approximation algorithm to compute the densest subgraph. In Reference [15], Charikar
designed a 2-approximation algorithm with a time complexity of O (n2 · (n + m)). In Reference
[42], Khuller and Saha presented a linear approximation algorithm and claimed that it achieves
an approximation of 2. Unfortunately, as we shall show in Section 4.2 (Example 4.1), the claim is
incorrect. In Reference [6], Bahmani et al. developed a 2(1+ϵ)-approximation algorithm based on
the streaming model (ϵ > 0). Moreover, in Reference [4], Andersen used the density definition by
Kannan and Vinay for finding local dense bipartite graphs given a vertex to be contained. Table 2
summarizes the approximation ratios and time complexities of these approximation algorithms.
The maintenance algorithm for Reference [9] can be extended to the directed graphs with an
approximation ratio of 8+ ε , while the approximation ratio of our proposed dynamic maintenance
algorithm is 2. Besides, to the best of our knowledge, no previous work has studied the DDS
problem on weighted directed graphs, so our work is the first to study the problem.

An earlier version of this article is presented in Reference [53]. Compared to the old version,
this article has several newly added contributions, which are summarized as follows:

(1) We develop non-trivial DDS maintenance algorithms, which are able to efficiently maintain
the 2-approximation DDS on dynamic directed graphs in Section 8;

(2) We design both efficient exact and approximation algorithms for finding the WDDS on
weighted directed graphs in Section 6 and Section 7 based on the new concept, [xw , yw]-
wcore in Section 5.2;

(3) We evaluate the algorithms for maintaining the DDS on dynamic graphs and finding the
WDDS on weighted directed graphs in terms of efficiency and effectiveness in Section 9,
and we also conduct a case study in Section 9.

3 PROBLEM DEFINITIONS

In this section, we give the formal definitions of the densest subgraph on unweighted directed
graphs and weighted directed graphs, respectively. Table 3 lists the notations used in this paper.

3.1 The DDS Problem

Let G = (V , E) be a directed graph, n = |V | and m = |E | be the number of vertices and edges in
G, respectively. Given two sets of vertices, S,T ⊆ V , which are not necessarily disjoint, we use
E (S , T) to denote the set of all the edges linking their vertices, i.e., E (S , T) = E ∩ (S × T). The
subgraph induced by S ,T , and E (S ,T) is called an (S ,T)-induced subgraph, denoted byG[S,T]. For
a vertex v ∈ G, we use d+G (v) and d−G (v) to denote its outdegree and indegree in G, respectively.
Next, we formally present the density of a directed graph [41] and the problem of Directed Densest
Subgraph discovery, or DDS problem. Unless mentioned otherwise, all the graphs mentioned later
in this article are directed graphs.

Definition 3.1 (Density of a Directed Graph). Given a directed graph G = (V , E) and two sets of
vertices S,T ⊆ V , the density of the (S , T)-induced subgraph G[S , T] is

ρ (S,T) =
|E (S,T) |
√
|S | · |T |

. (1)

ACM Transactions on Database Systems, Vol. 46, No. 4, Article 13. Publication date: November 2021.

13:8 C. Ma et al.

Table 3. Notations and Meanings

Notation Meaning

G = (V , E) a directed graph with vertex set V and edge set E
Gw = (V , E,W) a weighted directed graph with vertex set V , edge set E, and edge weight setW

n,m n = |V |,m = |E |
H = G[S,T] the subgraph induced by S and T in G
E (S,T) the edges induced by S and T in G

d+G (v), d−G (v) the outdegree and indegree of a vertex v ∈ G respectively

ρ (S,T) the density of the (S , T)-induced subgraph

D = G[S∗,T ∗] the densest subgraph D in G
ρ∗ ρ∗ = maxS,T ⊂V {ρ (S,T)} = ρ (S∗,T ∗)

D̃ = G[S̃∗, T̃ ∗] the approximate densest subgraph in G

ρ̃∗ = ρ (S̃∗, T̃ ∗) the density of D̃
F = (VF ,EF) a flow network with node set VF and edge set EF

Definition 3.2 (DDS). Given a directed graph G = (V , E), a directed densest subgraph (DDS) D is
the (S∗, T ∗)-induced subgraph, whose density is the highest among all the possible (S , T)-induced
subgraphs.

Problem 1 (DDS Problem [6, 15, 31, 41, 42, 53, 54]): Given a directed graph G = (V , E), return a
DDS1 D = G[S∗, T ∗] of G.

Example 3.3. Consider the directed graph in Figure 3(a). Its DDS D = G[S∗, T ∗] is the subgraph
highlighted in Figure 3(b), where S∗ = {a,b} and T ∗ = {c,d }, since its density ρ (S∗,T ∗) = 4√

2×2
= 2

is higher than the density of any other (S , T)-induced subgraphs. For instance, if we let S = V and
T = V , then we get a (V , V)-induced subgraph H = G[V , V], and its density is ρ (V ,V) = 6√

5×5
= 6

5 ,

which is less than 2.

3.2 The WDDS Problem

A weighted directed graph is a triplet Gw = (V , E, W), where V and E denote the sets of vertices
and edges, respectively (E ⊆ V × V), andW = {we |e ∈ E} contains the edge weights assigned to
the edges. Here, we restrict we ≥ 0. For a vertex v ∈ Gw , we use w−Gw

(v) =
∑

e=(u,v)∈E we and

w+Gw
(v) =

∑
e=(v,u)∈E we to denote its weighted indegree and weighted outdegree in Gw , respec-

tively. Inspired by the formulation of density on weighted undirected graphs [57], we introduce
the definition of density for weighted directed graph, also called weighted-density, as follows:

Definition 3.4 (Weighted-density). Given a weighted graph Gw = (V , E, W) and two vertex sets
Sw ,Tw ⊆ V , the weighted-density of the (Sw , Tw)-induced subgraph H = Gw [Sw , Tw] is

ρw (Sw ,Tw) =
Σe ∈E (Sw ,Tw)we√
|Sw | · |Tw |

. (2)

Definition 3.5 (WDDS). Given a weighted directed graph Gw = (V , E,W), a weighted directed

densest subgraph (WDDS) Dw is the (S∗w ,T ∗w)-induced subgraph, whose weighted-density is the
highest among all the possible (Sw , Tw)-induced subgraphs.

Problem 2 (WDDS Problem): Given a weighted directed graphGw = (V , E,W), return a WDDS2

Dw = Gw [S∗w , T ∗w] of Gw .

1There might be several directed densest subgraphs of a graph, and our algorithm will find one of them.
2There might be several weighted directed densest subgraphs of a graph, and our algorithm will find one of them.

ACM Transactions on Database Systems, Vol. 46, No. 4, Article 13. Publication date: November 2021.

On Directed Densest Subgraph Discovery 13:9

Fig. 4. Illustrating the flow network.

Example 3.6. Figure 7(a) depicts a weighted graph Gw , where the weight of the edge (d , c) is 2,
and the weights of others are 1. Figure 7(b) depicts the WDDS ofGw , i.e., Dw = Gw [S∗w ,T ∗w], where

S∗w = {a, b, d } and T ∗w = {c , d }, and its weighted-density is ρw (S∗w ,T
∗
w) =

∑
e∈E (S∗w ,T ∗w) we√
|S∗w | |T ∗w |

= 6√
6
=
√

6.

4 STATE-OF-THE-ART DDS ALGORITHMS

In this section, we review the state-of-the-art exact and approximation DDS algorithms [15, 42].
Note that in this article, the approximation ratio of an approximation algorithm is defined as the
ratio of the maximum density over the density of the subgraph returned.

4.1 The Exact Algorithm

The state-of-the-art exact algorithm [42] computes the DDS by solving a maximum flow problem,
which generally follows the same paradigm of the exact algorithm [32] of finding the densest
subgraphs on undirected graphs. We denote this algorithm by Exact. A flow network [34] is a
directed graph F = (VF , EF), where there is a source node3 s , a sink node t , and some intermediate
nodes; each edge has a capacity, and the amount of flow on an edge cannot exceed the capacity of
the edge. The maximum flow of a flow network equals the capacity of its minimum st-cut, 〈S, T 〉,
which partitions the node set VF into two disjoint sets, S and T , such that s ∈ S and t ∈ T .

Algorithm 1 presents Exact. It first enumerates all the possible values of a = |S |
|T | (Algorithm 2).

Then, for each a, it guesses the value д of the maximum density via a binary search (lines 2–5).
After that, for each pair of a and д, it builds a flow network and runs the maximum flow algorithm
to compute the minimum st-cut 〈S, T 〉 (lines 6–11). Note that if S\{s} � ∅, then there must be an
(S , T)-induced subgraph such that its density is at least д. If such a subgraph exists and д is larger
than ρ∗, then we update the DDS D and its corresponding density ρ∗ (Algorithm 11). Note A and
B are two node sets contained in VF (cf. Algorithm 15 and Figure 4). To build the flow network, it
first creates a set VF of nodes (lines 14–15), and then adds directed edges with different capacities
between these nodes (lines 16–20). For example, for the direct graph depicted in Figure 3(a), we
can build a flow network as shown in Figure 4. Note αe in A (respectively, βa and βb in B) is
(respectively, are) omitted in Figure 4 for simplicity, because of the lack of outgoing edges for e
(respectively, incoming edges for a and b).

Limitations. In Algorithm 1, the number of possible values of a is n2, and for each a, the while
loop of binary search will have O (logn) iterations. Using a parametric max-flow algorithm [29],
the total time cost required for the O (logn) iterations is the same as the cost of one maximum

3We use “node” to mean “flow network node” in this article.

ACM Transactions on Database Systems, Vol. 46, No. 4, Article 13. Publication date: November 2021.

13:10 C. Ma et al.

ALGORITHM 1: Exact [42]

Input :G = (V , E)

Output : The exact DDS D = G[S∗, T ∗]
1 ρ∗ ← 0;

2 foreach a ∈ { n1
n2
| 0 < n1,n2 <= n} do

3 l ← 0, r ← maxu ∈V {d−G (u), d+
G

(u)};

4 while r − l ≥
√

n−
√

n−1

n
√

n−1
do

5 д ← l+r
2 ;

6 F = (VF , EF)← BuildFlowNetwok(G, a, д);

7 〈S, T 〉 ← Min-ST-Cut(F);

8 if S = {s} then r ← д ;

9 else

10 l ← д;

11 if д > ρ∗ then D ← G[S ∩A,S ∩ B], ρ∗ = д;

12 return D;

13 Function BuildFlowNetwok(G = (V ,E), a, д):

14 A← {αu |u ∈ V }, B ← {βu |u ∈ V }, EF ← ∅;
15 VF ← {s} ∪A ∪ B ∪ {t };
16 for αu ∈ A do add (s,αu) to EF with capacitym;

17 for βu ∈ B do add (s, βu) to EF with capacitym;

18 for αu ∈ A do add (αu , t) to EF with capacitym +
д√
a

;

19 for βu ∈ B do add (βu , t) to EF with capacitym +
√
aд − 2d−

G
(u);

20 for (u,v) ∈ E do add (βv ,αu) to EF with capacity 2;

21 return F = (VF ,EF)

flow computation within a constant factor. We use the push-relabel algorithm based on the high-
est label node selection rule [2], which is generally regarded as the benchmark for maximum flow
algorithms with a time complexity of O (n2

√
m) [33], for the minimum st-cut computation.4 Con-

sequently, the total time complexity of Exact is O (n4
√
m), which is very inefficient on even small

graphs. For example, our later experiments show that Exact takes more than two days to find the
DDS on a graph with ∼1,200 vertices and ∼2,600 edges. The sources of inefficiency are three-fold:
First, it needs to check all the n2 values of a, which is very costly. Second, the flow network F is
always built on the entire graph in each iteration, while the DDS is often a small subgraph of G.
Third, the initial lower and upper bounds of ρ∗ are not very tight. Therefore, there is room for
improving its efficiency.

4.2 Approximation Algorithms

The state-of-the-art approximation algorithm KS-Approx [42] follows the peeling paradigm. Specif-
ically, it works in n rounds. In each round, it removes the vertex whose indegree or outdegree is
the smallest and recomputes the density of the residual graph. Finally, the subgraph whose density
is the highest is returned. Algorithm 2 outlines these steps.

4The push-relabel algorithm can also be replaced by other max-flow algorithms, e.g., Orlin’s algorithm, whose time com-

plexity is O (nm) [62].

ACM Transactions on Database Systems, Vol. 46, No. 4, Article 13. Publication date: November 2021.

On Directed Densest Subgraph Discovery 13:11

Fig. 5. A counter-example for KS-Approx. Fig. 6. Running steps by KS-Approx.

ALGORITHM 2: KS-Approx [42]

Input :G = (V , E)

Output : An approximate DDS D̃

1 ρ̃∗ ← 0, D̃ ← ∅, S ← V , T ← V ;

2 while |E | > 0 do

3 if ρ (S,T) > ρ̃∗ then

4 ρ̃∗ ← ρ (S,T), D̃ ← (S,T);

5 u+ ← arg minu d−
G

(u),u− ← arg minu d+
G

(u);

6 if d−
G

(u+) ≤ d+
G

(u−) then

7 E ← E \ {(v,u+) |v ∈ S }, T ← T \ {u+};
8 else

9 E ← E \ {(u−,v) |v ∈ T }, S ← S \ {u−};

10 return D̃;

It was claimed in Reference [42] that KS-Approx achieves an approximation ratio of 2. Unfor-
tunately, as shown in the following counter-example, their claim is incorrect.5 Specifically, Exam-
ple 4.1 shows that KS-Approxmay report results whose approximation ratios are larger (i.e., worse)
than 2.

Example 4.1. In Figure 5, the graph has three sets of vertices, i.e., {a1}, {bi |1 ≤ i ≤ 18}, and
{ci |1 ≤ i ≤ 36}. Note that a1 has 36 incoming edges from c1, c2, . . . , c36. For each vertex bi (i ∈
[1, 18]), it has 2 incoming edges from c2i−1 and c2i . The exact DDS is the subgraph induced by a1,
c1, c2, . . . , c36, and its density is 6.

Figure 6 provides a step-by-step breakdown for KS-Approx on the graph in Figure 5. In the
beginning, S = {ci |1 ≤ i ≤ 36} and T = {a1} ∪ {bi |1 ≤ i ≤ 18} (the vertices with no outgoing
edge in S and no incoming edge in T are eliminated for simplicity). ρ (S,T) = 2.7530. Then, b1

is removed from T based on the condition in Line 6 of Algorithm 2, and ρ (S,T) = 2.7499. Next
c1 is removed from S , and ρ (S,T) becomes 2.7490. c2 is removed from S afterward, and ρ (S,T)
becomes 2.7487. Along with more vertices deleted, the density ρ (S,T) declines gradually. After a1

is removed fromT , the algorithm ends asT becomes empty, and no edge is left in the graph. Thus,
KS-Approx will return the whole graph as the approximate DDS, whose density is 2.75. Hence, the
actual approximation ratio is 6

2.75 > 2, which contradicts the claim that it is a 2-approximation
algorithm.

5The authors of Reference [42] have confirmed that the approximation ratio of KS-Approx was misclaimed.

ACM Transactions on Database Systems, Vol. 46, No. 4, Article 13. Publication date: November 2021.

13:12 C. Ma et al.

ALGORITHM 3: BS-Approx [15]

Input :G = (V , E)

Output : An approximate DDS D̃

1 ρ̃∗ ← 0, D̃ ← ∅;
2 foreach a ∈ { n1

n2
|0 < n1,n2 <= n} do

3 S ← V ,T ← V ;

4 while S � ∅ ∧T � ∅ do

5 if ρ (S,T) > ρ̃∗ then D̃ ← G[S,T], ρ̃∗ ← ρ (S,T);

6 u ← arg minu ∈S d+G (u);

7 v ← arg minv ∈T d−
G

(v);

8 if
√
a · d+

G
(u) ≤ 1√

a
· d−

G
(v) then S ← S \ {u};

9 else T ← T \ {v};

10 return D̃;

Why KS-Approx fails? KS-Approx is supported by Theorem 2 in Reference [42]. Theorem 2

requires that there is an iteration that ∀u ∈ S,d+
G[S,T]

(u) ≥ λo = |E (S∗,T ∗) | · (1 −
√

1 − 1
|S∗ |) and

∀v ∈ T ,d−
G[S,T]

(v) ≥ λi = |E (S∗,T ∗) | · (1 −
√

1 − 1
|T ∗ |). In Example 4.1, S∗ = {ci |1 ≤ i ≤ 36} and

T ∗ = {a1}. Thus, λo = 0.5035 and λi = 36. By reviewing the iterations of KS-Approx over the
counter-example, we can find such condition cannot be guaranteed simultaneously.

