
Hypergraph-Enhanced Multi-Granularity Stochastic Weight
Completion in Sparse Road Networks

XIAOLIN HAN, Northwestern Polytechnical University, Xi’an, China and Laboratory for Advanced
Computing and Intelligence Engineering, Wuxi, China
YIKUN ZHANG, Northwestern Polytechnical University, Xi’an, China
CHENHAO MA, The Chinese University of Hong Kong—Shenzhen, Shenzhen, China
XUEQUN SHANG, Northwestern Polytechnical University, Xi’an, China
REYNOLD CHENG, The University of Hong Kong, Hong Kong, Hong Kong
TOBIAS GRUBENMANN, Edinburgh Napier University, Edinburgh, United Kingdom of Great Britain
and Northern Ireland
XIAODONG LI, Xiamen University, Xiamen, China and Key Laboratory of Multimedia Trusted Perception
and Efficient Computing, Ministry of Education of China, Xiamen, China

Road network applications, such as navigation, incident detection, and Point-of-Interest (POI) recommendation,
make extensive use of network edge weights (e.g., traveling times). Some of these weights can be missing,
especially in a road network where traffic data may not be available for every road. In this article, we study the
stochastic weight completion (SWC) problem, which computes the weight distributions of missing road edges.
This is difficult, due to the intricate temporal and spatial correlations among neighboring edges. Besides, the
road network can be sparse, i.e., there is a lack of traveling information in a large portion of the network. To
tackle these challenges, we propose a multi-granularity framework for Region-Wise Graph Completion
(RegGC). To learn coarse spatial correlations among distantly located roads, we construct a region-wise
hypergraph neural architecture based on semantic region dependencies. For finer spatial correlations, we
incorporate contextual road network properties (e.g., speed limits, lane counts, and road types). Moreover, it
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incorporates recent and periodic dimensions of road traffic. We evaluate RegGC against 10 existing methods
on 3 real road network datasets. They show that RegGC is more effective and efficient than state-of-the-art
solutions.
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1 Introduction
A road network, or a graph with roads as edges and road junctions as nodes, enables Big Transporta-
tion Data applications (e.g., navigation [31, 48, 78], traffic prediction [8, 9, 20, 75], incident detection
[24, 25], outlier detection [23, 36, 42], Point-of-Interest (POI) recommendation [15, 77, 84], and
trajectory similarity search [57, 66, 72]). The road network can be treated as a graph with vertices
and edges [43–46, 63, 64]. The edge weights of the road network (e.g., the time needed to traverse a
road) are often extensively used by the above applications. A navigation app, for instance, returns
a path to a user with the smallest sum of edge weights along the path.

However, it is common for a road network to have edges whose weights are missing [18, 54, 65,
68, 69]. For example, in a dataset that contains the GPS of taxis in Hong Kong during 2010, the taxi
locations are concentrated in commercial and residential districts, covering only 1.4% of all roads
in Hong Kong. And roads in rural areas are seldom visited by vehicles. During late nights, most
roads are traversed by few vehicles, making it difficult to collect traffic data. To tackle this issue, a
few Weight Completion (WC) methods have been proposed (e.g., [8, 27, 40, 58]).

In general, WC problems can be classified into two types: deterministic and stochastic. Most WC
methods are targeted towards deterministic problems (e.g., [19, 40, 81]). They learn deterministic,
or non-probabilistic, weights for edges (e.g., the average traveling time of Nathan Road in Hong
Kong between 10 and 10:30 am on Sunday is 5 minutes on average). However, these methods do
not perform well in stochastic settings [27]. In addition, these methods often ignore the sparsity
of traffic data, which leads to inaccurate results. In contrast, very few methods are targeting the
Stochastic WC (SWC) problem (e.g., A-GCWC [27]), and are optimized towards learning the
distributions of edge weights (e.g., the traveling time of Nathan Road during Sunday 10–10:30 am is
5 minutes with 80% probability and 10 minutes with 20% probability). Such methods, which take
into account the time-varying uncertainty of real-time traffic conditions, give more precise weights
than their counterparts targeting only deterministic weights.

As shown in [1, 51–53, 74, 76], SWC improves the accuracy of path routing. To illustrate this,
suppose that a person departs from her home to catch a football event in Figure 1. She needs to
arrive at the stadium within 50 minutes. There are two possible paths: %1 and %2. If average time
is used, %2 should be chosen, since it requires a lower cost (29.75 minutes). However, if the time
distributions are considered, then %1 is the preferred choice, because there is a higher chance (95%)
for %1 to be completed within 50 minutes (compared to 70% for %2). By using stochastic weights,
the chance of finding a better route can be improved.
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Fig. 1. An example of stochastic edge weights.

Fig. 2. An example of region-wise traffic correlation.

Despite the benefits of using stochastic weights, stochastic weights completion has not been well
studied. The best solution for SWC so far is A-GCWC [27], which uses a graph Convolutional
Neural Network (CNN) to propagate weights from edges whose traffic data is available to the
edges with missing values. However, it does not perform well on very sparse traffic data (e.g., the
Hong Kong dataset mentioned) in our experiments, i.e., an average 5.5% gap compared with our
model in the Hong Kong dataset.

To improve SWC on sparse traffic data, we observe that traffic distributions among the same
semantic regions follow close correlations among each other even though they are distantly located.
Figure 2 shows the traffic correlation among regions at 6 pm on Sunday. As we can see, traffic
distributions among the same semantic regions, e.g., supermarkets, exhibit similar behaviors. The
reason is that most people usually go to supermarkets on Sunday afternoon, therefore the traffic
conditions could become congested. On the other hand, people do not come to school on Sunday, so
the traffic is relatively smooth. Therefore, we propose a region-wise hypergraph neural architecture
to learn the coarse granularity of spatial correlations, in which we construct the hypergraph based
on the semantic region dependencies.

For SWC, we utilize a contextual graph, which describes road information such as speed limits,
number of lanes, and road types, to provide finer granularity of spatial correlations instead of
coarse semantic region information discussed previously. Figure 3 illustrates a contextual graph.
The intuition is that road properties depicted by a contextual graph provide informative contexts
about road similarity among neighbors. As we will show, it is helpful especially when traffic data is
sparse, because edge correlations captured from contextual graphs enhance the performance. In
this way, multi-granularity spatial correlations can be captured behind coarse semantic regions
and finer road properties.

A salient feature of our model is that it incorporates not just the spatial dimension of the traffic
data, but also two aspects of the temporal dimension—recency and periodicity. The intuition is that
recent and periodic traffic has a high correlation with the target time. By propagating traffic data
along both space and time dimensions, more data could be provided to learn the stochastic weights
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Fig. 3. (a) A road network; (b) a contextual graph.

for the edge concerned, which also alleviates the data sparsity problem. This work is an extension
of our previous study [22].

To summarize, our contributions are:

—We propose a hypergraph neural architecture to capture the coarse granularity of spatial
correlations based on semantic region functions.

—We present the graph neural network facilitated model, which collectively leverages contextual
graphs with traffic dynamics to provide finer granularity of spatial correlations.

—Our model incorporates topological traffics, recent trends, and periodic patterns to effectively
and efficiently complete stochastic weights in a multi-level way.

—We have performed substantial experiments on three real road network datasets against
10 existing methods. Our model is 21.96% and 4.22% more effective than deterministic WC
methods and SWC methods, respectively. And it is efficient on million-scale road networks.

2 Related Work
There are two kinds of WC problems: deterministic and stochastic. The deterministic setting has
been studied extensively. Most existing deterministic works target on predicting traffic based on
past data. They use location data collected from static sensors installed along the freeways. Because
these data are regularly obtained, they are “dense.” In this way, all past data are available, and
ignoring sparsity is fine. However, this assumption may not be valid when road sensors are not
available. In such cases, we may still obtain vehicle location data by some other means (e.g., GPS);
however, the traffic data so obtained are more sparse, making the WC more challenging.

Deterministic WC. Deterministic models focus on dense data. Traditional methods, e.g., Kriging
[2, 14] and Markov Random Field [3], have been proposed to estimate missing observations in
data. However, they are designed for deterministic values instead of stochastic ones. CNN-based
models [81] have been proposed to predict traffic speed or crowd density. DSAE [13] utilizes
denoising stacked autoencoders to fill in weights. DCRNN [40] has been proposed to forecast
traffic data by capturing spatial-temporal correlations. Due to the success of Graph CNN [34]
on many computer vision, natural language processing, and data mining tasks [35, 49, 60, 73],
spectral-graph-theory-based GCN has been extensively introduced to predict traffic conditions.
Spatial-temporal GCN [8, 12, 30, 55, 62] has been applied to forecast traffic data and citywide
passenger demand by incorporating spatial-temporal correlation. Attention-based spatial-temporal
Graph Convolutional Networks (GCNs) [19] are further proposed to pay different attention
to nearby points in the graph. Most of these GCN-based deterministic traffic prediction models
follow the spectral graph theory [7]. Recurrent neural networks [29, 79] are proposed to model
the correlations among grid-based regions. DGSI [82] utilizes a deep geometric neural network for
data estimation. Curb-Generative Adversarial Network (GAN) [83] proposes a GAN to estimate
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the traffic data. Moreover, a hypergraph convolution method ST-SHN [71] is utilized to model
the correlations among grid-based regions. However, the hypergraph is constructed directly from
traffic data, which could lead to poorer performance when traffic values contain missing ones.
Only fewer model, e.g., LSM-RN [11], considers the sparsity, which has been shown to perform
worse than the existing SWC model in [27]. MBA-STNet [47] employs a discriminative multi-task
learning framework coupled with a Bayesian neural network to predict traffic flow effectively.
STUaNet [86] combines internal data quality estimation with external uncertainty modeling in
an end-to-end approach to capture diverse contextual interactions for learning human mobility
patterns. ODformer [28] uses a sparse self-attention mechanism to capture spatial correlations
between origin-destination pairs and predict long-sequence origin-destination flows. MOHER [85]
learns heterogeneous relationships for different modes in crowd flow prediction, using threshold
values to address data sparsity issues. DMGC-GAN [32] integrates GAN with dynamic multi-GCNs
to predict origin-destination ride-hailing demand, leveraging GAN’s training mechanism to handle
data sparsity [37]. PGCM [39] combines a GCN with a Bayesian approximation algorithm to predict
public transit demand, mitigating sparsity in the origin-destination matrix using threshold values.
Prob-GNN [59] models uncertainty in spatiotemporal travel demand using probabilistic graph
neural networks. ST-GIN [67] imputes traffic data by integrating spatiotemporal graph attention
with recurrent neural networks, while also considering uncertainty. DTIGNN [38] employs graph
neural networks to iteratively impute missing traffic flows and predict them within a unified model.
LSCGF [5] utilizes a multi-graph generation network to learn both sparse and continuous graph
structures. Since most work ignores the sparsity in traffic data, the performance on sparse data is
negatively affected. To overcome this, we reconstruct the real traffic data by an encoder-decoder
framework from sparse traffic data in our proposed solutions.