Furthermore, say we enlarge the graph of Figure 5 to a graph consisting of three sets of vertices,
i.e., {a1}, {bi |1 ≤ i ≤ 2μ2}, and {ci |1 ≤ i ≤ 4μ2}. The ground-truth DDS will be the subgraph
induced by {ci } and {a1}, whose density is 2μ. However, the result returned by KS-Approx will still

be the whole graph, i.e., the subgraph induced by {ci } and {a1} ∪ {bi }, whose density is
4μ√

2μ2+1
.

As a result, the approximation ratio of KS-Approx is

√
2μ2+1

2 , which means that the approximation
ratio of KS-Approx is proportional to the value of μ and cannot be bounded by any constant value.

During our recent communication with the authors of Reference [42], they have proposed a fix
(called FKS-Approx), which is a correct 2-approximation algorithm, but costs O (n · (n +m)) time.
The details about FKS-Approx are provided in Section A.

Since KS-Approx is not a 2-approximation algorithm, the most accurate published approxima-
tion algorithm is BS-Approx [15], which is able to correctly find a 2-approximation result. We
outline its steps in Algorithm 3. Similar to Exact, BS-Approx enumerates all the possible values of

a = |S |
|T | (Algorithm 2), and for each specific a, it iteratively removes the vertex with the minimum

degree from S or T based on a predefined condition (Algorithm 8), and then updates S and T , as

well as the approximate DDS D̃ (lines 4–9).
Limitations. Clearly, the time complexity of BS-Approx is O (n2 · (n + m)), where the main

overhead comes from the loop of enumerating all the n2 values of a. Although it is much faster
than Exact, it is still inefficient for large graphs. As shown in our experiments later, on a graph with
about 3,000 vertices and 30,000 edges, it takes around three days to compute the DDS. Therefore,
it is imperative to develop more efficient approximation algorithms.

Besides, to the best of our knowledge, the DDS maintenance problem and the WDDS problem
have not been studied in the literature, and also it is not clear how to extend existing solutions
above to solve these two problems, calling for the development of novel efficient solutions.

ACM Transactions on Database Systems, Vol. 46, No. 4, Article 13. Publication date: November 2021.

On Directed Densest Subgraph Discovery 13:13

5 A NOVEL CORE MODEL ON DIRECTED GRAPHS

In this section, we introduce a novel core model, namely, [x , y]-core, by extending the classic k-
core [71] for directed graphs. As we will show, [x , y]-cores are useful in locating the DDS in both
exact and approximation algorithms. We then extend this core model for weighted directed graphs.
We also derive the upper and lower bounds on the density of the cores.

5.1 k-core and [x , y]-core

We first review the definition of k-core on undirected graphs.

Definition 5.1 (k-core [7, 71]). Given an undirected graph G and an integer k (k ≥ 0), the k-core,
denoted byHk , is the largest connected subgraph of G, such that ∀v ∈ Hk , deдHk

(v) ≥ k .

A k-core6 has some interesting properties [7, 71]: (1) k-cores are “nested”: Given two non-
negative integers i and j, if i < j, then Hj ⊆ Hi ; and (2) computing all the k-cores of a graph,
known as k-core decomposition, can be done in linear time [7].

Definition 5.2 ([x ,y]-core). Given a directed graph G = (V , E), the [x , y]-core is the largest (S ,
T)-induced subgraph H = G[S , T], which satisfies:

(1) ∀u ∈ S,d+H (u) ≥ x and ∀v ∈ T ,d−H (v) ≥ y;
(2) �H ′, s.t. H ⊂ H ′ and H ′ satisfies (1).

We call [x , y] the core number pair of the [x , y]-core, abbreviated as cn-pair.

Example 5.3. The subgraph induced by (S∗,T ∗), i.e., D = G[S∗,T ∗] in Figure 3(b) is a [2, 2]-core.
H = G[{a,b, c,d }, {c,d, e}] is a [1, 2]-core, and D is contained in H .

Like the classic k-core, the [x ,y]-core also has some interesting properties, derived from Defini-
tion 5.2.

Lemma 5.4 (Nested Property). An [x , y]-core is contained by an [x ′,y ′]-core, where x ≥ x ′ ≥ 0
and y ≥ y ′ ≥ 0. In other words, if H = G[S,T] is an [x ,y]-core, then there must exist an [x ′, y ′]-core

H ′=G[S ′, T ′], such that S ⊆ S ′ and T ⊆ T ′.

Given a pair of x and y, to compute the [x , y]-core, we can borrow the idea of k-core decom-
position [7]; that is, we can first initialize an (S , T)-induced subgraph such that S = T = V , then
iteratively remove vertices whose indegrees (respectively, outdegrees) are less than x (respectively,
y) from S (respectively,T), and finally return the residual subgraph as the [x ,y]-core. Clearly, com-
puting a specific [x , y]-core takes O (n + m) time by using the bin-sort technique in Reference
[7].

Remark. In Reference [30], Giatsidis et al. introduced another core model on a directed graphG,
called (k , l)-core, which is the largest subgraph ofG such that each vertex’s indegree and outdegree
are at least k and l , respectively. This is different with our core model, because our [x ,y]-core is an
(S , T)-induced subgraph such that the outdegree of each vertex in S is at least x and the indegree
of each vertex in T is at least y. Moreover, S and T are not necessarily disjoint. In addition, when
S =T , our [x , y]-core is reduced to the (k , l)-core by letting k = x and l = y. Hence, the [x , y]-core
naturally generalizes the (k , l)-core.

6In Reference [71], it is defined that k-core is a connected subgraph, but it is stated that cores are not necessarily connected

subgraphs in Reference [7].

ACM Transactions on Database Systems, Vol. 46, No. 4, Article 13. Publication date: November 2021.

13:14 C. Ma et al.

Fig. 7. An example of the weighted graph and the [xw , yw]-wcores.

5.2 Extending [x , y]-core to Weighted Directed Graphs

For weighted directed graphs, we extend the [x , y]-core as [xw , yw]-wcore, based on which we
will develop both efficient exact and approximation algorithms.

Definition 5.5 ([xw , yw]-wcore). Given a weighted directed graph Gw = (V , E,W), the [xw , yw]-
wcore is the largest (Sw ,Tw)-induced subgraph H =Gw [Sw ,Tw] with xw , yw ∈ R+, which satisifies:

(1) ∀u ∈ Sw ,w
+
H (u) ≥ xw and ∀v ∈ Tw ,w

−
H (v) ≥ yw ;

(2) �H ′, s.t. H ⊂ H ′ and H ′ satisfies (1).

We call [xw ,yw] the weighted core number pair of the [xw ,yw]-wcore, abbreviated as wcn-pair.

Similar to the [x , y]-core, the [xw , yw]-wcore also obeys the nested property.

Lemma 5.6 (Nested Property). An [xw , yw]-wcore is contained by an [x ′w , y ′w]-wcore, where

xw ≥ x ′w ≥ 0 and yw ≥ y ′w ≥ 0.

Example 5.7. In Figure 7(b), the WDDSGw [S∗w ,T ∗w] is the [2, 2]-wcore of the weighted graphGw .
Figure 7(c) depicts a [1, 2]-wcore, Gw [S ′w , T ′w], of Gw . We can see that the [2, 2]-wcore is nested
within the [1, 2]-wcore, since S∗w = {a,b,d } ⊆ S ′w = {a,b, c,d } and T ∗w = {c,d } ⊆ T ′w = {c,d, e}.

Similar to [x , y]-core computation, given a pair of xw and yw , we can compute the [xw , yw]-
wcore by borrowing the idea of k-core decomposition [7]; that is, we can first initialize an (Sw ,
Tw)-induced subgraph such that Sw = Tw = V , then iteratively remove vertices whose outdegrees
(respectively, indegrees) are less than xw (respectively, yw) from Sw (respectively, Tw), and finally
return the residual subgraph as the [xw , yw]-wcore. However, the bin-sort technique used in the k-
core and [x , y]-core computation is not applicable for the [xw , yw]-wcore computation. Therefore,
we use the priority queue to select the vertex with minimum indegree or minimum outdegree,
making the time complexity of computing an [xw , yw]-wcore be O ((n +m) logn).

5.3 Density Bounds of Cores and (W)DDS

Here, we focus on the weighted graphs, as the unweighted case can be treated as the special case
with all weights equal to one. We first introduce an interesting lemma, then establish the rela-
tionship between the WDDS and [xw , yw]-wcore, and derive the lower and upper bounds of the
density of the [xw , yw]-core.

Lemma 5.8. Given a weighted directed graphGw = (V , E,W) and its WDDS Dw =Gw [S∗w ,T ∗w] with

weighted-density ρ∗w , we have following conclusions:

(1) for any subset US of S∗w , removing US from S∗w will result in losing edges whose weight sum is

at least
ρ∗w
2
√

a
× |US |,

ACM Transactions on Database Systems, Vol. 46, No. 4, Article 13. Publication date: November 2021.

On Directed Densest Subgraph Discovery 13:15

(2) for any subset UT of T ∗w , removing UT from T ∗w will result in losing edges whose weight sum is

at least
ρ∗w
√

a

2 × |UT |,

where a =
|S∗w |
|T ∗w | .

Proof. We prove the lemma by contradiction. For (1), we assume that Dw is the WDDS and

removing US from Dw results in the losing edges whose weight sum is smaller than
ρ∗w
2
√

a
× |US |.

This implies that, after removingUS from S∗w , the weighted-density of the residual graph,Gw [S∗w \
US ,T

∗
w], will be

ρw (S∗w \US ,T
∗
w) =

∑
e ∈E (S∗w \US ,T

∗
w) we√

|E (S∗w \US | · |T ∗w |
>

ρ∗w
√
|S∗w | |T ∗w | −

ρ∗w
2
√

a
× |US |√

|E (S∗w \US | · |T ∗w |

= ρ∗w
|S∗w | −

|US |
2√

|S∗w |2 − |S∗w | |US |

= ρ∗w
|S∗w | −

|US |
2√

(|S∗w | − |US |
2)2 − |US |2

4

> ρ∗w .

The above inequality implies that removing US from D will result in a subgraph with higher
weighted density than Dw . However, this contradicts the assumption that Dw is the WDDS, so
the conclusion of (1) holds. Similarly, we can prove that the conclusion of (2) holds as well by
computing ρw (S∗w ,T

∗
w \UT) with assuming that removingUT from D results in the removal of less

than
√

aρ∗w
2 × |UT | edges from D. Hence, the lemma holds. �

Theorem 5.9. Given a weighted directed graph Gw = (V , E,W), the WDDS Dw = Gw [S∗w , T ∗w] is

contained in the [
ρ∗w
2
√

a
,
√

aρ∗w
2]-wcore, where a =

|S∗w |
|T ∗w | .

Proof. By Lemma 5.8, removing any single vertex from S∗w will result in losing edges whose

weight sum is at least
ρ∗w
2
√

a
, so we conclude that for each vertex u ∈ S∗w , w+Dw

(u) ≥ ρ∗w
2
√

a
. Similarly,

for each vertex v ∈ T ∗w , we have w+Dw
(v) ≥

√
aρ∗w
2 . Thus, by the definition of [x∗, y∗]-wcore, we

claim that the theorem holds. �

In the following, we first show the lower bound of the density of an [xw , yw]-wcore.

Lemma 5.10 (Lower Bound of Weighted-density of [xw ,yw]-wcore). Given a weighted

graph Gw and an [xw , yw]-wcore, denoted by H = Gw [Sw , Tw] in Gw , the weighted-density of H
is

ρw (Sw ,Tw) ≥ √xwyw . (3)

Proof. For each vertex u ∈ Sw , since its weighted outdegree w+H (u) ≥ xw , we have∑
e ∈E (Sw ,Tw) we ≥ xw |Sw |. Similarly, we can obtain

∑
e ∈E (Sw ,Tw) we ≥ yw |Tw |. We have

ρw (Sw ,Tw) =

∑
e ∈E (Sw ,Tw) we
√
|Sw | |Tw |

=

√√ (∑
e ∈E (Sw ,Tw) we

)2

|Sw | |Tw |
≥

√
xw |Sw | · yw |Tw |
|Sw | |Tw |

=
√
xwyw .

Thus, Lemma 5.10 holds. �

ACM Transactions on Database Systems, Vol. 46, No. 4, Article 13. Publication date: November 2021.

13:16 C. Ma et al.

Next, we derive an upper bound of ρ∗w based on a novel concept of maximum wcn-pair. Note
that this bound is also the upper bound of the weighted density of any (Sw ,Tw)-induced subgraph.

Definition 5.11 (Maximum wcn-pair). Given a weighted graph Gw = (V , E, W), a wcn-pair [xw ,
yw] is called the maximum wcn-pair if xw · yw achieves the maximum value among all the
possible [xw , yw]-wcores. For simplicity, we denote the maximum wcn-pair by [x∗w , y∗w].

Lemma 5.12 (Upper Bound of ρ∗w). Given a weighted graph Gw = (V , E, W) and its maximum

wcn-pair [x∗w , y∗w], the weighted-density ρ∗w of the WDDS is

ρ∗w ≤ 2
√
x∗wy

∗
w . (4)

Proof. We prove the lemma by contradiction. Assume that ρ∗w > 2
√
x∗wy

∗
w . Let a∗ =

S∗w
T ∗w

. By

Theorem 5.9, we conclude that the WDDS is in the [x ′w , y ′w]-wcore, where x ′w >

√
x ∗w y∗w√

a∗
and

y ′w >
√
a∗

√
x∗wy

∗
w . Then, we have x ′wy

′
w > x∗wy

∗
w , which contradicts the fact that [x∗w , y∗w] is the

maximum wcn-pair of Gw . Hence, the lemma holds. �

Restricting all weighted to be one, we will also get the definition of the maximum cn-pair for
the unweighted graph. Similarly, the maximum cn-pair will provide the upper bound of ρ∗ for the
unweighted graph.

6 EXACT ALGORITHMS FOR DDS AND WDDS

In this section, we introduce the exact algorithms for DDS and WDDS. The focus is on the weighted
case, as the unweighted case can be treated as a special case with all weights equal to 1. We first
adapt Exact [42] to weighted directed graphs, then present core-based exact WDDS and DDS
algorithms, and finally introduce efficient exact WDDS and DDS algorithms by exploiting the
divide-and-conquer strategy.

6.1 Adaptating Exact to Weighted Graphs

To adapt Exact for finding the WDDS, we carefully assign capacity values to edges of the flow
network so the WDDS can be computed with a theoretical guarantee. Specifically, letW = Σe ∈Ewe .
We assign capacity values by modifying the function BuildFlowNetwork in Algorithm 1:

(1) Replace “capacitym” in lines 16 and 17 with “capacityW”;
(2) Replace “capacitym +

д√
a

” in Algorithm 18 with “capacityW +
д√
a

”;

(3) Replace “capacitym +
√
aд − 2d−G (u)” in Algorithm 19 with “capacityW +

√
aд − 2w−G (u)”;

(4) Replace “capacity 2” in Algorithm 21 with “capacity 2 ·w (u,v)”.

We denote the above updated function by WBuildFlowNetwork, as shown in Algorithm 4. Figure 8
illustrates the flow network, F = (VF ,EF), constructed fromGw by WBuildFlowNetwork given two

parameters, a = |Sw |
|Tw | and д. Note αe inA (respectively, βa and βb in B) is (respectively, are) omitted

in Figure 8 for simplicity, because of the lack of outgoing edges for e (respectively, incoming edges
for a and b).

By replacing BuildFlowNetwork with WBuildFlowNetwork in Exact, we obtain an exact WDDS
algorithm, denoted by W-Exact. Algorithm 4 presents its detailed steps.

Lemma 6.1. Given a weighted directed graph Gw = (V , E,W), W-Exact is able to correctly find a

WDDS of Gw .