SWC. A-GCWC [27] uses spectral-domain-based GCN to complete stochastic weights. It incorpo-
rates additional information, such as the time interval flag, by a Bayesian inference model. In terms
of temporal dimension, the traffic behavior is assumed to be conditionally dependent on the time
interval flag, which occurs periodically with a time period p. Given two time intervals)1 and)2 that
are p time units apart, the traffic conditions of them are supposed to be the same in [27]. In fact,
this is not always the case due to dynamic factors, e.g., road construction or incidents. Different
from A-GCWC, our solution can capture dynamic changes, and learn the difference between)1 and
)2. Our solution also considers recency and periodicity information, as well as contextual graph.
Consequently, our methods perform better than A-GCWC, especially when traffic data are sparse.

The research on GCN has two branches, which are the spectral [10] and node domains [56].
Most traffic studies follow the spectral domain, in which GCN is applied to spectral graph theory.
However, the model trained on one graph cannot be used for graphs with different structures since
it is based on the Laplacian Eigenbasis [56]. Moreover, it requires high computation costs, e.g.,
matrix inversion. Fewer studies [40] follow the node domain. Although it has shown its benefits
on many tasks [56], it has not been well studied in sparse traffic. Therefore, we follow the node
domain to study the possibility of applying it to sparse traffic.

Graph Representation Learning.A classical GCN [34] was introduced to learn hidden node features
using semi-supervised learning for classification tasks. GraphSage [21] extends this by sampling
and aggregating the hidden features of neighboring nodes within an inductive framework. DAGNN
[41] further adapts by incorporating messages from large receptive fields, enabling deeper graph
neural networks. CGNN [70] generalizes existing graph neural networks from discrete dynamics to
continuous ones.

In addition, graph attention networks have been developed to assign different levels of attention
to neighboring nodes. GAT [56] introduces a novel masked self-attention mechanism to learn the
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Table 1. Notations

Notation Description

 E Edge set of the road network
T Set of the time intervals
 W The stochastic weight tensor
,̂ The completed stochastic weight tensor

#=
spat. (4) The spatial neighbors of edge e

#=
temp. () ) The temporal neighbors of time interval T

#
=,?

period. () ) The periodic neighbors of time interval T
ℎ48 ,) The stochastic weight vector of edge 48 at T
U
spat.
48 ,4 9 ,)

The spatial traffic attention of edge 4 9 for 48 at T
U
temp.
)9 ,): ,48

The temporal traffic attention of ): for )9 of 48
U
period.
)9 ,): ,48

The periodic traffic attention of ): for )9 of 48
G The hypergraph
 P The incidence matrix of the hypergraph G

importance of neighboring nodes and aggregate them based on these importance scores. HAN [61]
applies node-level attention within each meta-path and then aggregates these representations
using another attention mechanism across different meta-paths. HGRN [26] adaptively aggregates
hidden features from multi-hop neighboring nodes using an attention mechanism to address the
over-smoothing problem.

Moreover, hypergraph neural networks have been proposed to capture more complex relation-
ships among nodes. HGNN [16] learns hidden features that account for high-order data structures to
model complex node correlations. HGNN+ [17] extends this approach to a more general framework
for learning multi-modal or multi-type data correlations in high-order structures. HSL [4] optimizes
hypergraph neural networks together with hypergraph structure learning in an end-to-end manner.
DHGNN [33] applies hypergraph convolution to dynamic graphs for capturing high-order data
correlations. HGC-RNN [80] combines hypergraph convolution with recurrent neural networks to
learn temporal dependencies.

3 Problem Definition
In this section, we first give definitions of the basic concepts. Then, we give a formal problem
definition. The notations are in Table 1.

Definition 1 (Road Network). A road network is a graph where each vertex E ∈ + represents a
road intersection. Edge 4 = (E1, E2) ∈ � ⊆ + ×+ indicates that intersections E1 and E2 are directly
connected.

Definition 2 (Stochastic Weight). Let 4 ∈ � be a road, the stochastic weight of e at time interval
)8 , ℎ4,)8 ∈ R |� | , is its travel cost distribution. Each stochastic weight consists of a set B of buckets
which describe the histogram of the distribution.

In Definition 1, we capture each traveling direction of each road separately. However, we are not
directly interested in the travelling direction but instead, we are only interested in whether the
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road directions allow a vehicle to travel from one road to the next road. We are interested if two
roads are spatial neighbors.

Definition 3 (Edge Graph). A directed road network can be transformed to an undirected edge
graph � = (�,�), in which A is adjacency matrix that captures the connectivity of the edges in
E. �48 ,4 9 = �4 9 ,48 = 1, 48 , 4 9 ∈ �, if and only if a vehicle can travel from 48 to 4 9 or from 4 9 to 48 by
passing through exactly one intersection E ∈ + , �48 ,4 9 = �4 9 ,48 = 0 otherwise.

Definition 4 (nth Order Spatial Neighbors). Given = ∈ N, an edge graph G, two edges 48 , 4 9 ∈ �,
the edges 48 and 4 9 are nth order spatial neighbors of each other if and only if a vehicle can travel
from 48 to 4 9 or from 4 9 to 48 by passing through exactly n intersections. We denote with #=

spat. (4)
the set of all spatial neighbors of e with order less or equal to n.

Definition 5 (nth Order Recent Neighbors). Given an interval)8 ∈ T , the nth order recent neighbor
for = < 8 of )8 is the time interval )8−= . We denote with #=

temp. () ) the set of all recent neighbors of
time interval T with order less or equal to n.

Definition 6 (nth Order Periodic Neighbors). Given a period ? ∈ N and a time interval )8 ∈ T , the
nth order periodic neighbor for = · ? < 8 of )8 is the interval )8−=·? . We denote with #=,?

period. () ) the
set of all periodic neighbors of T with order less or equal to n.

Problem Definition. Given |T | time intervals, |� | roads, and bucket size |� | for the stochastic
weight tensor, ∈ R |� |× | T |× |� | , we denote ℎ4,) ∈ R |� | as the stochastic weight vector for the
edge e at time interval T. Due to the sparsity issue, e.g., roads in rural areas are seldom visited by
vehicles, W might have many missing values. The model takes W as input. The objective of SWC
is to leverage a graph neural network to reconstruct a tensor ,̂ that fills in the missing values in
W within a road network. The reconstructed tensor ,̂ is then produced as the output.

4 The Contextual Graph Completion (ConGC) Model
In this section, we first introduce the framework of ConGC (Section 4.1). After that, we explain the
detailed steps in the model (Sections 4.2–4.8). Moreover, we show the time complexity of ConGC
(Section 4.9).

4.1 Framework
Figure 4 shows the framework. It follows the encoder-decoder structure, in which Topological Traffic
Propagator (Step ①), Contextual Traffic Diffusion (Step ②), Recent Trend Aggregator (Step ③),
Periodic Pattern Explorer (Step ④), and Pooling form the encoder, and Fully Connected (FC)
Layer forms the decoder. The idea is to encode the data by extracting key information from the
transformation, then reconstruct the actual one by decoding it.

4.2 Topological Traffic Propagator
The spatial neighbors play an important role on the target edge.

The Topological Traffic Propagator learns the importance scores of the edge’s informative spatial
neighbors, and updates the edge by aggregating these neighbors. The intuition is that among the
edge’s spatial neighbors, there are some neighbors following a similar traffic condition as the target
edge, but some may have different traffic conditions. For example, in Figure 4(a), road 41 should pay
more attention to road 42 since vehicles can turn right when the red light is on. But road 43 and 44
have less correlation with road 41 compared to road 42. Inspired by attention mechanism [56] which
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Fig. 4. The overall framework of the ConGC model. Details of each step are in Sections 4.2 to 4.7. ConGC,
Contextual graph completion.

was originally proposed to learn attention for neighbors in the standard graph, we propose to
exploit hidden correlations in sparse traffic data which contain complex information with missing
data in neighbors.

The stochastic weight ℎ48 ,) ∈ R |� | is transformed to latent embedding to allow deep expression:

�48 ,) =* ℎ48 ,) , (1)

where* ∈ R�′×|� | is the learnable parameter, and �48 ,) ∈ R�′ is the latent representation of edge
48 at T.

The importance of edge 4 9 to edge 48 at the time interval T is

[
spat.
48 ,4 9 ,)

= ReLU(0tr · [�48 ,) | |�4 9 ,) ]) , (2)

where ReLU is the activation function, 0tr is the transpose of the trainable parameter vector a, ‖ is
the concatenation operator, 4 9 ∈ #=

spat. (48 ) is the at most nth order spatial neighbors of 48 .
The spatial traffic attention can be calculated as

U
spat.
48 ,4 9 ,)

=
exp([spat.

48 ,4 9 ,)
)∑

4: ∈Mask) (#=
spat. (48 ) ) exp([

spat.
48 ,4: ,)

)
, (3)

where Mask) (#=
spat. (48 )) = {4 9 | ℎ4 9 ,) is valid, 4 9 ∈ #=

spat. (48 )} is the masked set of spatial neighbors
that only contain edges with traffic data at time interval T.

The spatial graph convolution is calculated as

ℎ
spat.
48 ,)

=
∑

4 9 ∈Mask)#=
spat. (48 )

U
spat.
48 ,4 9 ,)

· �4 9 ,) , (4)

where ℎspat.
48 ,)

∈ R�′ is the updated embedding of 48 at T after spatial attentional graph convolution.