Proof. We can prove the lemma by following the proof of the correctness of Exact in Reference
[42]. For completeness, we formulate it here.

ACM Transactions on Database Systems, Vol. 46, No. 4, Article 13. Publication date: November 2021.

On Directed Densest Subgraph Discovery 13:17

Fig. 8. The flow network constructed from Gw in Figure 7(a).

ALGORITHM 4: W-Exact

Input :Gw = (V , E,W)

Output : The exact WDDS Dw = Gw [S∗w , T ∗w]

1 Lines 1–12 in Algorithm 1 by replacing BuildFlowNetwork with WBuildFlowNetwork;

2 Function WBuildFlowNetwok(Gw = (V ,E,W), a, д):

3 A← {αu |u ∈ V }, B ← {βu |u ∈ V }, EF ← ∅;
4 VF ← {s} ∪A ∪ B ∪ {t };
5 for αu ∈ A do add (s,αu) to EF with capacityW ;

6 for βu ∈ B do add (s, βu) to EF with capacityW ;

7 for αu ∈ A do add (αu , t) to EF with capacityW +
д√
a

;

8 for βu ∈ B do add (βu , t) to EF with capacityW +
√
aд − 2w−

Gw
(u);

9 for (u,v) ∈ E do add (βv ,αu) to EF with capacity 2 ·w (u,v) ;

10 return F = (VF ,EF)

Given the flow network, F = (VF ,EF) constructed by WBuildFlowNetwork from the weighted
graphGw = (V ,E,W), since the cut 〈{s},A∪B∪ {t }〉 has weightW (|A|+ |B |), the minimum st-cut
value is less or equal thanW (|A|+ |B |). Now consider the cut 〈s ∪Sw ∪Tw , t ∪ (A\Sw)∪ (B \Tw)〉,
where Sw ⊆ A and Tw ⊆ B. The capacity of edges crossing the cut is

W (|A| − |Sw | + |B | − |Tw |) +
(
W +

д
√
a

)
|Sw | +

∑
i ∈Tw

(W +
√
aд − 2w−Gw

(i)) +
∑

i ∈Tw , j ∈A\Sw ,
e=(j,i)∈E

2we

=W (|A| + |B |) + |Sw |
д
√
a
+ |Tw |

√
aд − 2

∑
e ∈E (Sw ,Tw)

we

=W (|A| + |B |) + |Sw |√
a

(
д −

∑
e ∈E (Sw ,Tw) we

|Sw |/
√
a

)
+ |Tw |

√
a

(
д −

∑
e ∈E (Sw ,Tw) we

|Tw |
√
a

)
.

(5)

Assume the cut 〈s ∪ Sw ∪Tw , t ∪ (A \ Sw) ∪ (B \Tw)〉 is returned by the Min-ST-Cut algorithm.
Here, we only consider the case that both Sw andTw are non-empty sets. Otherwise, the minimum

cut will be 〈{s}, A ∪ B ∪ {t }〉. Let b = |Sw |
|Tw | . We have

ACM Transactions on Database Systems, Vol. 46, No. 4, Article 13. Publication date: November 2021.

13:18 C. Ma et al.

|Sw |√
a

(
д −

∑
e ∈E (Sw ,Tw) we

|Sw |/
√
a

)
+ |Tw |

√
a

(
д −

∑
e ∈E (Sw ,Tw) we

|Tw |
√
a

)
=

√
|Sw | |Tw |

√
b
√
a
�
�
д − ρw (Sw ,Tw)

√
b/
√
a

�
�
+

√
|Sw | |Tw |

√
a
√
b
�
�
д − ρw (Sw ,Tw)

√
a/
√
b

�
�

=
√
|Sw | |Tw | �

�
�
�

√
b
√
a
+

√
a
√
b
�
�
д − 2ρw (Sw ,Tw)�

�
.

(6)

Notice (
√

b√
a
+
√

a√
b

) ≥ 2, ∀a,b ∈ R+. Thus, if the guessed д > ρ∗w ≥ ρw (Sw ,Tw), then Equation (6) is

larger than 0 and the minimum cut will be 〈{s}, A∪B ∪ {t }〉. If the guessed д ≤ ρ∗w , we can always
find a minimum cut, whose source side has more nodes than {s}, by always ensuring that the
minimum st-cut obtained from Min-ST-Cut has the largest size on the source side. If the guessed

value д = ρ∗w , then we can obtain the optimal solution (S∗w , T ∗w) when the enumerated a =
|S∗w |
|T ∗w | .

Hence, the lemma holds. �

6.2 Core-based Exact Algorithms

We first show how to locate the WDDS in some wcores by Theorem 5.9 to downsize the flow
network built in WExact. Since the value of ρ∗w may not be known in advance, we can only locate

the DDS in some wcores based on a = |Sw |
|Tw | andд guessed by exploiting the nested property of cores.

For example, given a specific a and a lower bound l of ρ∗w , then we can locate the WDDS in the

[l
2
√

a
,
√

al
2]-core, since the [

ρ∗w
2
√

a
,
√

aρ∗w
2]-core is nested within the [l

2
√

a
,
√

al
2]-core. Since the WDDS is

in some [x ,y]-wcores that are often much smaller thanGw , we can build the flow network on these
wcores, rather than the entire graph Gw , which will significantly improve the overall efficiency.

Moreover, during the binary search, the lower bound l of ρ∗w is gradually enlarged, so we can
further locate the WDDS in the [xw , yw]-wcores with larger values of wcn-pairs. As the values
of wcn-pairs increase, the sizes of [xw , yw]-wcores become smaller, so the flow networks built
become smaller gradually, and the cost of computing the minimum st-cut is greatly reduced.

Based on the above core-based optimization techniques, we develop a novel exact algorithm,
called WCore-Exact, which follows the same framework of WExact, as shown in Algorithm 5.
Specifically, it first runs a 2-approximation algorithm7 and initializes ρ∗w as the density of the
approximate WDDS (lines 1–2). Then, for each value of a, it sets the lower and upper bounds of

ρ∗w using ρ̃∗w (lines 3–4). After that, it performs a binary search to compute the WDDS, where the
flow networks are built based on the [xw , yw]-wcores (lines 5–13).

By restricting all weights to be one and replacing the wcore-based pruning to the core-based

pruning (i.e., rounding up x ← � l
2
√

a
� and y ← �

√
al
2 � in line 6) in WCore-Exact, we get the

algorithm for the unweighted case, Core-Exact.
Analysis. It takes O (n2

√
m) time to compute the minimum st-cut. Thus, WCore-Exact (respec-

tively, Core-Exact) takes O (n4
√
m) time. Nevertheless, since we locate the WDDS (respectively,

DDS) in some [xw , yw]-wcores (respectively, [x , y]-cores), the flow networks become smaller, so
WCore-Exact (respectively, Core-Exact) runs much faster than WExact (respectively, Exact) in
practice.

7Note that any 2-approximation algorithm can be applied here; in this article, we use our core-based approximation algo-

rithm developed in Section 7.

ACM Transactions on Database Systems, Vol. 46, No. 4, Article 13. Publication date: November 2021.

On Directed Densest Subgraph Discovery 13:19

ALGORITHM 5: WCore-Exact

Input :Gw = (V , E,W)

Output : The exact WDDS Dw = G[S∗w , T ∗w]

1 ρ̃∗w ←run a 2-approximation algorithm;

2 ρ∗w ← ρ̃∗w ;

3 foreach a ∈ { n1
n2
|0 < n1,n2 <= n} do

4 l ← ρ∗w , r ← 2ρ̃∗w ;

5 while r − l ≥
√

n−
√

n−1

n
√

n−1
mine ∈E we do

6 д ← l+r
2 ,xw ← l

2
√

a
,yw ←

√
al
2 ;

7 Gr ←Get-XY-WCore(Gw ,xw ,yw);

8 F = (VF ,EF) ← WBuildFlowNetwok(Gr ,a,д);

9 〈S,T 〉 ← Min-ST-Cut(F);

10 if S = {s} then r ← д ;

11 else

12 l ← д;

13 if д > ρ∗ then Dw ← G[S ∩A,S ∩ B], ρ∗w = д;

14 return Dw ;

6.3 Divide-and-conquer-based Exact Algorithms

In WCore-Exact, we mainly optimize the inner loop of WExact, i.e., reducing the cost of computing
the minimum st-cut. A natural question comes: Can we improve the outer loop of WExact so we

can enumerate fewer values of a = |Sw |
|Tw | ? In the following, we show that this is possible.

Our idea is based on a key observation that given a specific value of a, the results of the binary
search (lines 5–13 in Algorithm 5) actually have provided insights for reducing the number of trials
of a. Inspired by the results in Reference [42], essentially, the binary search solves the following
optimization problem, where a is a pre-given value.

max
Sw ,Tw ∈V

д

s.t.
|Sw |√
a

(
д −

∑
e ∈E (Sw ,Tw) we

|Sw |/
√
a

)
+ |Tw |

√
a

(
д −

∑
e ∈E (Sw ,Tw) we

|Tw |
√
a

)
≤ 0.

(7)

д is the maximum value the binary search can obtain when a is fixed. Then, we can derive the
following lemma.

Lemma 6.2. Given a weighted graph Gw = (V , E, W) and a specific a, assume that S ′w and

T ′w are the optimal choices for Equation (7). Let b =
|S ′w |
|T ′w | and c = a2

b
. Then, for any (Sw , Tw)-

induced subgraph Gw [Sw , Tw] of Gw , if min{b, c} ≤ |Sw |
|Tw | ≤ max{b, c}, then we have ρw (Sw ,Tw) ≤

ρw (S ′w ,T
′
w).

Proof. We first introduce more details regarding Equation (7), and then we prove the lemma
by contradiction.

In Equation (7), given a specific a, let д∗ (a) be the optimal value of д. Because S ′w andT ′w are the
optimal choices for Sw and Tw in Equation (7), S ′, T ′, and д∗ (a) have the following relationship,

ACM Transactions on Database Systems, Vol. 46, No. 4, Article 13. Publication date: November 2021.

13:20 C. Ma et al.

Fig. 9. The pruning effectiveness of Lemma 6.2.

according to the proof of Lemma 6.1:

|S ′w |√
a

(
д∗ (a) −

|E (S ′w ,T
′
w) |

|S ′w |/
√
a

)
+ |T ′w |

√
a

(
д∗ (a) −

|E (S ′w ,T
′
w) |

|T ′w |
√
a

)
= 0

√
|S ′w | |T ′w |

√
b
√
a
�
�
д∗ (a) −

ρw (S ′w ,T
′
w)

√
b/
√
a

�
�
+

√
|S ′w | |T ′w |

√
a
√
b
�
�
д∗ (a) −

ρw (S ′w ,T
′
w)

√
a/
√
b

�
�
= 0

√
|S ′w | |T ′w | �

�
�
�

√
b
√
a
+

√
a
√
b
�
�
д∗ (a) − 2ρw (S ′w ,T

′
w)�

�
= 0.

(8)

Then, д∗ (a) can be written as

д∗ (a) =
2ρw (S ′w ,T

′
w)

√
b√
a
+
√

a√
b

. (9)

Let ha (x) =
√

x√
a
+
√

a√
x

. As t + 1
t

is monotonically decreasing for t ∈ (0, 1] and monotonically

increasing for t ∈ [1,∞), we have that ha (x) is monotonically decreasing for x ∈ (0,a] and mono-

tonically increasing for x ∈ [a,∞), via replacing t with
√

x√
a

. Further, because ha (c) = ha (a2

b
) =

√
a2/b√

a
+

√
a√

a2/b
=
√

a√
b
+
√

b√
a
= ha (b), ha (x) ≤ ha (b) for min{b, c} ≤ x ≤ max{b, c}.

We now prove the lemma by contradiction. Assume that there exists an [Sx , Tx]-induced sub-

graph, which satisfies min{b, c} ≤ x = |Sx |
|Tx | ≤ max{b, c}, but it has ρw (Sx ,Ty) > ρw (S ′w ,T

′
w). Since

ha (x) ≤ ha (b) and ρw (Sx ,Ty) > ρw (S ′w ,T
′
w), we can conclude

2ρw (Sx ,Tx)
ha (x) >

2ρw (S ′w ,T ′w)
ha (b) . However,

this contradicts the assumption that S ′w andT ′w are the optimal choice for Equation (7). Hence, the
lemma holds. �

According to Lemma 6.2, after conducting the binary search for a specific value of a, we can
skip performing binary search for all the possible values of a in the range (min{b, c},max{b, c}),
so the overall efficiency can be improved dramatically. Note that, since a2 = bc , we always have
a ∈ (min{b, c},max{b, c}).

To further illustrate the pruning effectiveness of Lemma 6.2, we experiment on a small real graph
and discuss the results in Example 6.3.

Example 6.3. We consider a small dataset MA [70] that consists of 28 vertices and 217 edges;
this implies that the values of a are in the range [1

28 , 28]. We plot the values of д∗ (a) for a ∈ [1
28 , 28]

in Figure 9. Let amid = (1
28 + 28)/2. After applying the binary search for amid , we get a = 14.02, b =

3.125, and c = 62.88, by Lemma 6.2. Therefore, we can skip the binary search for all the 78 values
of a ∈ (3.125, 62.88), which are marked in red in Figure 9.

ACM Transactions on Database Systems, Vol. 46, No. 4, Article 13. Publication date: November 2021.

On Directed Densest Subgraph Discovery 13:21

ALGORITHM 6: WDC-Exact

Input :G = (V , E,W)

Output : The exact WDDS Dw = Gw [S∗, T ∗]
1 al ← 1

n ,ar ← n, ρ∗w ← 0,Dw ← ∅;
2 Divide-Conquer(al , ar);

3 return D;

4 Function Divide-Conquer(al , ar):

5 amid ←
al+ar

2 ;

6 run Lines 4–13 of Algorithm 5 (replace xw ← l
2
√

a
,yw ←

√
al
2 with xw ← l

2
√

ar

, yw ←
√

al l
2);

7 let Gw [S ′w , T ′w] be the WDDS found by binary search;

8 b ← |S ′w |
|T ′w |

;

9 c ← a2
mid

b
;

10 if b > c then Swap(b, c);

11 if al ≤ b then Divide-Conquer(al ,b);

12 if c ≤ ar then Divide-Conquer(c,ar);

Based on the discussions above, we develop a novel divide-and-conquer algorithm, named
WDC-Exact, as shown in Algorithm 6. First, it initializes al to the smallest ratio 1

n
, ar to the largest

ratio n, ρ∗ to 0, and D to ∅ (Algorithm 1).
Then, it applies (Algorithm 2) the function Divide-Conquer to check the possible values of a

(lines 4–12). Specifically, in Divide-Conquer, it first picks the middle point amid in range [al ,ar]
(Algorithm 5). Then, it uses the binary search process (similar to the one in WCore-Exact) to find
the (S ′w ,T ′w)-induced subgraphGw [S ′w ,T ′w] that maximizes Equation (7) (Algorithm 6). Afterwards,
it computes b and c according to Lemma 6.2 (lines 8–10). Finally, it skips the whole range (b, c) of
the value of a and searches on the two intervals split by (b, c) recursively to compute the DDS. Note
that to exploit the [xw ,yw]-wcores for improving the efficiency, we build the flow networks on the

union of [xw ,yw]-wcores for all possible values of a in the range [al , ar], i.e., the [l
2
√

ar

,
√

al l

2]-wcore

(Algorithm 6).
By restricting all weights of the graph to be one and replacing the wcore-based pruning to the

core-based pruning (i.e., rounding up x ← � l
2
√

ar

� and y ← �
√

al l

2 � in line 6) in WDC-Exact, we get

the algorithm for the unweighted case, DC-Exact.
Complexity. The time complexity of WDC-Exact (and DC-Exact) isO (k ·n2

√
m), wherek denotes

the number of times invoking the binary search, which is at most n2, since the binary search is
invoked at most n2 times in the worst case. Nevertheless, in practice, we have k � n2. As shown
by our experiments later, k is often orders of magnitude smaller than n2.