4.3 Contextual Traffic Diffusion
Roads in the road network have properties, e.g., speed limit, the number of lanes, length, road
type, and one-way flag. These properties in the road network form a contextual graph (Figure 4(e)).
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The insight is that they can provide useful information about road similarity in nature, which is
important especially under data sparsity scenarios.

The ConGC updates based on road properties in the contextual graph and traffic condition in the
dynamic graph collectively. The road properties can be transformed as contextual embeddings. For
categorical features, e.g., the number of lanes nl, one-way flag ow, road type rt, we apply one-hot
encoding to transform them as 5=; , 5>F , and 5AC . For continuous features, e.g., speed limit sl and
road length rl, we use binning strategy to transform them into discrete ones as 5B; and 5A; . Then we
concatenate them as 52 ∈ R |� |×=5 :

52 = 5=; | | 5>F | | 5AC | | 5B; | | 5A; , (5)

where nf is the dimension of feature 52 of edge 48 .
We apply a transformation to obtain the latent feature of graph contexts as

�248 = ' 5248 , (6)

where 5248 ∈ R=5 is the contextual embedding of edge 48 , ' ∈ R�′×=5 is the learnable parameter,
and �248 ∈ R�′ is the latent context representation of edge 48 .

The contextual importance of edge 4 9 to edge 48 is

[cont.48 ,4 9
= ReLU(3 tr · [�248 | |�249 ]) , (7)

where d is the trainable parameter vector. The contextual similarity score Ucont.
48 ,4 9

∈ R can be
calculated as

Ucont.
48 ,4 9

=
exp([cont.48 ,4 9

)∑
4: ∈ (#=

spat. (48 ) ) exp([
cont.
48 ,4: )

. (8)

We then diffuse the transformed stochastic weight embedding �4 9 ,) ∈ R�′ (Equation (1)) based
on the contextual similarity score Ucont.

48 ,4 9
as

ℎcont.48 ,)
=

∑
4 9 ∈#=

spat. (48 )
Ucont.
48 ,4 9

· �4 9 ,) . (9)

The embedding ℎ′
48 ,)

∈ R2�′& of edge 48 at the time interval T after contextual and spatial graph
convolution is updated as

ℎ
′
48 ,)

=‖&
@=1 ReLU

(
ℎcont.48 ,)

| |ℎspat.
48 ,)

)
. (10)

To make the learning robust, we concatenate the learned embedding& ∈ N times as the multi-head
attention. The attention mechanism ensures that edges with significant differences or discrepancies
receive lower importance scores, thereby minimizing their influence on the target edge.

4.4 Recent Trend Aggregator
Temporal neighbors of edge 48 have high correlations with the target time interval )9 of 48 .

Recent Trend Aggregator with a masked operator aims to calculate the importance scores of the
edge’s masked recent neighbors, then update the edge by aggregating its masked recent neighbors
with importance scores. The intuition is that recent neighbors of different orders follow different
degrees of traffic correlation with the target time interval )8 . For example, in Figure 5(a), road 41
at )3 should pay more attention to its second-order recent neighbor at )1 since the traffic lights
are red at both )1 and )3. In contrast, the first-order recent neighbor )2 has less correlation with )3
compared to )1, since the traffic light is green at )2.
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Fig. 5. (a) Recent neighbors; (b) periodic neighbors.

Theℎ′
48 ,)9

∈ R2�′& is mapped to latent representation� ′
48 ,)9

∈ R�′ to allow sufficient expression as

�
′
48 ,)9

=$ ℎ
′
48 ,)9

, (11)

where $ ∈ R�′×2�′& is the learnable parameter.
The importance of ): for )9 at 48 is defined as

[
temp.
)9 ,): ,48

= ReLU(? tr · [� ′
48 ,)9

| |� ′
48 ,):

]) , (12)

where p is the trainable parameter vector, the time interval ): ∈ #=
temp. ()9 ), and 9 − = ≤ : ≤ 9 , n is

the maximum order of recent neighbors.
The recent attention coefficient is defined as

U
temp.
)9 ,): ,48

=
exp([ temp.

)9 ,): ,48
)∑

); ∈Mask48#
=
temp. ()9 ) exp([

temp.
)9 ,); ,48

)
, (13)

where Mask48#=
temp. ()9 ) = {); | ℎ48 ,); is valid, ); ∈ #=

temp. ()9 )} is the set of masked recent neighbors
of )9 at 48 that filters out neighbors with missing traffic data.

The embedding ℎ′′
48 ,)9

∈ R�′& is calculated as

ℎ
′′
48 ,)9

=‖&
@=1 ReLU ©­«

∑
): ∈Mask48#

=
temp. ()9 )

U
temp.
)9 ,): ,48

�
′
48 ,):

ª®¬ . (14)

4.5 Periodic Pattern Explorer
The Periodic Pattern Explorer with masked neighbors learns importance scores for informative
periodic neighbors of the target edge 48 at time interval T, then integrates these periodic neighbors.
The intuition is that periodic neighbors usually follow a similar correlation as the target one.
However, there may be some divergence among them. For example, in Figure 5(b), an incident
happened at time interval )3 − ? at edge 41, where p is the period. Consequently, the correlation
between)3 and)3 − ? is lower than that between)3 and)3 − 2 · ? . The period p could be 1 day or 1
week.

The ℎ′′
48 ,)9

∈ R�′& is transformed to latent embedding by parameter % ∈ R�′×�′& as

�
′′
48 ,)9

= % ℎ
′′
48 ,)9

, (15)

where � ′′
48 ,)9

∈ R�′ is the latent representation.
The importance of temporal periodic neighbor ): for time interval )9 of edge 48 is defined as

[
period.
)9 ,): ,48

= ReLU(Dtr · [� ′′
48 ,)9

| |� ′′
48 ,):

]) , (16)

where u is the parameter vector, the time interval ): ∈ #=,?

period. ()9 ), and 9 − = · ? ≤ : ≤ 9 , n is the
maximum order of periodic neighbors, p is the period.
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The periodic traffic attention can be calculated as

U
period.
)9 ,): ,48

=
exp([period.

)9 ,): ,48
)∑

); ∈Mask48#
=,?

period. ()9 ) exp([
period.
)9 ,); ,48

)
, (17)

where Mask48#
=,?

period. ()9 ) = {); | ℎ48 ,); is valid, ); ∈ #
=,?

period. ()9 )} is masked periodic neighbors of
)9 at 48 that only contains periodic neighbors with traffic data.

The periodic graph convolution is calculated as

ℎ
updated
48 ,)9

= ‖&
@=1 ReLU

©­­«
∑

): ∈Mask48#
=,?

period. ()9 )

U
period.
)9 ,): ,48

�
′′
48 ,):

ª®®¬ , (18)

where ℎupdated
48 ,)9

∈ R�′& is the updated embedding after periodic graph convolution.

4.6 Pooling

The ℎupdated
48 ,)9

of all edges at all time intervals form the tensor, updated. Then, pooling is applied
to extract key information from, updated by a pooling size of :C and :4 , where :C is designed to
extract temporal key information, and :4 is used for pooling important spatial information. Under
traffic sparsity, there may still exist missing values in, updated even after the operations we applied.
Pooling is necessary since it only keeps key information from, updated instead of missing values.
After pooling, we obtain the encoded, PL with a smaller size compared to, updated.

Take the max Pooling on, updated ∈ R |� |× | T |×�′& in the spatial and temporal dimensions as an
example:

, PL
4,C,1@

=
:4 (4+1)−1
max
8=:4∗4

:C (C+1)−1
max
9=:C ∗C

,
updated
8, 9,1@

, (19)

where, PL ∈ R
|� |
:4

× |T |
:C

×�′& is the tensor after Pooling.

4.7 FC Layers
The FC Layers are applied to decode key information which is encoded in, PL, and restore the
tensor to the original shape |� | × |T | × |� |. After that, softmax is applied to make sure the sum of
each stochastic weight equals one. Finally, the completed stochastic weight tensor ,̂ is obtained.

4.8 Optimization
After the encoder-decoder structure, we finally obtain the completed stochastic weight tensor
,̂ ∈ R |� |× | T |× |� | . The goal is that ,̂ is as close as the actual ground truth stochastic weight tensor
,� as possible, where,� ∈ R |� |× | T |× |� | is set according to the label of model functionalities (see
Section 6.1.3). Therefore, the loss function is formulated as

L1 (,̂ ,,� ) =
| T |∑
8=1

|� |∑
9=1

1)8 ,4 9 · KL(ℎ̂4 9 ,)8 | |ℎ4 9 ,) 8 ) , (20)

where KL(·| |·) measures the KL-divergence between the completed stochastic weight and the
ground truth, and 1)8 ,4 9 is an indicator function that is 0 if data are missing in )8 at 4 9 , and 1
otherwise. The reason is that we can only establish the quality of the completed stochastic weight
if the actual one is available as ground truth.
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Fig. 6. The overall framework of the RegGC model. It follows steps in the framework of the ConGC model in
Figure 4.

4.9 Complexity Analysis
The time complexity of ConGC is O(& · |T | · |� | · |� | · �′ · (2 · |#max

spat. | + |#=
temp. | + |#=,?

period. |)),
where |#max

spat. |, |#=
temp. |, and |#=,?

period. | are the maximal number of spatial neighbors, the number of
recent, and periodic neighbors, respectively. After removing constants, the complexity is dominated
by O(|T | · |� |). Hence, ConGC has a polynomial time complexity, and is efficient as shown in
Section 6.

5 The Region-Wise Graph Completion (RegGC) Model
Since ConGC ignores the coarse spatial correlations among semantic regions, which is beneficial for
propagatingmessages among distantly located roads, we further propose a general multi-granularity
framework to enhance ConGC. In this section, we first introduce the framework of RegGC
(Section 5.1). After that, we explain the detailed steps in the model (Sections 5.2 and 5.3). Then, we
show the time complexity of RegGC (Section 5.4). Finally, we give a discussion to summarize the
properties of the RegGC model (Section 5.5).

5.1 Framework
Figure 6 shows the framework of the RegGC model. It first constructs a hypergraph (Section 5.2)
based on semantic region functions, e.g., POI information. Next, hypergraph-enhanced region-wise
learning (Section 5.3) is utilized to propagate region-based traffic similarity among all roads.