7 CORE-BASED APPROXIMATION DDS AND WDDS ALGORITHMS

While our exact algorithms, DC-Exact and WDC-Exact, are significantly faster than the state-of-the-
art algorithm Exact and its weighted adaptation WExact, we can further speed it up by trading
accuracy: We first develop a fast 2-approximation WDDS algorithm, called WCore-Approx. Next,
we propose an optimized version for unweighted graphs, named Core-Approx, which achieves an
approximation ratio of 2, within O (

√
m(m + n)) time.

7.1 A Core-based Approximation WDDS Algorithm

Our core-based approximation algorithm mainly relies on Theorem 7.1.

ACM Transactions on Database Systems, Vol. 46, No. 4, Article 13. Publication date: November 2021.

13:22 C. Ma et al.

Fig. 10. The Venn diagram of cn-pairs and wcn-pairs.

Theorem 7.1. Given a weighted directed graph Gw = (V , E,W), the wcore whose wcn-pair is the

maximum wcn-pair, i.e., [x∗w , y∗w]-wcore, is a 2-approximation solution to the WDDS problem.

Proof. Let the [x∗w , y∗w]-wcore be an (Sw ,Tw)-induced subgraph. By Lemma 5.10, we have

ρw (Sw ,Tw) ≥
√
x∗wy

∗
w . According to Lemma 5.12, we have ρ∗w ≤ 2

√
x∗wy

∗
w , so we conclude

ρ∗w
ρw (Sw ,Tw)

≤
2
√
x∗wy

∗
w√

x∗wy
∗
w

= 2. (10)

Hence, the theorem holds. �

According to Theorem 7.1, the wcore with the maximum wcn-pair is a 2-approximation so-
lution. A straightforward method is to compute all the wcores of Gw and then return the one
with the maximum wcn-pair. Theoretically, for each vertexu, its weighted outdegree (respectively,

indegree) in different (Sw ,Tw)-induced subgraphs can have up to 2d+
Gw

(u) (respectively, 2d−
Gw

(u))

different values. In the worst case, xw (respectively,yw) can have up to
∑

u ∈V 2d+
Gw

(u) (respectively,∑
u ∈V 2d−

Gw
(u)) different values. Hence, the strategy to iterate all possible wcn-pairs is not practical

for large weighted graphs. To avoid enumerating all the possible combinations of xw or yw , we
propose a new algorithm based on iterating the skyline wcn-pairs, which we will introduce next.

Definition 7.2 (Skyline wcn-pair). Given a weighted directed graphGw = (V , E,W), the wcn-pair
of an [xw , yw]-wcore is a skyline wcn-pair, if there does not exist any other [x ′w , y ′w]-wcore in
Gw that satisfies xw ≤ x ′w and yw ≤ y ′w .

Clearly, the maximum wcn-pair must be a skyline wcn-pair. Figure 10(a) shows the logical
inclusion-ship among different kinds of wcn-pairs on weighted graphs. We further illustrate the
concept of skyline wcn-pair in Example 7.3.

Example 7.3. Suppose that we have a weighted graph whose wcn-pairs are presented in Fig-
ure 11, where each point in the gray area denotes the wcn-pair of the [xw , yw]-wcore. The skyline
wcn-pairs are marked by circles, in which the blue circle denotes the maximum wcn-pair, i.e., [x3,
y3]. Review Figure 11; we can find that all skyline wcn-pairs look like different steps on the stair.
Hence, we will adopt a stair-climbing strategy (starting from [x5, y1] and ending at [x1, y5]) to
search all skyline wcn-pairs.

Based on the above discussions, we develop WCore-Approx, which aims to find the [x∗w , y∗w]-
wcore as a 2-approximation solution. Algorithm 7 presents WCore-Approx, in which we sequen-
tially find all the skyline wcn-pairs in a stair-climbing manner. Specifically, for the first skyline
wcn-pair [x ′w , y ′w], its first element x ′w is the maximum value of xw , and we get its second element
y ′w by increasing it from its minimum value. After getting [x ′w , y ′w], we find the second skyline

ACM Transactions on Database Systems, Vol. 46, No. 4, Article 13. Publication date: November 2021.

On Directed Densest Subgraph Discovery 13:23

Fig. 11. Illustrating the concepts of skyline wcn-pair and maximum wcn-pair.

ALGORITHM 7: WCore-Approx

Input :Gw = (V , E,W)

Output : The approximate WDDS D̃w , i.e., the [x∗w , y∗w]-wcore

1 x∗w ← 0, y∗w ← 0;

2 xw ← +∞, yw ← 0;

3 while xw > 0 do

4 xw ← GetMaxXw(Gw , yw , ≤);

5 if xw = 0 then break;

6 yw ← GetMaxYw(Gw , xw , <);

7 if xwyw > x∗wy∗w then x∗w ← xw , y∗w ← yw ;

8 return the [x∗w , y∗w]-wcore;

9 Function GetMaxXw(Gw , yw , �):

/* � is an inequality operator, either < or ≤ */

10 Sw ← V , Tw ← V , xw ← 0 ;

11 while ∃v ∈ Tw , w−
Gw

(v) � yw do

12 E ← E \ {(u,v) |u ∈ Sw }, Tw ← Tw \v ;

13 while |E | > 0 do

14 xw ← minu ∈Sw
{w+

Gw
(u)};

15 while ∃u ∈ Sw , w+
Gw

(u) ≤ xw do

16 E ← E \ {(u,v) |v ∈ Tw }, Sw ← Sw \ u;

17 while ∃v ∈ Tw , w−
Gw

(v) � yw do

18 E ← E \ {(u,v) |u ∈ Sw }, Tw ← Tw \v ;

19 return xw ;

20 Function GetMaxYw(Gw , xw , �):

21 reuse lines 10–19 by interchanging u with v , Sw with Tw , xw with yw , and d−
Gw

with d+
Gw

;

wcn-pair, whose first element is the second largest value of xw , and we get its second element by
increasing its value from y ′w to its maximum value. This process is repeated until we find all the
skyline wcn-pairs (lines 2–7).

Given a thresholdyw and an inequality operator � (i.e., < or ≤), the function GetMaxXw computes
the wcn-pair whose second element is larger (or larger or equal, according to �) than yw and first
element is maximized. In GetMaxXw, we first initialize Sw , Tw , and xw (line 10). Then, we make

ACM Transactions on Database Systems, Vol. 46, No. 4, Article 13. Publication date: November 2021.

13:24 C. Ma et al.

sure that the indegrees of all the vertices in Tw are larger than yw (lines 11–12). In the following
loop (lines 13–18), we first set xw as the minimum outdegree of vertices in Sw (line 14), and then
we remove the vertex whose outdegree is less or equal than xw (lines 15–16), but this may make
some vertices’ indegrees inTw become less or equal than yw , so we have to remove these vertices
as well (lines 17–18). Finally, we return the last updated value of xw (i.e., the maximum value of
xw). Analogously, we have a function GetMaxYw to get the skyline wcn-pair whose first element is
a given xw .

We further explain WCore-Approx by Example 7.4.

Example 7.4. Reconsider the graph and its wcn-pairs in Example 7.3. To find the [x∗w ,y∗w]-wcore,
WCore-Approx will run steps as follows:

(1) find the maximimum value of xw , i.e., x5, while keeping yw > 0, and then find the max-
imimum value of yw , i.e., y1, while keeping xw ≥ x5, so the first skyline wcn-pair is [x5,
y1];

(2) find the second largest value ofxw , i.e.,x4 while keepingyw > y1, and then find the maximum
value of yw , i.e., y2, while keeping xw ≥ x4, so the second skyline wcn-pair is [x4, y2];

(3) similarly, find the third to the fifth skyline wcn-pairs, i.e., [x3, y3], [x2, y4], and [x1, y5];
(4) return the [x∗w , y∗w]-wcore, i.e., [x3, y3]-wcore, as the 2-approximation WDDS.

Complexity. The time complexity of WCore-Approx depends on the number of skyline wcn-
pairs, denoted by ξ , in the weighted graph. Thus, its time complexity is bounded by O (ξ (n +
m) logn), where the step of obtaining the minimum outdegree (or indegree) (in line 14) needs
O (logn) operations with the help of a heap.

7.2 The Optimized Approximation Algorithm for the Unweighted Case

When the graph is unweighted, WCore-Approx can still provide a 2-approximation DDS. However,
we can further improve the time complexity by exploiting the connection among different kinds of
cn-pairs. Based on the connection, we propose a 2-approximation DDS algorithm, Core-Approx,
with time complexity of O (

√
m(n +m)).

The goal of Core-Approx is still to find the core with the maximum cn-pair according to Theo-
rem 7.1. First, we introduce three kinds of cn-pairs to facilitate the search of the maximum cn-pair.

Definition 7.5 (Maximum Equal cn-pair). Given a graph G = (V , E), a cn-pair [x , x] is the max-

imum equal cn-pair if x achives the maximum value among all the possible [x , x]-cores. We
denote the maximum equal cn-pair by [γ , γ].

Remarks. The approximation algorithm KS-Approx [42] actually returns the [γ , γ]-core in the
graph. However, the [γ ,γ]-core may not be necessarily the [x∗,y∗]-core; hence, it is not guaranteed
to be the 2-approximation DDS.

Lemma 7.6. Given a graph G = (V , E) and its maximum equal cn-pair [γ , γ], for any cn-pair [x ,

y], we have either x ≤ γ or y ≤ γ , or both of them.

Proof. We prove this lemma by contradiction. Assume there is a cn-pair [x , y] where x > γ
and y > γ . Then, let γ ′ = min{x ,y} > γ , so there exists a [γ ′, γ ′]-core in G, which contradicts [γ ,
γ] is the maximum equal cn-pair. �

Definition 7.7 (Skyline cn-pair). Given a graphG = (V , E), the cn-pair of an [x ,y]-core is a skyline

cn-pair if there does not exist any other [x ′, y ′]-core in G satisfying x ≤ x ′ and y ≤ y ′.

Definition 7.8 (Key cn-pair). Given a graph G = (V , E) and its maximum equal cn-pair [γ ,γ], the
cn-pair of an [x , y]-core is a key cn-pair, if one of the following conditions is satisfied:

ACM Transactions on Database Systems, Vol. 46, No. 4, Article 13. Publication date: November 2021.

On Directed Densest Subgraph Discovery 13:25

Fig. 12. Illustrating the concepts of cn-pairs.

(1) if x ≤ γ , there does not exist any [x , y ′]-core in G, such that y ′ > y;
(2) if y ≤ γ , there does not exist any [x ′, y]-core in G, such that x ′ > x .

Clearly, the maximum cn-pair is a skyline cn-pair and also a key cn-pair. Any skyline cn-pair is a
key cn-pair, but a key cn-pair may not be a skyline cn-pair. Example 7.9 illustrates these concepts.

Example 7.9. Suppose that we have a graph whose cn-pairs are presented in Figure 12, where
each colored cell (x ,y) denotes the cn-pair of the [x , y]-core. Then, the cn-pairs of the blue cells
are key cn-pairs, in which the one with a star is the maximum cn-pair. The cn-pair of the black
cell, i.e., [3, 3], is the maximum equal cn-pair. The cn-pair [8, 1] is a key cn-pair, but not a skyline
cn-pair, while all the other key cn-pairs are skyline cn-pairs.

To further illustrate the relationship among different kinds of cn-pairs, we use Figure 10(b) to
show their logical inclusion-ship.

Lemma 7.10. Given a graph G = (V , E) and its maximum equal cn-pair [γ , γ], we have γ ≤
√
m.

Proof. A [γ , γ]-core contains at least γ vertices whose outdegrees are at least γ . Meanwhile,
there are at mostm edges in the [γ , γ]-core. Hence, γ · γ ≤ m. �

By combining Lemmas 7.10 and 7.6, we get Lemma 7.11.

Lemma 7.11. Given a graph G = (V , E), there are at most 2
√
m key cn-pairs in G.

Proof. According to Lemma 7.6 and Definition 7.8, there are at most 2γ key cn-pairs inG. Since
we have γ ≤

√
m by Lemma 7.10, there are at most 2

√
m key cn-pairs in G. �

Based on the above discussions, we develop Core-Approx, which returns the [x∗, y∗]-core as an
approximate DDS. Precisely, we first compute the maximum equal cn-pair, enumerate all the key
cn-pairs, and finally return the core with the maximum cn-pair. Algorithm 8 presents Core-Approx.
First, it obtains the maximum equal cn-pair (line 2). Then, it enumerates x and y from 1 to γ to
search all the key cn-pairs (lines 3–8). Finally, the [x∗, y∗]-core is returned.

Given an input x , the function GetMaxY computes the key cn-pair whose first element is x . In

GetMaxY, we first initialize S , T , ymax, and y, where y is set to � x ∗y∗

x
� + 1. Then, in the loop, if

there is a vertex u ∈ T with indegree less than y, we remove it (lines 14–15); this may make some
vertices’ outdegrees become less than x , so we have to remove these vertices as well (lines 16–17).
After that, we update ymax and increase y by 1 (lines 18–19). Finally, we get the maximum value of
y. Similarly, we have a function GetMaxX to get the key cn-pair whose second element is a given
y. During the searching process of the [x∗,y∗]-core, we will also keep track of the densities of the
subgraphs by maintaining the remaining number of edges and vertices and capturing the densest

ACM Transactions on Database Systems, Vol. 46, No. 4, Article 13. Publication date: November 2021.

13:26 C. Ma et al.

ALGORITHM 8: Core-Approx

Input :G = (V , E)

Output : An approximate DDS D̃, i.e., the [x∗, y∗]-core

1 x∗ ← 0, y∗ ← 0;

2 [γ , γ]← compute the [γ , γ]-core by iteratively peeling vertices that have the minimum indegrees or

outdegrees;

3 for x ← 1 to γ do

4 y ←GetMaxY(G, x);

5 if xy > x∗y∗ then x∗ ← x , y∗ ← y ;

6 for y ← 1 to γ do

7 x ←GetMaxX(G, y);

8 if xy > x∗y∗ then x∗ ← x , y∗ ← y ;

9 return the [x∗, y∗]-core;

10 Function GetMaxY(G, x):

11 S ← V , T ← V , ymax ← 0, y ← � x ∗y∗

x � + 1;

12 if y > maxu ∈T {d−G (u)} then return ymax;

13 while |E | > 0 do

14 while ∃u ∈ T ,d−
G

(u) < y do

15 E ← E \ {(v,u) |v ∈ S }, T ← T \ {u};
16 while ∃v ∈ S,d+

G
(v) < x do

17 E ← E \ {(v,u) |u ∈ T }, S ← S \ {v};

18 if |E | > 0 then ymax ← y;

19 y ← y + 1;

20 return ymax;

21 Function GetMaxX(G, y):

22 reuse lines 11–20 by interchanging u with v , S with T , x with y, d+
G

with d−
G

, and changing ymax to

xmax;

subgraph among those subgraphs. This heuristic can help get a better approximation to the DDS
at limited extra cost.

We further illustrate Core-Approx by Example 7.12.

Example 7.12. Given a graph with cn-pairs in Example 7.9, Core-Approx will run steps as fol-
lows:

(1) finds the maximum equal cn-pair [3, 3];
(2) iterates x from 1 to 3 to compute the key cn-pairs whose first elements are x , i.e., [1, 8], [2, 7],

and [3, 5];
(3) iterates y from 1 to 3 to search the key cn-pairs whose second elements are y, i.e., [8, 1],

[8, 2], and [6, 3];
(4) returns the [x∗, y∗]-core, i.e., [6, 3]-core.

Complexity. Computing the [γ , γ]-core takesO (m+n) time, as it iteratively peels vertices with
the minimum indegrees or outdegrees. Similarly, functions GetMaxY and GetMaxX also complete
in O (m + n) time. Since there are at most 2

√
m key cn-pairs by Lemma 7.11, the total time cost of

Core-Approx is bounded by O (
√
m(n +m)).

ACM Transactions on Database Systems, Vol. 46, No. 4, Article 13. Publication date: November 2021.

On Directed Densest Subgraph Discovery 13:27

Fig. 13. Illustration of the [x∗, y∗]-core before and after the insertion of edge (b, f).