5.2 Hypergraph Construction
Since roads near the same semantic regions exhibit similar traffic patterns, the first step is to
organize the connections between roads and semantic regions.

Challenges. Some regions, e.g., rural areas, may serve few meaningful semantic functions; how-
ever, some regions, e.g., the center of one city, may provide multiple semantic functions, e.g., schools
and supermarkets. If we split the city by grids strictly on the map, this may result in many regions
with few meaningful semantic functions. Finding a way to define meaningful semantic regions
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is the first challenge. Since stochastic weights contain missing values, especially for some roads
that are seldom traversed by vehicles in the evening, traditional approaches [71], which learn the
hypergraph connection from traffic data, cannot provide accurate connections. Finding a reasonable
way to construct the hypergraph structure for sparse traffic data is the second challenge.

Design. To fix the first challenge, we propose to utilize the POIs for defining the semantic regions
in a city. To address the second challenge, we propose to construct the hypergraph based on the
semantic region function instead of constructing it from sparse traffic data as in [71]. The reason is
that the semantic region function provides a reasonable way to define the traffic similarity among
roads that are located near the same semantic regions, e.g., schools, hospitals, and supermarkets.

For example, even if three roads 41, 42, 43 are located very far away from each other, as long as
they are near the same semantic region, e.g., schools, they will be connected via one hyperedge
since they could share the similar traffic patterns during peak hours. Specifically, we map all roads
to their nearest semantic regions based on a distance threshold W . Then roads e that are located near
the regions A< sharing the same semantic function are connected with one hyperedge m. Formally,
the semantic region-based hypergraph is defined as G = (E,M, %), where E denotes the road set,
M represent the hyperedge set, and P is the incidence matrix of the hypergraph G. The incidence
matrix P of the hypergraph G is a |E | × |M| matrix as

? (4,<) =
{
1, if 3 (4, A<) < W,
0, if 3 (4, A<) ≥ W .

(21)

In this way, the hypergraph G is constructed to reflect similar traffic patterns for roads near the
same semantic regions.

5.3 Hypergraph-Enhanced Region-Wise Learning
Hypergraph is utilized to capture the region-wise correlations among roads, even when they are
located distantly with each other.

Challenges. Hypergraph convolution aims at propagating traffic information among roads be-
longing to the same hyperedge. However, as the stochastic weights contain missing values, learning
becomes more difficult. The key challenge is enabling the model to effectively learn from the sparse
traffic data.

Design. To address this challenge, we propose to learn the key information from the hypergraph
convolution, in which we design a residual module to learn the key difference compared with the
transformed stochastic weights.

Firstly, the observed stochastic weight ℎ48 ,) ∈ R |� | is transformed as

�48 ,) = # ℎ48 ,) , (22)

where # ∈ R�′×|� | is the learnable parameter, �′ is the dimension of hidden state, and �48 ,) ∈ R�′

is the latent representation of edge 48 at T.
Next, the spectral convolutions on hypergraphs are defined as

6\ ★ � =&6\&
) � , (23)

where Q is the eigenvector of the hypergraph Laplacian.
After applying Chebyshev polynomials ): (G) with the maximal of the eigenvalues _max ≈ 2, we

have the transformed embedding as

�� = �
−1/2
E %�−1

4 %)�
−1/2
E �Θ + � , (24)
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where P is the incidence matrix of the hypergraph G, and �E, �4 represent the diagonal matrices
of the edge degrees and the vertex degrees of the incidence matrix P of the hypergraph G, Θ is the
trainable parameters. Here we focus on learning the residual of the hypergraph convolution so
that the model can target on the key difference compared with the transformed stochastic weights.

After that, we apply Topological Traffic Propagator, Contextual Traffic Diffusion, Recent Trend
Aggregator, and Periodic Pattern Explorer from Section 4 on �� to capture the spatial-temporal
correlations among traffic data.

Since the goal is to maximize the marginal log-likelihood of each observation in the stochastic
weight, we introduce a latent variable B ∼ @(B |, ) to encode the key information from the observed
stochastic weight W. Note that the observed stochastic weight W might have many missing values;
therefore we only learn the latent variable s from the cells that contain observed values in W.

Finally, the FC Layers are utilized to decode the complete stochastic weights from the encoder.
The loss function is formulated as

L =  ! (@(B |, ) | |? (B)) + L1 (,̂ ,,� ), (25)

where  ! (@(B |, ) | |? (B)) is the KL-divergence between the posterior and prior distributions of the
latent variable s. After back-propagation of the loss function, it will give the completed stochastic
weight ,̂ .

5.4 Complexity Analysis
The time complexity of RegGC is O(& · |T | · |� | · |� | ·�′ · (2 · |#max

spat. | + |#=
temp. | + |#=,?

period. |) +?=I · |� |),
where |#max

spat. |, |#=
temp. |, and |#=,?

period. | are the maximal number of spatial neighbors, the number of
recent, and periodic neighbors, respectively, ?=I is the number of non-zero values in the sparse
matrix P. After removing constants, the complexity is dominated by O(|T | · |� |). Hence, RegGC
has a polynomial time complexity and is efficient as shown in Section 6.