8 DDS MAINTENANCE IN DYNAMIC DIRECTED GRAPHS

In this section, we study the problem of DDS maintenance in dynamic directed graphs, where ver-
tices and edges are inserted and deleted frequently. In line with previous works of DS maintenance
in undirected graphs [5, 9, 18, 37, 68], we focus on maintaining the 2-approximation solution in
dynamic directed graphs. More precisely, we mainly consider two kinds of graph updates, namely,
edge insertion and edge deletion, since vertex insertion (respectively, vertex deletion) can be re-
garded as a sequence of edge insertions (respectively, edge deletions) preceded (respectively, fol-
lowed) by the insertion (respectively, deletion) of an isolated vertex. We aim to efficiently output
the updated DDS whenever a graph update is made.

To maintain the DDS, a simple solution is to recompute the 2-approximation DDS from scratch
when a graph update is made. However, since the graph is typically large and frequently updated,
this approach is impractical due to its inefficiency. Another approach is that we dynamically main-
tain all the [x ,y]-cores to keep track of the approximation DDS, i.e., the [x∗,y∗]-core. Nevertheless,
this requires much extra memory to index all [x , y]-cores, and also much computation cost, since
many [x , y]-cores may change even after a single edge insertion or edge deletion. Obviously, this
is not an elegant solution either, as we only care about the [x∗, y∗]-core. To improve the efficiency,
we conduct a careful investigation and observe that inserting or deleting a single edge in a graph
G usually results in little or no change on the DDS, since the DDS is often much smaller than
G, which motivates us to update the DDS locally by examining the subgraph containing the in-
serted or deleted edge. Based on this observation, we develop efficient algorithms that focus on
maintaining the [x∗, y∗]-core for edge insertion and edge deletion in Section 8.1 and Section 8.2,
respectively. For ease of presentation, we useG+ (respectively,G−) to represent the updated graph
after an edge e = (u,v) is inserted to (respectively, removed from) the directed graph G.

8.1 Edge Insertion

When a new edge e = (u,v) is inserted to G, under what condition would the [x∗, y∗]-core of G
fail to be a 2-approximation DDS inG+? Only if the new edge is contained in an [x∗+,y∗+]-core such
that x∗+ · y∗+ > x∗ · y∗, which means that [x∗+, y∗+] is the new maximum cn-pair in G+. As a result,
we can derive a necessary condition for e to be contained in such an [x∗+, y∗+]-core:

d+G+ (u) · d−G+ (v) > x∗ · y∗. (11)

In other words, when the above condition is satisfied, we need to further check whether the
inserted edge can contribute to the [x∗+, y∗+]-core; otherwise, the [x∗, y∗]-core of G is still a 2-
approximation DDS of G+, which means that the DDS does not change. We further illustrate this
by Example 8.1.

Example 8.1. Consider the graph G in Figure 13 with the insertion of a new edge (b, f). In G,
the maximum cn-pair is [1, 4], so the subgraph induced by {a,b, c,d } and {e} is a 2-approximation

ACM Transactions on Database Systems, Vol. 46, No. 4, Article 13. Publication date: November 2021.

13:28 C. Ma et al.

solution. After inserting (b, f),G becomesG+ and we haved+G+ (b) ·d−G+ (f) = 9 > 4. Therefore, edge

(b, f) may contribute to the [x∗+, y∗+]-core where x∗+ · y∗+ > 1 × 4. After further check, we will find
the maximum cn-pair ofG+ is [2, 3] and (b, f) is contained in the [2, 3]-core. Since 2 × 3 > 1 × 4,
we update the 2-approximation DDS as the [2, 3]-core of G+.

Next, we discuss how to examine whether the [x∗+,y∗+]-core exists inG+, when the inserted edge
(u,v) satisfies the condition in Equation (11). The possible ranges of the values of x∗+ and y∗+ can
be restricted by Lemma 8.2.

Lemma 8.2. Given a directed graph G and an edge e = (u,v) to be inserted, let [x∗+, y∗+] be the

maximum cn-pair of G+ and [x∗, y∗] be the maximum cn-pair of G. Only if the following conditions

are satisfied, the [x∗, y∗]-core could fail to be a 2-approximation DDS and the [x∗+, y∗+]-core gives the

2-approximation DDS in G+:

⎧⎪⎪⎪⎨⎪⎪⎪⎩

x∗+ · y∗+ > x∗ · y∗,
x∗+ ≤ d+G+ (u),

y∗+ ≤ d−G+ (v).
(12)

Proof. First, the [x∗, y∗]-core still exists in G+, so the x∗+ · y∗+ ≥ x∗ · y∗. If x∗+ · y∗+ = x∗ · y∗, then
the current [x∗, y∗]-core is still a valid 2-approximation solution for G+. Thus, we need to check
whether x∗+ · y∗+ > x∗ · y∗ satisfies.

Second, if x∗+ · y∗+ > x∗ · y∗, then the inserted edge e = (u,v) must be contained in the [x∗+, y∗+]-
core. Otherwise, the [x∗+, y∗+]-core is a subgraph of G, which contradicts x∗+ · y∗+ > x∗ · y∗. Hence,
we have x∗+ ≤ d+G+ (u) and y∗+ ≤ d−G+ (v). �

Let us take the edge insertion in the graph of Figure 13 as an example to illustrate Lemma 8.2.
The possible scope of the maximum cn-pair in G+, i.e., [x∗+, y∗+], is depicted in the shaded area of
Figure 14, where x ≤ 3, y ≤ 3, and xy > 4. This is because after the insertion, the indegree of b
and outdegree of f are 3. The (b, f) is supposed to be in the [x∗+, y∗+]-core, so in this case we have
x∗+ ≤ 3 and y∗+ ≤ 3.

To find the new maximum cn-pair in G+, we only need to iterate over the skyline cn-pairs in
the possible scope (the shaded area in Figure 14) stated by Lemma 8.2. In Example 8.1, we first fix
x = 2 and find y = 3, where [2, 3] is a valid cn-pair in G+. Then, we increase x to 3 and find that
there is no cn-pair in the scope. Hence, [2, 3] is the maximum cn-pair in G+, and we can update
the 2-approximation solution as the [2, 3]-core. The number of skyline cn-pairs of G+ falling into
the area delineated by Lemma 8.2 is much smaller than the total number of skyline cn-pairs ofG+,
which explains, to a certain extent, why the dynamic algorithm is much faster than recomputing
from scratch.

Based on the above analysis, we propose a maintenance algorithm to handle the case of edge
insertion, denoted by Approx-Ins. Algorithm 9 presents the details. The algorithm first checks
whether the necessary condition in Equation (11) is satisfied (line 2). If yes, then the algorithm will
check whether there exists the [x∗+, y∗+]-core in G+ by iterating x from xlower to xupper to search
the skyline cn-pairs in the possible scope. In detail, to find the first skyline cn-pair, [2, 3], we first
find the largest second element y = 3 while keeping x ≥ 2 and y ≥ 3 to satisfy x∗+ · y∗+ > x∗ · y∗
(line 6) and then find the largest first element x = 2 while keeping y ≥ 3 and x ≥ 2 (line 8).

Given two thresholds, x and y, and two vertices to be contained, u and v , the function
GetMaxYLocal (lines 11–31) computes the cn-pair satisfying the following conditions simultane-
ously:

(1) the first element of the cn-pair is at least x ,
(2) the second element of the cn-pair is at least y,

ACM Transactions on Database Systems, Vol. 46, No. 4, Article 13. Publication date: November 2021.

On Directed Densest Subgraph Discovery 13:29

Fig. 14. Finding the maximum cn-pair in G+.

(3) the second element is maximized,
(4) the corresponding [x , y]-core of the cn-pair contains both vertices u and v .

If these conditions can be fulfilled, the algorithm will return the second element y of the cn-pair;
otherwise, it will return 0.

Specifically, we first examine whether there is an [x , y]-core containing both u and v by gener-
ating an [x , y]-core starting from u and v . To generate the core, we maintain two queues, Qexpand

and Qshr ink (line 12), two sets, S and T , denoting that the core G+[S,T] (line 13), and two degree
arrays, deдin and deдout , recording indegrees and outdegrees for vertices in T and S , respectively
(line 14). To start, we push (u, S) and (v,T) toQexpand (line 15). Here, we use the pair (u, S) (respec-
tively, (v,T)) to denote u ∈ S (respectively, v ∈ T), because a same vertex could be contained in
both S andT . Next, we keep processing the vertices inQexpand andQshr ink until both sets become
empty (lines 16–28). If Qshr ink is not empty, then there exists a vertex in S being removed whose
outdegree is less than x or a vertex in T being removed whose indegree is less than y (line 17).
Thus, we need to check whether removing this vertex will result in the removal of its adjacent
vertices. If yes, then we remove the affected vertices and push them to Qshr ink (lines 19–21). If
Qexpand is not empty, then there is a vertex newly added to S or T because its outdegree or inde-
gree in G+ is larger than x or y, respectively (line 22). We need to check whether its outdegree or
indegree in G+[S,T] still fulfills the criterion (lines 24–26). If yes, then we will add the adjacent
vertices with indegrees larger or equal than y of the vertex to T and push them into Qexpand for
further examination assuming the current vertex belongs to S (line 28). Otherwise, the vertex will
be removed from S or T and passed into Qshr ink to be further processed (line 26). When G+[S,T]
becomes stable, we will check whether u and v are still in the subgraph (line 26). If yes, then we
maximize the second element y of the cn-pair by increasing y and removing the vertices that do
not fulfill the degree criteria (line 30); otherwise, the algorithm will return 0 (line 31). Similarly,
we can have the function GetMaxXLocal (lines 32–33).

Complexity. In the worst case, all the skyline cn-pairs are iterated in Approx-Ins, and each
time the whole graph is visited. Thus, the time complexity of the algorithm is O (

√
m(n + m)),

which is the same as that of Core-Approx. However, only a small portion of the graph needs to be
processed in practice, as demonstrated in the experimental part, so it performs very fast.

8.2 Edge Deletion

We begin with an interesting observation: After removing an edge e = (u,v) from the graph
G, if the [x∗,y∗]-core of G is not the core with the maximum cn-pair in G−, which means that the

ACM Transactions on Database Systems, Vol. 46, No. 4, Article 13. Publication date: November 2021.

13:30 C. Ma et al.

ALGORITHM 9: Approx-Ins

Input :G = (V , E), the maximum cn-pair of G (i.e., [x∗, y∗]), and an inserted edge e = (u,v)

Output : The 2-approximation DDS D̃+ of G+
1 G+ = (V ,E+) ← insert (u,v) into G;

2 if d+
G+

(u) · d−
G+

(v) ≤ x∗ · y∗ then return the [x∗, y∗]-core of G ;

3 xlower ← �
x ∗ ·y∗

d−
G+

(v)
� + 1, xupper ← d+

G+
(u) ;

4 for x ← xlower to xupper do

5 y ← � x ∗ ·y∗
x � + 1;

6 y ← GetMaxYLocal(G+, x , y, u, v);

7 if y = 0 then continue;

8 x ← GetMaxXLocal(G+, x , y, u, v);

9 if x · y > x∗ · y∗ then x∗ ← x , y∗ ← y ;

10 return the [x∗, y∗]-core of G+;

11 Function GetMaxYLocal(G+, x , y, u, v):

12 initialize two queues Qexpand and Qshr ink ;

13 initialize two sets S ← {u} and T ← {v};
14 initialize the degree arrays deдin and deдout for the new [x ,y]-core consisting of (u,v);

15 push (u, S) and (v,T) to Qexpand ; // (u, S), (v,T) indicate u ∈ S, v ∈ T
16 while Qexpand or Qshr ink is not empty do

17 if Qshr ink is not empty then

18 Qshr ink pops out the front pair as (w, I);

/* Assume I = S. If I = T, interchange proper variables. */

19 foreach p ∈ {p |(w,p) ∈ E+ ∧ p ∈ T } do

20 deдin[p]← deдin[pT] − 1;

21 if deдin[p] < y then push (p,T) to Qshr ink , remove p from T ;

22 else

23 Qexpand pops out the front pair as (w, I);

/* Assume I = S. If I = T, interchange proper variables. */

24 Vtmp ← {p |(w,p) ∈ E+ ∧ d−G+ (p) ≥ y ∧ (p,T) is never pushed into Qshr ink };
25 deдout [w]← |Vtmp |;
26 if deдout [w] < x then add (w, I) to Qshr ink , remove w from S ;

27 else

28 foreach p ∈ {p |p ∈ Vtmp ∧ p � T } do push (p,T) to Qexpand , add p to T ;

29 if u ∈ S ∧v ∈ T then

30 return maxu,v ∈ the [x,y]-core y ; // via increasing y and removing vertices from S

and T

31 else return 0 ;

32 Function GetMaxXLocal(G+, x , y, u, v):

33 reuse lines 12–31 by replacing “maxu,v ∈ the [x,y]-core y” with “maxu,v ∈ the [x,y]-core x” in line 30.

2-approximation DDS solution changes, then e must be contained in the [x∗,y∗]-core ofG. In other
words, if e is not in the [x∗,y∗]-core ofG, then we do not need to update the 2-approximation DDS.
Inspired by this observation, we design a maintenance algorithm for processing the case of edge
deletion, denoted by Approx-Del.

ACM Transactions on Database Systems, Vol. 46, No. 4, Article 13. Publication date: November 2021.

On Directed Densest Subgraph Discovery 13:31

Fig. 15. Illustration of the [x∗, y∗]-core before and after the deletion of edge (b, f).

ALGORITHM 10: Approx-Del

Input :G = (V , E), the maximum cn-pair of G (i.e., [x∗, y∗]), and a removed edge e = (u,v)

Output : The 2-approximation DDS D̃− of G−
1 G− ← delete (u,v) from G;

2 if d+
G

(u) · d−
G

(v) ≤ x∗ · y∗ then return the [x∗, y∗]-core of G ;

3 if (u,v) � the [x∗,y∗]-core of G then return the [x∗, y∗]-core of G ;

4 D̃− = G[S,T]← the [x∗, y∗]-core of G;

5 remove edge (u,v) from D̃−;

6 while ∃w ∈ S , d+
D̃−

(w) < x∗ ∨ ∃p ∈ T , d−
D̃−

(p) < y∗ do

7 if ∃w ∈ S , d+
D̃−

(w) < x∗ then remove w from S and the outgoing edges of w from D̃−;

8 if ∃p ∈ T , d−
D̃−

(p) < y∗ then remove p from T and the incoming edges of p from D̃−;

9 if S � ∅ ∧ T � ∅ then return D̃− ;

10 else return Core-Approx(G−) ; // Call Algorithm 8 to recompute

Algorithm 10 presents the key steps of Approx-Del. The first condition we check is whether
d+G (u) ·d−G (v) < x∗ ·y∗. If this inequation holds, then we can safely remove the edge, and [x∗,y∗] is
still the maximum cn-pair for G− (line 2). Otherwise, we further check whether the [x∗, y∗]-core
of G consists of (u,v). If no, then the edge can be removed safely, and the [x∗, y∗]-core of G is
still the 2-approximation solution (line 3); if yes, then the 2-approximation DDS must change, and

the algorithm will assign the [x∗, y∗]-core of G to D̃− = G[S,T] (line 4). Next, we keep removing
the vertices from S whose outdegrees are less than x∗ and vertices from T whose indegrees are

less than y∗ (lines 5–8). After the removal process, D̃− will be returned if D̃− is not empty (line 9).
Otherwise, Core-Approx will be invoked to re-compute the 2-approximation DDS in G− (line 10).

Example 8.3. Consider the graphG in Figure 15 and an edge (b, f). Before removing (b, f) from
G, the maximum cn-pair ofG is [2, 3], so the subgraph induced by S = {a,b, c,d } andT = {e, f ,д} is
a 2-approximation solution. Notice that (b, f) is in the [2, 3]-core ofG. Since d+G (b) ·d−G (f) = 9 ≥ 6,
the approximate DDS must change, and we need to keep removing the vertices whose outdegrees
are less than 2 from S and the vertices whose indegrees are less than 3 from T . After the removal
process, S = {b, c,d } and T = {e,д} are still not empty. Hence, [2, 3] is still the maximum cn-pair
of G− and the subgraph induced by S and T is the 2-approximation solution of G−.

Complexity. In the worst case, the 2-approximation algorithm Core-Approx needs to be re-
invoked. Consequently, the time complexity of Approx-Del isO (

√
m(n+m)), which is the same as

that of Core-Approx. Nevertheless, in practice, it runs much faster than recomputing from scratch,
since the removed edge is not always in the [x∗,y∗]-core of G.

ACM Transactions on Database Systems, Vol. 46, No. 4, Article 13. Publication date: November 2021.

13:32 C. Ma et al.

Table 4. Unweighted Directed Graphs Used in Our Experiments

Dataset Full name Category |V | |E |
MO [28] moreno-oz Human Social 217 2,672

TC [1] maayan-faa Infrastructure 1,226 2,615

OF [61] openflights Infrastructure 2,939 30,501

AD [55] advogato Social 6,541 51,127

AM [46] amazon E-commerce 403,394 3,387,388

AR [58] amazon-ratings E-commerce 3,376,972 5,838,041

BA [59] baidu-zhishi Hyperlink 2,141,300 17,643,697

TW [14] twitter-mpi Social 52,579,682 1,963,263,821

9 EXPERIMENTS

We now present the experimental results. We first discuss the setup in Section 9.1, then describe the
results of exact and approximation algorithms in Sections 9.2–9.3, followed by the results of DDS
maintenance over dynamic graphs in Section 9.4 and WDDS computation on weighted graphs in
Section 9.5, and finally present case studies in Section 9.6.

9.1 Setup

In the following, we introduce the datasets8 and the algorithms that are used for our experimental
evaluation of DDS algorithms, DDS maintenance algorithms, and WDDS algorithms, respectively.

9.1.1 Unweighted Graphs and DDS Algorithms. For unweighted directed graphs, we use eight
real datasets [44], and we report the numbers of vertices and edges of each dataset in Table 4. These
graphs cover various domains, including social networks (e.g., Twitter and Advogato), e-commerce
(e.g., Amazon), and infrastructures (e.g., flight networks).

We compare following exact DDS algorithms:

• Core-Exact is our proposed exact algorithm for DDS computation (Section 6.2).
• DC-Exact is our proposed exact algorithm for DDS computation (Section 6.3).
• Exact [42] is the state-of-the-art exact algorithm, which is also recapped in Section 4.1.

We also compare following approximation DDS algorithms:

• Core-Approx is our proposed 2-approximation algorithm for DDS computation (Section 7).
• KS-Approx [42] is an approximation algorithm whose approximation ratio was misclaimed,

which is also recapped in Section 4.2.
• FKS-Approx (in the Appendix) is the fixed version provided by the authors of Reference [42].

Its time complexity is O (n · (n +m)), with an approximation ratio of 2.
• PM-Approx [6] is a parameterized approximation algorithm. Note that we use its default

parameters in Reference [6] in our experiments (δ = 2, ϵ = 1).
• BS-Approx [15] is a 2-approximation algorithm.
• BS-Approx-δ [15] is an adaptation of BS-Approx providing 2δ -approximation result with

time complexity of O (
log n

log δ
(n +m)). In our experiments, we use δ = 2, which is also adopted

by PM-Approx in Reference [6].

8All datasets are available online at http://konect.uni-koblenz.de/networks/, http://snap.stanford.edu/data/index.html and

http://networkrepository.com.

ACM Transactions on Database Systems, Vol. 46, No. 4, Article 13. Publication date: November 2021.

http://konect.uni-koblenz.de/networks/
http://snap.stanford.edu/data/index.html
http://networkrepository.com

On Directed Densest Subgraph Discovery 13:33

Table 5. Dynamic Graphs Used in Our Experiments

Dataset Full name Category |V | |E | Number of updates

YH [67] ia-yahoo-messages Social 100,001 905,199 3,179,718

SU [63] sx-superuser Online QA 194,085 924,886 1,443,339

CA [47] ca-cit-HepTh Collaboration 22,908 2,444,798 2,673,133

SX [63] sx-stackoverflow Online QA 2,601,977 36,233,450 63,497,050

Table 6. Weighted Directed Graphs Used in Our Experiments

Dataset Full name Category |V | |E | Weight meanings

FD [64] foodweb-baydry Trophic 128 2,137 Carbon exchange

AF [60] opsahl-usairport Infrastructure 1,574 28,236 Number of flights

BX [79] bookcrossing-rating E-commerce 263,757 433,652 Rating

MV [44] movielens-1m Movie 9,746 1,000,210 Rating

LI [45] libimseti Social 220,970 17,359,346 Rating

9.1.2 Dynamic Graphs and DDS Maintenance Algorithms. To evaluate DDS maintenance algo-
rithms, we use four real datasets [44, 48, 67], and we report the numbers of vertices and edges
of each dataset in Table 5. Those graphs have timestamps associated with edges. For example, SX
[63] is a temporal network of interactions on the stack exchange web site Stack Overflow.9 Each
timestamp corresponds to an update, and the total number of timestamps on each dataset is also
reported in Table 5. We also use two static graphs (i.e., AM and BA) with synthetic updates to
evaluate the DDS maintenance algorithms.

We conduct experiments using following 2-approximation DDS maintenance algorithms:

• Core-Approx is a baseline method by recomputing the DDS from scratch for each update.
• Approx-Ins is the DDS maintenance algorithm for handling edge insertion (Section 8.1).
• Approx-Del is the DDS maintenance algorithm for handling edge deletion (Section 8.2)

9.1.3 Weighted Directed Graphs and WDDS Algorithms. For weighted directed graphs, we use
three real datasets [44] and report the numbers of vertices and edges, as well as the weight mean-
ings, e.g., the weights denote the numbers of flights in the flight network [60], of each dataset
in Table 6. These graphs cover domains of e-commerce (e.g., Amazon), infrastructures (e.g., flight
network), and social networks (e.g., Libimseti.cz). We compare the following WDDS algorithms:

• W-Exact is the baseline exact WDDS algorithm, extended from Exact.
• WDC-Exact is our proposed exact WDDS algorithm, which exploits wcore-based optimiza-

tion and divide-and-conquer strategy.
• WCore-Approx is our proposed 2-approximation WDDS algorithm.

All the algorithms above are implemented in C++ with STL used. We run all the experiments on
a machine having an Intel(R) Xeon(R) Silver 4110 CPU @ 2.10 GHz processor and 256 GB memory,
with Ubuntu installed.

9.2 Exact Algorithms of DDS Problem

In Figure 16, we report the efficiency results of exact algorithms on the five smallest datasets (i.e.,
MO, TC, OF, AD, and AM). As these solutions cannot finish reasonably on larger datasets, we do

9https://stackoverflow.com.

ACM Transactions on Database Systems, Vol. 46, No. 4, Article 13. Publication date: November 2021.

https://stackoverflow.com

13:34 C. Ma et al.

Fig. 16. Efficiency of exact DDS algorithms. Fig. 17. Flow network sizes in exact algorithms.

not report their results here. Note that Exact and Core-Exact cannot compute the DDS within
600 hours on OF, AD, and AM. Clearly, Core-Exact is at least 2× and up to 100× faster than the
state-of-the-art exact algorithm Exact. This is mainly because Core-Exact locates the DDS in
some [x , y]-cores, which are often much smaller than the entire graph, so the flow networks built
on these cores become much smaller, resulting in less time cost on computing the minimum st-cut
of the flow networks.

We further investigate how the flow network size (number of edges) changes in the first 10
iterations of the binary search in exact algorithms. Figure 17 reports the flow network size of
these three algorithms on two datasets, i.e., AD and AM. Clearly, we can observe that the size of
the flow network in Core-Exact is reduced significantly as the iteration goes on, while the flow
network size of Exact does not change during these iterations. Thus, we conclude that the [x ,
y]-cores are indeed effective for locating the DDS in some smaller subgraphs, allowing the exact
DDS to be computed more efficiently. The sizes of flow networks created in DC-Exact are larger
than those in Core-Exact because, in DC-Exact, the flow network is built based on the union of
[x ,y]-cores for all possible values of a in the range of [al ,ar].

Meanwhile, from Figure 16, we can see that DC-Exact is up to six and five orders of magni-
tude faster than Exact and Core-Exact, respectively. The main reason is that DC-Exact exploits a

divide-and-conquer strategy, which dramatically reduces the number of a = |S |
|T | examined, as illus-

trated in Figure 9. To further analyze the speedup of DC-Exact over Exact, we report the numbers
of values of a examined in DC-Exact and Exact, which equal to the numbers of times of invoking
the loop of binary search. As discussed in Section 6, the total numbers of values of a examined in

Exact and DC-Exact are n2 and k , respectively. The values of n2, k , and n2

k
on the first five datasets

are reported in Table 7. Clearly, n2 is much larger than k . For example, on the dataset AM, n2 is
over 10 orders of magnitude larger than k . Thus, DC-Exact runs much faster than Exact.

In addition, we have implemented the three exact algorithms (Exact, Core-Exact, and
DC-Exact) with/without the help of the parametric max-flow algorithm [29]. We test the running
time of both versions (i.e., with the parametric max-flow algorithm and without it) and report the
speedup provided by the parametric max-flow algorithm for each algorithm in Table 8, where NA
denotes the algorithm cannot finish within 200 hours on the corresponding dataset. We can see that
the parametric max-flow algorithm is indeed helpful for further improving the efficiency. Besides,
we can observe Core-Exact gains the most from the parametric max-flow algorithm followed by
Exact, while DC-Exact gains little, because it is already several orders of magnitude faster than
Core-Exact and Exact even without the help of the parametric max-flow algorithm.

ACM Transactions on Database Systems, Vol. 46, No. 4, Article 13. Publication date: November 2021.

On Directed Densest Subgraph Discovery 13:35

Table 7. The Total Numbers of Values of a Examined in

DC-Exact and Exact

Dataset n2 (Exact) k (DC-Exact) n2

k

MO 4.71 × 104 16 2.94 × 103

TC 1.50 × 106 23 6.54 × 104

OF 8.64 × 106 35 2.47 × 105

AD 4.28 × 107 81 5.28 × 105

AM 1.63 × 1011 13 1.25 × 1010

Table 8. The Speedup Provided by the Parametric

Max-flow Algorithm [29]

Dataset Exact Core-Exact DC-Exact

MO 3.90 5.02 1.31

TC 2.76 2.95 1.17

OF 3.96 6.80 1.41

AD NA NA 1.46

AM NA NA 1.05

Fig. 18. Efficiency of approximation algorithms.

9.3 Approximation Algorithms of DDS Problem

In Figure 18 (respectively, Figure 19), we show the running time of (respectively, the densities of
the approximate DDS’s returned by) approximation algorithms on all the eight datasets, where
bars touching the upper boundaries (respectively, “NA” labels) mean that the corresponding al-
gorithms cannot finish within 200 hours. We can make the following observations: (1) BS-Approx
and FKS-Approx provide high quality results but are the two most inefficient algorithms, because
their time complexities, i.e., O (n2 (n + m)) and O (n(n + m)), are higher than those of other
algorithms. (2) KS-Approx is the most efficient one on almost all the datasets, since it takes
only linear time cost, i.e., O (n +m). However, its approximation ratio could be larger than 2, as
analyzed in Section 4. (3) Core-Approx is the second most efficient one on almost all the datasets,
followed by PM-Approx. (4) BS-Approx-δ provides high-quality results, although its theoretical
approximation ratio is larger than 2. Its running time is more than 6× longer than Core-Approx,

ACM Transactions on Database Systems, Vol. 46, No. 4, Article 13. Publication date: November 2021.

13:36 C. Ma et al.

Fig. 19. ρS̃∗,T̃ ∗ returned by all approximation algorithms.

Table 9. Analyzing 2-approximation DDS Algorithms

Dataset MO TC OF AD AM AR BA TW

n 217 1,226 2,939 6,541 4.03 × 105 3.38 × 106 2.14 × 106 5.26 × 107

n2 4.71 × 104 1.50 × 106 8.64 × 106 4.28 × 107 1.63 × 1011 1.14 × 1013 4.59 × 1012 2.76 × 1015
√
m 52 51 174 226 1,840 2,416 4,200 44,308

γ 8 3 27 18 10 26 60 2,221
n
γ

27 408 108 363 4.03 × 104 1.30 × 105 3.57 × 104 2.37 × 104

n2

γ
5.89 × 103 5.01 × 105 3.20 × 105 2.38 × 106 1.63 × 1010 4.39 × 1011 7.64 × 1010 1.24 × 1012

although its theoretical time complexity is lower. (5) Among all the 2-approximation algorithms,
Core-Approx is the fastest one, since it is up to six orders of magnitude faster than BS-Approx,
and three orders of magnitude faster than FKS-Approx. Moreover, it can process billion-scale
graphs. Thus, it obtains not only high-quality results but also achieves high efficiency.

Next, we focus on the 2-approximation algorithms and perform a deeper investigation on why
Core-Approx is significantly faster than others. Recall that the time complexities of BS-Approx,
FKS-Approx, and Core-Approx areO (n2 (n+m)),O (n · (n+m)), andO (γ (n+m)), respectively, so we

can roughly use n2

γ
and n

γ
to explain the speedup of Core-Approx over BS-Approx and FKS-Approx,

respectively. In Table 9, we report the values of n
γ

and n2

γ
on all the eight datasets. Clearly, on the

first four datasets, the values of n2

γ
and n

γ
are roughly the same as the times of speedup in Figure 18.

Based on this observation, we conjecture that for other larger datasets (e.g., AR), Core-Approx
could be up to 10 and 5 orders of magnitude faster than BS-Approx and FKS-Approx, respectively,
although we did not get the actual running time of BS-Approx and FKS-Approx in our experiments.

Besides, we compare the actual approximation ratios of all the six approximation algorithms.
Specifically, for each graph, we first obtain the exact DDS using DC-Exact, then compute the ap-
proximate DDS’s using these approximation algorithms, and get the actual approximation ratios
(i.e., the density of the exact DDS over those of approximate DDS’s). Note that a smaller actual
approximation ratio indicates that the corresponding solution has a better approximation quality
w.r.t. the optimal DDS, i.e., higher accuracy w.r.t. the exact DDS. We report the actual approxima-
tion ratios of each algorithm on the first five datasets in Figure 20. Clearly, the actual approximation
ratios of Core-Approx, BS-Approx-δ , BS-Approx, and FKS-Approx are indeed smaller than their
theoretical worst-case approximation ratios. The theoretical approximation ratio of BS-Approx-δ

ACM Transactions on Database Systems, Vol. 46, No. 4, Article 13. Publication date: November 2021.

On Directed Densest Subgraph Discovery 13:37

Fig. 20. The actual approximation ratios of all approx-

imation algorithms.
Fig. 21. F1 scores of all approximation algorithms.

Table 10. The Values of
|S∗ |
|T ∗ | on the First Five Datasets

Dataset MO TC OF AD AM

|S∗ |
|T ∗ | 1.04 5.67 × 10−2 1.01 2.32 2.47 × 103

is 4, but its actual approximation ratios over five datasets are quite low and sometimes marginally
smaller than our Core-Approx, which indicates that the technique used in BS-Approx-δ to reduce

the number of values of |S ||T | will not introduce much error in practice. Besides, we can see that

KS-Approx cannot provide 2-approximation results on some datasets (e.g., AM). This well con-
firms our finding that KS-Approx may fail to report a 2-approximation result in some cases, as
discussed in Section 4.2. In addition, the actual approximation ratios of PM-Approx could be larger
than 2 but less than 5: notice that its theoretical approximation ratio is 2δ (1+ ϵ), which under the
default parameter setting of δ = 2, ϵ = 1, recommended by Reference [6], evaluates to 8.

Figure 21 supplements Figure 20 with F1 scores of the subgraphs returned by the approximation
algorithms w.r.t. the DDS returned by DC-Exact. Note that BS-Approx and FKS-Approx did not
finish in reasonable time on some datasets, so we could not compute the overlap that they could
have achieved. From Figure 21, we have following observations: (1) In many cases, DDS’s of lower
density found by some algorithms tend to overlap less with the optimal DDS. (2) In some cases,
surprisingly, lower approximation ratio is associated with higher overlap with the optimal DDS.
But this pattern is not consistent: e.g., the actual approximation ratio of KS-Approx is lower (i.e.,
better) than that of PM-Approx, while the F1 score of KS-Approx is lower than that of PM-Approx.
We remark that the (actual) approximation ratio is the primary criterion to evaluate the approxi-
mation algorithms, as our goal is to find a subgraph as dense as possible.

To further analyze why KS-Approx leads to very high approximation ratios, we revisit its algo-
rithm steps and find that it actually restricts the search on the subgraph, in which the minimum

outdegree and minimum indegree of all vertices are close to each other; in other words, when |S∗ |
|T ∗ |

= 1, KS-Approx tends to find an approximate DDS with higher accuracy. In Table 10, we report the
ratio of |S∗ | over |T ∗ | on the first five datasets. We can observe that on most of the datasets, when
|S∗ |
|T ∗ | is close to 1, KS-Approx tends to find DDS’s with higher accuracy than Core-Approx, while

when |S∗ |
|T ∗ | largely deviates from 1, it will perform worse.

Another interesting point concerns the comparison between Core-Approx and BS-Approx-δ .
On the one hand, BS-Approx-δ has a higher theoretical approximation ratio (i.e., 4) than the

ACM Transactions on Database Systems, Vol. 46, No. 4, Article 13. Publication date: November 2021.

13:38 C. Ma et al.

Table 11. Efficiency of 2-approximation DDS Maintenance Algorithms

Type Dataset
Insert Delete

Core-Approx Approx-Ins Speedup Core-Approx Approx-Del Speedup

Real
YH 1.54s 0.003s 498.75 1.54s 1.79 × 10−6 861,960.89
SU 1.54s 0.03s 48.83 1.57s 5.15 × 10−6s 305,876.45
CA 61.01s 8.4 × 10−7s 72,634,000 61.36s 6.94 × 10−6s 8,830,429
SX 288.59s 2.62s 110.24 261.34s 8.03 × 10−5s 3,256,235.4

Synthetic
AM 4.34s 3.88 × 10−5s 111,979.78 4.37s 1.17 × 10−6s 3,728,412
BA 27.62s 1.96 × 10−2s 1,409.92 27.58s 1.10 × 10−1s 250.91

theoretical ratio of Core-Approx (i.e., 2). But the actual approximation ratios of BS-Approx-δ on
the eight datasets are comparable to Core-Approx. In detail, BS-Approx-δ is marginally smaller
on four datasets; Core-Approx is smaller on one dataset, and they are equally good on the rest
three datasets. This may indicate that the technique used in BS-Approx-δ to reduce the number

of trials of different |S ||T | by testing different powers of δ may not introduce large errors in practice.

On the other hand, BS-Approx-δ has a lower theoretical time complexity (i.e., O (log2 n(n +m))
via δ = 2) given that the theoretical complexity of Core-Approx is O (γ (n +m)) = O (

√
m(n +m)).

But, in practice, Core-Approx is 6.6× faster than BS-Approx-δ on average over eight datasets.
This is mainly because γ �

√
m, usually by several orders, as shown in Table 9, in practice.

9.4 DDS Maintenance Algorithms

In this experiment, we test the performance of DDS maintenance algorithms by using four real
datasets (YH, SU, CA, and SX) and two synthetic datasets (AM and BA).

For real datasets, to evaluate Approx-Ins, we insert the latest 1,000 edges to the graph accord-
ing to the timestamps on the edges and report the average running time for each edge insertion.
Similarly, to evaluate Approx-Del, we delete the oldest 1,000 existing edges from the graph and
report the average running time for each edge deletion.

For synthetic datasets, to evaluate Approx-Del, we randomly delete 1,000 distinct existing
edges from the graph and report the average running time for each edge deletion. Similarly, to
evaluate Approx-Ins, we insert the 1,000 removed edges to the graph and present the average
running time for each edge insertion.

Table 11 reports the efficiency results. From the table, we can observe that Approx-Ins is up to
seven orders of magnitude faster than recomputing from scratch when handling edge insertion,
because it can quickly locate the new maximum cn-pair in the updated graph. Approx-Del is up to
six orders of magnitude faster than recomputing from scratch when handling edge deletion, since
it can avoid the recomputation of many unnecessary cases as discussed in Section 8.2.

Another interesting point is that the speedup of our insertion algorithm differs among different
datasets. The reason why the speedup differs across different datasets is that if the degrees of the
endpoints of the newly added edges are small compared to x∗ andy∗ from the current [x∗,y∗]-core,
the maintenance process will be stopped immediately. If this case happens often, then the speedup
will be pretty significant. Otherwise, the speedup will be relatively modest. There are almost 100%
newly added edges in CA whose endpoint degree products are smaller than x∗ ·y∗, while there are
around 58% newly added edges in YH satisfying such condition. Further, CA is much larger than
YH, making CA need more time to recompute from scratch. Hence, under the combined effect of
several reasons discussed above, our dynamic insertion algorithm achieves around seven orders
of magnitude speedup on CA and 500× speedup on YH.

ACM Transactions on Database Systems, Vol. 46, No. 4, Article 13. Publication date: November 2021.

On Directed Densest Subgraph Discovery 13:39

Fig. 22. Efficiency of WCore-Approx, WDC-Exact, and W-Exact.

Table 12. Statistics about WCore-Approx on Weighted Directed Graphs

Dataset FD AF BX MV LI

Approximation ratio 1.00 1.07 1.02 1.14 1.31

ξ (number of skyline wcn-pairs) 126 745 190 1,346 2,484

k in WDC-Exact (number of binary searches) 8 22 207 52 204

9.5 Algorithms of WDDS Problem

We test three WDDS algorithms (i.e., WCore-Approx, WDC-Exact, and W-Exact) and show the ef-
ficiency results on five datasets in Figure 22, where bars touching the upper boundary mean that
the corresponding algorithms cannot finish within 300 hours. We can see that WDC-Exact and
WCore-Approx are up to five orders of magnitude faster than W-Exact. This demonstrates that the
core-based optimization and divide-and-conquer strategy are indeed effective for accelerating the
computation of the WDDS. On the three larger datasets, WCore-Approx is at least 10× faster than
WDC-Exact. To further analyze the performance, we report some statistics (e.g., the approximation
ratio and ξ) of running WCore-Approx on weighted graphs in Table 12. Clearly, WCore-Approx
provides high-quality approximate results (i.e., the approximation ratios are quite close to 1.0).

Besides, from Figure 22, we see that WCore-Approx is slightly slower than WDC-Exact on two

datasets (i.e., FD and AF). The reasons can be explained by the statistics in Table 12: (1) Let
ξ
n

denote
the ratio of the number of the skyline wcn-pairs over the number of vertices in the graph. Then,

we can see that the value of
ξ
n

on FD and AF is much higher than that on BX, MV, and LI, which
may make WCore-Approx perform worse than WDC-Exact on these two datasets. (2) k is much
smaller than ξ on these two datasets. As k and ξ are the key parameters affecting the efficiency
of WDC-Exact and WCore-Approx, respectively, except for the graph size, this is one reason why
WCore-Approx performs worse than WDC-Exact on FD and AF. (3) Although BX is much larger
than AF, its ξ is smaller than that of AF, because the scope of edge weights is different, i.e., BX
only has 10 choices for the ratings ({1, 2, . . . , 10}), while AF has hundreds of different edge weights
due to the variety of flight numbers. This also implies that when the graph has a wide range of
edge weights, WDC-Exact may be the best option, since it may achieve higher quality results and
higher efficiency than WCore-Approx. However, for large-scale datasets with limited edge weight
cardinality, WCore-Approx is still the first choice, as the performance on two more massive datasets
(i.e., MV and LI) shows.

ACM Transactions on Database Systems, Vol. 46, No. 4, Article 13. Publication date: November 2021.

13:40 C. Ma et al.

Fig. 23. The performance of fake review detection. Fig. 24. Information seekers and sources.

9.6 Case Studies

9.6.1 Fake Reviewer Detection. To show the effectiveness of the WDDS solution, we conduct a
case study by considering one of its downstream applications, namely, fake review detection. We
use the WDDS to detect frauds on a real graph and show that it achieves comparable performance
with the state-of-the-art fraud detection algorithm, i.e., Fraudar [35]. Given a bipartite graph of
users and the products they review, Fraudar detects the fake followers by identifying a dense
subgraph from the bipartite graph. Note our algorithms naturally extend to the bipartite graph by
making one vertex set as the source and the other as the target.

Specifically, we follow the experimental setup in Reference [35] and consider the dataset AR (see
Table 4), which is the Amazon review graph consisting of users and products, where all the edges
are directed from users to products. We first randomly select 2,000 users and 2,000 products, with
around 2,400 edges (similar to Reference [35]). Then, we inject 200 fraudulent users and 200 fraud-
ulent products with different average degrees for fraudulent users. When injecting the fraudulent
edges, we follow two strategies:

(1) Grouped. The fraudulent users and products are grouped into several small equal-size
groups, and the injected edges are all within each group.

(2) Randomly. The injected edges are inserted randomly among all fraudulent users and
products.

In addition, for each edge (u, v) in the graph G, we set its weight toW (u,v) = 1√
d−

G
(v)+c

, which

is a column-weighting strategy proposed in Reference [35] (c=5). Notice that more injected edges
imply the higher average degree of fraudulent users.

Next, we use WDC-Exact and Fraudar to detect the fraudulent users and compute the average F1

score of their results (where F1 =
2×precision×recall

precision+recall) over five trials, which are depicted in Figure 23.

We can see that for the first injecting strategy, WDC-Exact achieves higher F1 scores than Fraudar
in most cases, while for the second injecting strategy, WDC-Exact has the same performance
when the average degree of fraudulent users is at least 6. Fraudar performs better only when the
edges are injected randomly and the density is very low. Meanwhile, as the number of injected
edges increases, WDC-Exact achieves higher F1 scores. Thus, WDC-Exact is indeed effective for
fake review detection, since it achieves comparable performance with Fraudar. In addition, we
reckon that the performance of fraud detection can be further improved if the human-in-the-loop
process (e.g., asking humans to further check the users and products in the WDDS) is exploited.

9.6.2 Roles of Vertices in S∗ and T ∗. Here, we use an example to investigate the different roles
played by the vertices in S∗, T ∗, and S∗ ∩ T ∗, as depicted in Figure 24. In the approximate DDS

ACM Transactions on Database Systems, Vol. 46, No. 4, Article 13. Publication date: November 2021.

On Directed Densest Subgraph Discovery 13:41

returned by Core-Approx in TW (i.e., twitter-mpi, a follow-link network), S∗ contains 162,418
vertices, T ∗ contains 236 vertices, and S∗ ∩T ∗ contains 7 vertices. Inspired by Reference [40], we
can treat the vertices in S as information seekers and the vertices in T ∗ as information sources.
Further, the vertices in S∗ ∩T ∗ are probably friends, as they likely followed each other. Although
we cannot trace back the vertices to the exact users in Twitter (as the dataset is anonymized), we
envision each scenario based on the current result: Most users in S∗ are information seekers; most
users in T ∗ are information sources, which could be news agencies and celebrities; the users in
S∗ ∩T ∗ are both information seekers and sources, which need to seek information from the news
agencies and other celebrities and share their opinions with their followers. Hence, the flexibility
of not restricting the disjointness of S∗ and T ∗ allows us to detect whether some users play both
roles, i.e., information seekers and sources. This example illustrates that our problem can result in
interesting analysis about the relationship between S∗ andT ∗ (e.g., finding out who interacts with
each other in S∗ ∩T ∗). If we enforce S∗ and T ∗ to be disjoint, then we cannot perform this kind of
analysis.

10 CONCLUSION

In this article, we study the densest subgraph discovery on directed graphs (DDS problem for
short). We first review existing algorithms and discuss their limitations. We show that a previous
algorithm [42], which was claimed to achieve an approximation of 2, fails to satisfy the approxi-
mation guarantee. To boost the efficiency of finding DDS, we introduce a novel dense subgraph
model, namely, [x , y]-core, on directed graphs, and establish bounds on the density of the [x , y]-
core. We then propose a core-based exact algorithm and further optimize it by incorporating a
divide-and-conquer strategy. Besides, we find that the [x∗, y∗]-core, where x∗y∗ is the maximum
value of xy for all the [x , y]-cores, is a good approximation solution to the DDS problem, with a
theoretical guarantee. To compute the [x∗, y∗]-core, we develop an efficient algorithm, which is
more efficient than all the existing 2-approximation algorithms. Extensive experiments on eight
real large datasets show that both our exact and approximation algorithms for DDS are up to
six orders of magnitude faster than the state-of-the-art approaches. Besides, we develop efficient
non-trivial DDS maintenance algorithms for handling dynamic graphs, and our DDS maintenance
algorithms can provide up to five orders of magnitude speedup compared to recomputing the DDS
from scratch. We further extend the algorithms to find weighted DDS (or WDDS) on weighted
directed graphs. In addition, we present a case study that demonstrates that the WDDS solution is
useful for fraud detection.

We will investigate how to efficiently find the DDS with size constraints on directed graphs in
the future. Similarly, it is interesting to find the DDS with constraints on the overlap between S∗

andT ∗, e.g., enforcing S∗ andT ∗ to be disjoint, or requiring at least (or at most) k vertices in S∗∩T ∗.
Sometimes, users are interested in finding more than one densest subgraph. Hence, it is worth in-
vestigating how to define and study the top-k DDS’s problem. It would also be interesting to study
the DS problem on other types of graphs, e.g., attributed graphs and heterogeneous information
networks. Another interesting future research direction is to develop algorithms for solving the
bi-clique-based DS problem [10] on bipartite graphs.

APPENDIX

A A FIXED ALGORITHM OF KS-APPROX

Here is the fix for KS-Approx provided by its author Prof. Barna Saha. We name it FKS-Approx
in this article. Algorithm 11 presents the details. First, the algorithm lets S contain all vertices
in V (line 2). In the outer loop, each time the algorithm assigns V to T (line 4), lets H be the

ACM Transactions on Database Systems, Vol. 46, No. 4, Article 13. Publication date: November 2021.

13:42 C. Ma et al.

ALGORITHM 11: FKS-Approx

Input :G = (V , E)

Output : An approximate DDS D̃
1 ρ∗ ← 0;

2 S ← V ;

3 while |S | � 0 do

4 T ← V , H ← G[S,T];

5 u ← arg minw ∈S d+H (w);

6 remove u from S and its corresponding edges from H ;

7 while |T | � 0 do

8 v ← arg minw ∈T d−
H

(w);

9 remove v from T and its corresponding edges from H ;

10 if ρ (S,T) > ρ∗ then ρ∗ ← ρ (S,T), D̃ ← G[S,T];

11 reuse lines 2–10 by interchanging S with T , u with v , d+
H

(w) with d−
H

(w), but G[S,T] keeping

unchanged;

12 return D̃;

subgraph induced by S and T (line 4), and removes the vertex with minimum outdegree from
S and its outgoing edges from H (lines 5–6). Then, in the inner loop, each time we remove the
vertex with the minimum indegree from T and its incoming edges from H (lines 8–9). Next, the
algorithm checks whether the maximum density can be updated by the density of H = G[S,T];

if yes, then the maximum density ρ and the approximate DDS D̃ will be updated as ρ (S,T) and
G[S,T], respectively (line 10). Then, the algorithm will repeat the above process withT in the outer

loop and S in the inner loop (line 11). Finally, the algorithm returns D̃ as the approximate DDS.
Now Theorem 2 in Reference [42] will go through, as there will exist a subgraph where the

outdegrees of its vertices in S will be larger than λo and the indegree of its vertices inT will be larger
than λi , simultaneously (refer to Reference [42]). Obviously, the time complexity of FKS-Approx
is O (n(n +m)).

REFERENCES

[1] Federal Aviation Administration. 2019. Air Traffic Control System Command Center. Retrieved from https://www.faa.

gov.

[2] Ravindra K. Ahuja, M. Kodialam, A. K. Mishra, and J. B. Orlin. 1997. Computational investigations of maximum flow

algorithms. European Journal of Operational Research 97, 3 (1997), 509–542.

[3] Réka Albert, Hawoong Jeong, and Albert-László Barabási. 1999. Internet: Diameter of the world-wide web. Nature

401, 6749 (1999), 130.

[4] Reid Andersen. 2010. A local algorithm for finding dense subgraphs. Trans. Alg. 6, 4 (2010), 1–12.

[5] Albert Angel, Nick Koudas, Nikos Sarkas, Divesh Srivastava, Michael Svendsen, and Srikanta Tirthapura. 2014. Dense

subgraph maintenance under streaming edge weight updates for real-time story identification. VLDB J. 23, 2 (2014),

175–199.

[6] Bahman Bahmani, Ravi Kumar, and Sergei Vassilvitskii. 2012. Densest subgraph in streaming and mapreduce. Proc.

VLDB Endow. 5, 5 (2012), 454–465.

[7] Vladimir Batagelj and Matjaz Zaversnik. 2003. An O (m) algorithm for cores decomposition of networks. arXiv preprint

cs/0310049 (2003).

[8] Aditya Bhaskara, Moses Charikar, Eden Chlamtac, Uriel Feige, and Aravindan Vijayaraghavan. 2010. Detecting high

log-densities: An O (n 1/4) approximation for densest k-subgraph. In STOC. ACM, 201–210.

[9] Sayan Bhattacharya, Monika Henzinger, Danupon Nanongkai, and Charalampos Tsourakakis. 2015. Space-and time-

efficient algorithm for maintaining dense subgraphs on one-pass dynamic streams. In STOC. 173–182.

[10] John Adrian Bondy, Uppaluri Siva Ramachandra Murty et al. 1976. Graph Theory with Applications. Vol. 290. Macmillan

London.

ACM Transactions on Database Systems, Vol. 46, No. 4, Article 13. Publication date: November 2021.

https://www.faa.gov

On Directed Densest Subgraph Discovery 13:43

[11] Digvijay Boob, Yu Gao, Richard Peng, Saurabh Sawlani, Charalampos Tsourakakis, Di Wang, and Junxing Wang. 2020.

Flowless: Extracting densest subgraphs without flow computations. In WWW. ACM, 573–583.

[12] Gregory Buehrer and Kumar Chellapilla. 2008. A scalable pattern mining approach to web graph compression with

communities. In WSDM. ACM, 95–106.

[13] Andrea Capocci, Vito D. P. Servedio, Francesca Colaiori, Luciana S. Buriol, Debora Donato, Stefano Leonardi, and

Guido Caldarelli. 2006. Preferential attachment in the growth of social networks: The internet encyclopedia Wikipedia.

Phys. Rev. E 74, 3 (2006), 036116.

[14] Meeyoung Cha, Hamed Haddadi, Fabricio Benevenuto, and Krishna P. Gummadi. 2010. Measuring user influence in

Twitter: The million follower fallacy. In ICWSM. 10–17.

[15] Moses Charikar. 2000. Greedy approximation algorithms for finding dense components in a graph. In APPROX.

Springer, 84–95.

[16] Maximilien Danisch, T.-H. Hubert Chan, and Mauro Sozio. 2017. Large scale density-friendly graph decomposition

via convex programming. In WWW. 233–242.

[17] Soroush Ebadian and Xin Huang. 2019. Fast algorithm for k-truss discovery on public-private graphs. Proceedings of

the Twenty-Eighth International Joint Conference on Artificial Intelligence, IJCAI 2019, Macao, China, August 10-16,

2019.

[18] Alessandro Epasto, Silvio Lattanzi, and Mauro Sozio. 2015. Efficient densest subgraph computation in evolving graphs.

In WWW. 300–310.

[19] Yixiang Fang, Reynold Cheng, Yankai Chen, Siqiang Luo, and Jiafeng Hu. 2017. Effective and efficient attributed

community search. VLDB J. 26, 6 (2017), 803–828.

[20] Yixiang Fang, Reynold Cheng, Xiaodong Li, Siqiang Luo, and Jiafeng Hu. 2017. Effective community search over large

spatial graphs. Proc. VLDB Endow. 10, 6 (2017), 709–720.

[21] Yixiang Fang, Reynold Cheng, Siqiang Luo, and Jiafeng Hu. 2016. Effective community search for large attributed

graphs. Proc. VLDB Endow. 9, 12 (2016), 1233–1244.

[22] Yixiang Fang, Reynold Cheng, Siqiang Luo, Jiafeng Hu, and Kai Huang. 2017. C-Explorer: Browsing communities in

large graphs. Proc. VLDB Endow. 10, 12 (2017), 1885–1888.

[23] Yixiang Fang, Xin Huang, Lu Qin, Ying Zhang, Wenjie Zhang, Reynold Cheng, and Xuemin Lin. 2019. A survey of

community search over big graphs. VLDB J. (2019), 1–40.

[24] Yixiang Fang, Zheng Wang, Reynold Cheng, Xiaodong Li, Siqiang Luo, Jiafeng Hu, and Xiaojun Chen. 2019. On spatial-

aware community search. IEEE Trans. Knowl. Data Eng. 31, 4 (2019), 783–798.

[25] Yixiang Fang, Zhongran Wang, Reynold Cheng, Hongzhi Wang, and Jiafeng Hu. 2019. Effective and efficient commu-

nity search over large directed graphs. IEEE Trans. Knowl. Data Eng. 31, 11 (2019), 2093–2107.

[26] Yixiang Fang, Yixing Yang, Wenjie Zhang, Xuemin Lin, and Xin Cao. 2020. Effective and efficient community search

over large heterogeneous information networks. Proc. VLDB Endow. 13, 6 (Feb. 2020).

[27] Yixiang Fang, Kaiqiang Yu, Reynold Cheng, Laks V. S. Lakshmanan, and Xuemin Lin. 2019. Efficient algorithms for

densest subgraph discovery. Proc. VLDB Endow. 12, 11 (2019), 1719–1732.

[28] Linton Clarke Freeman, Cynthia Marie Webster, and Deirdre M. Kirke. 1998. Exploring social structure using dynamic

three-dimensional color images. Soc. Netw. 20, 2 (1998), 109–118.

[29] Giorgio Gallo, Michael D. Grigoriadis, and Robert E. Tarjan. 1989. A fast parametric maximum flow algorithm and

applications. SIAM J. Comput. 18, 1 (1989), 30–55.

[30] Christos Giatsidis, Dimitrios M. Thilikos, and Michalis Vazirgiannis. 2013. D-cores: Measuring collaboration of di-

rected graphs based on degeneracy. Knowl. Inf. Syst. 35, 2 (2013), 311–343.

[31] Aristides Gionis and Charalampos E. Tsourakakis. 2015. Dense subgraph discovery: KDD 2015 tutorial. In KDD. ACM,

2313–2314.

[32] Andrew V. Goldberg. 1984. Finding a Maximum Density Subgraph. University of California Berkeley, CA.

[33] Andrew V. Goldberg. 2008. The partial augment–relabel algorithm for the maximum flow problem. In ESA. Springer,

466–477.

[34] G. T. Heineman, G. Pollice, and S. Selkow. 2008. Algorithms in a nutshell: A practical guide[M]. O’Reilly Media, Inc.

[35] Bryan Hooi, Hyun Ah Song, Alex Beutel, Neil Shah, Kijung Shin, and Christos Faloutsos. 2016. Fraudar: Bounding

graph fraud in the face of camouflage. In KDD. ACM, 895–904.

[36] Jiafeng Hu, Reynold Cheng, Kevin Chen-Chuan Chang, Aravind Sankar, Yixiang Fang, and Brian Y. H. Lam. 2019.

Discovering maximal motif cliques in large heterogeneous information networks. In ICDE. IEEE, 746–757.

[37] Shuguang Hu, Xiaowei Wu, and T. H. Hubert Chan. 2017. Maintaining densest subsets efficiently in evolving hyper-

graphs. In CIKM. 929–938.

[38] Xin Huang, Laks V. S. Lakshmanan, and Jianliang Xu. 2019. Community Search over Big Graphs. Morgan & Claypool

Publishers.

ACM Transactions on Database Systems, Vol. 46, No. 4, Article 13. Publication date: November 2021.

13:44 C. Ma et al.

[39] Xin Huang, Laks V. S. Lakshmanan, Jeffrey Xu Yu, and Hong Cheng. 2015. Approximate closest community search in

networks. Proc. VLDB Endow. 9, 4 (2015), 276–287.

[40] Akshay Java, Xiaodan Song, Tim Finin, and Belle Tseng. 2007. Why we Twitter: Understanding microblogging usage

and communities. In 9th WebKDD and 1st SNA-KDD. ACM, 56–65.

[41] Ravi Kannan and V. Vinay. 1999. Analyzing the Structure of Large Graphs. Rheinische Friedrich-Wilhelms-Universität

Bonn Bonn.

[42] Samir Khuller and Barna Saha. 2009. On finding dense subgraphs. In ICALP. Springer, 597–608.

[43] Jon M. Kleinberg. 1999. Authoritative sources in a hyperlinked environment. J. ACM 46, 5 (1999), 604–632.

[44] Jérôme Kunegis. 2013. — Koblenz network collection. In WWW. 1343–1350. Retrieved from http://userpages.uni-

koblenz.de/~kunegis/paper/kunegis-koblenz-network-collection.pdf.

[45] Jérôme Kunegis, Gerd Gröner, and Thomas Gottron. 2012. Online dating recommender systems: The split-complex

number approach. In 4th ACM RecSys Workshop onRSWEB. 37–44.

[46] Jure Leskovec, Lada A. Adamic, and Bernardo A. Huberman. 2007. The dynamics of viral marketing. ACM Trans. Web

1, 1 (2007).

[47] Jure Leskovec, Jon Kleinberg, and Christos Faloutsos. 2005. Graphs over time: Densification laws, shrinking diameters

and possible explanations. In KDD. ACM, 177–187.

[48] Jure Leskovec and Andrej Krevl. 2014. SNAP Datasets: Stanford Large Network Dataset Collection. Retrieved from

http://snap.stanford.edu/data.

[49] Xiaodong Li, Tsz Nam Chan, Reynold Cheng, Caihua Shan, Chenhao Ma, and Kevin Chang. 2019. Motif paths: A new

approach for analyzing higher-order semantics between graph nodes. HKU Tech. Rep. 3 (2019), 4.

[50] Xiaodong Li, Reynold Cheng, Kevin Chen-Chuan Chang, Caihua Shan, Chenhao Ma, and Hongtai Cao. 2021. On

analyzing graphs with motif-paths. Proc. VLDB Endow. 14, 6 (2021), 1111–1123.

[51] Qing Liu, Minjun Zhao, Xin Huang, Jianliang Xu, and Yunjun Gao. 2020. Truss-based community search over large

directed graphs. In SIGMOD.

[52] Chenhao Ma, Reynold Cheng, Laks V. S. Lakshmanan, Tobias Grubenmann, Yixiang Fang, and Xiaodong Li. 2019.

LINC: A motif counting algorithm for uncertain graphs. Proc. VLDB Endow. 13, 2 (2019), 155–168.

[53] Chenhao Ma, Yixiang Fang, Reynold Cheng, Laks V. S. Lakshmanan, Wenjie Zhang, and Xuemin Lin. 2020. Efficient

algorithms for densest subgraph discovery on large directed graphs. In SIGMOD. 1051–1066.

[54] Chenhao Ma, Yixiang Fang, Reynold Cheng, Laks V. S. Lakshmanan, Wenjie Zhang, and Xuemin Lin. 2021. Efficient

directed densest subgraph discovery. ACM SIGMOD Rec. 50, 1 (2021), 33–40.

[55] Paolo Massa, Martino Salvetti, and Danilo Tomasoni. 2009. Bowling alone and trust decline in social network sites. In

IEEE DASC. 658–663.

[56] Michael Mitzenmacher, Jakub Pachocki, Richard Peng, Charalampos Tsourakakis, and Shen Chen Xu. 2015. Scalable

large near-clique detection in large-scale networks via sampling. In KDD. ACM, 815–824.

[57] Atsushi Miyauchi and Akiko Takeda. 2018. Robust densest subgraph discovery. In ICDM. IEEE, 1188–1193.

[58] Arjun Mukherjee, Bing Liu, and Natalie Glance. 2012. Spotting fake reviewer groups in consumer reviews. In WWW.

191–200.

[59] Xing Niu, Xinruo Sun, Haofen Wang, Shu Rong, Guilin Qi, and Yong Yu. 2011. Zhishi.me—Weaving Chinese linking

open data. In ISWC. 205–220.

[60] Tore Opsahl. 2011. Why anchorage is not (that) important: Binary ties and sample selection.

[61] Tore Opsahl, Filip Agneessens, and John Skvoretz. 2010. Node centrality in weighted networks: Generalizing degree

and shortest paths. Soc. Netw. 3, 32 (2010), 245–251.

[62] James B. Orlin. 2013. Max flows in O (nm) time, or better. In STOC. 765–774.

[63] Ashwin Paranjape, Austin R. Benson, and Jure Leskovec. 2017. Motifs in temporal networks. In WSDM. 601–610.

[64] J. Patricio. 2000. Network Analysis of Trophic Dynamics in South Florida Ecosystems, FY 99: The Graminoid Ecosystem.

Master’s Thesis. University of Coimbra, Coimbra, Portugal.

[65] B. Aditya Prakash, Ashwin Sridharan, Mukund Seshadri, Sridhar Machiraju, and Christos Faloutsos. 2010. Eigen-

spokes: Surprising patterns and scalable community chipping in large graphs. In PAKDD. Springer, 435–448.

[66] Lu Qin, Rong-Hua Li, Lijun Chang, and Chengqi Zhang. 2015. Locally densest subgraph discovery. In KDD. ACM,

965–974.

[67] Ryan A. Rossi and Nesreen K. Ahmed. 2015. The network data repository with interactive graph analytics and visual-

ization. In AAAI. Retrieved from http://networkrepository.com.

[68] Atish Das Sarma, Ashwin Lall, Danupon Nanongkai, and Amitabh Trehan. 2012. Dense subgraphs on dynamic net-

works. In DISC. Springer, 151–165.

[69] Saurabh Sawlani and Junxing Wang. 2020. Near-optimal fully dynamic densest subgraph. In STOC. 181–193.

[70] Martin W. Schein and Milton H. Fohrman. 1955. Social dominance relationships in a herd of dairy cattle. Brit. J. Anim.

Behav. 3, 2 (1955), 45–55.

ACM Transactions on Database Systems, Vol. 46, No. 4, Article 13. Publication date: November 2021.

http://userpages.uni-koblenz.de/~kunegis/paper/kunegis-koblenz-network-collection.pdf
http://snap.stanford.edu/data
http://networkrepository.com

On Directed Densest Subgraph Discovery 13:45

[71] Stephen B. Seidman. 1983. Network structure and minimum degree. Soc. Netw. 5, 3 (1983), 269–287.

[72] Bintao Sun, Maximilien Dansich, Hubert Chan, and Mauro Sozio. 2020. KClist++: A simple algorithm for finding

k-clique densest subgraphs in large graphs. Proc. VLDB Endow. 13, 10 (2020), 1628–1640.

[73] Nikolaj Tatti and Aristides Gionis. 2015. Density-friendly graph decomposition. In WWW. 1089–1099.

[74] Charalampos Tsourakakis. 2015. The K-clique densest subgraph problem. In WWW. 1122–1132.

[75] Charalampos Tsourakakis, Francesco Bonchi, Aristides Gionis, Francesco Gullo, and Maria Tsiarli. 2013. Denser than

the densest subgraph: Extracting optimal quasi-cliques with quality guarantees. In KDD. ACM, 104–112.

[76] Charalampos E. Tsourakakis, Tianyi Chen, Naonori Kakimura, and Jakub Pachocki. 2019. Novel dense subgraph dis-

covery primitives: Risk aversion and exclusion queries. In ECML PKDD. Springer, 378–394.

[77] Zhiwei Zhang, Xin Huang, Jianliang Xu, Byron Choi, and Zechao Shang. 2019. Keyword-centric community search.

In ICDE. 422–433.

[78] Dong Zheng, Jianquan Liu, Rong-Hua Li, Cigdem Aslay, Yi-Cheng Chen, and Xin Huang. 2017. Querying intimate-

core groups in weighted graphs. In ICSC. 156–163.

[79] Cai-Nicolas Ziegler, Sean M. McNee, Joseph A. Konstan, and Georg Lausen. 2005. Improving recommendation lists

through topic diversification. In WWW. 22–32.

Received August 2020; revised July 2021; accepted August 2021

ACM Transactions on Database Systems, Vol. 46, No. 4, Article 13. Publication date: November 2021.