5.5 Discussion
We observe the following about the RegGC model:

—The RegGC model is efficient due to its polynomial time complexity.
—The RegGC model is scalable since its complexity is linear along with the increasing data size.
It is also confirmed with experimental results in Figure 9 of Section 6.

—The ConGC model is essentially an adaptation of the RegGC model, designed to perform well
in situations where semantic region information is unavailable or limited. It can be viewed
as a more lightweight version of RegGC. The ConGC model is faster than RegGC, as the
complexity of ConGC is roughly O(?=I · |� |) smaller than that of RegGC. If computational
resources are limited, or semantic region information is not available, ConGC can be used
alternatively.

6 Experiments
This section aims to evaluate the following Research Questions (RQs) through extensive experi-
ments:

—RQ1: How does the proposed RegGC model perform compared with SOTA algorithms on
different datasets?

—RQ2: How do different modeling designs affect the result of RegGC?
—RQ3: How does the RegGC model perform when enlarging data size?
—RQ4: How do different hyper-parameters affect the performance of the RegGC model?
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6.1 Experimental Setup
6.1.1 Datasets. We evaluate on three real datasets.

—The HK is a taxi GPS dataset1 in Hong Kong in 2010. It contains 35 gigabytes of trajectories,
which involves 155,589 nodes.

—The XN is an open GPS dataset2 in Xi’an in 2016, which contains 137 gigabytes of trajectories,
and 10,910 nodes.

—The CD is an open GPS dataset,2 which contains 196 gigabytes of GPS data in Chengdu in
2016, and has 9,583 nodes.

We set the histogram with eight 5-m/s buckets ranging from 0 m/s to 40 m/s, and partition a day
into 96 15-minute intervals as in [27].

For the RegGCmodel, we utilize the attribute POI that existed in the OpenStreetMap3 to represent
the semantic region function. Based on that, hypergraphs in these three datasets are constructed
(see Section 5.2). Besides, five attributes from the OpenStreetMap, i.e., the number of lanes nl,
one-way flag ow, road type rt, speed limit sl, and road length rl, are utilized for the ConGC model.

6.1.2 Pre-Processing. After map matching [50], the two pre-processing steps are conducted.

Edge Graph Transformation. We choose the largest connected subgraph as in [27]. In the HK,
XN, and CD datasets, the numbers of selected edges are 1,158, 64, and 175, respectively. We then
transform the directed road network into an undirected edge graph.

Input Data Preparation. We construct ground truth stochastic weight,� from the available GPS
data. In particular, we partition the day into 96 15-minute intervals and create a histogram for each
edge with eight 5 m/s buckets ranging from 0 m/s to 40 m/s for a given time interval, as in [27].
We only instantiate weights for edges that have at least five speed records, following the setting
in [27]. Since,� may contain missing values due to sparsity, we use only the available data from
,� as the ground truth. For input weight W, we construct it by randomly removing edge weights
in,� with removal ratio rm. Then we evaluate the quality of completed ,̂ by comparing with,� .

6.1.3 Model Functionalities. Our method is flexible to support two model functionalities.

Estimation. The input is stochastic weight,@)8 at )8 with missing values. The output is the
completed ,̂@)8 at )8 . The label is the ground truth,�@)8 .

Prediction. The input is,@)8 at )8 with missing values. The output is the predicted ,̂@)8+1 at
the next )8+1. The label is the ground truth,�@)8+1.

6.1.4 Competitors. We compare with 10 methods.

Deterministic WC Methods. There are two kinds of deterministic methods. The first kind contains
Random Forest (RF), CNN, and DSAE [13], which only consider spatial data. Another kind
incorporates temporal data. They are DCRNN [40], ASTGCN [19], ST-ResNet [81], and ST-SHN  [71].
We also compare our model with advanced methods designed to address the sparsity issue, including
DTIGNN [38] and LSCGF [5]. We complete weights of each bucket in the histogram separately for
RF as [27] for stochastic setting. For other learning-based baselines that were not originally designed
for WC tasks, we modified their output size from one to |� |. The differences between ASTGCN
and ours are threefold. First, they are designed on dense data. They ignore missing values in the
1The HK dataset is confidential, which is provided by Prof. S. C. Wong of Civil Engineering in HKU.
2http://outreach.didichuxing.com. You can submit an application to Didi Chuxing for data access.
3https://www.openstreetmap.org/
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model, which negatively affects performance. Second, they are designed for deterministic weights.
Third, they follow the spectral GCN. We follow the node domain, which enables propagation of
correlations based on structure. The first two differences also hold for DCRNN. Since ST-ResNet is
a grid-based method, we map the grid results to the roads that overlap with them, and average the
mapped results for each road if there are multiple grids overlapping with them.

SWC Methods. A-GCWC [27] is the state-of-the-art model (GCN) for SWC. We denote GC as the
basic version of ConGC that does not involve contexts.

6.1.5 Hyper-Parameter Tuning. We partition datasets into five folds as [27], where four folds are
used for training and validation, and one fold for testing. We run 10 times in total, and report the
average. We conduct hyper-parameter tuning by Bayesian optimizer. The scopes are learning rate
[0.0001, 0.1], number of spatial, recent, periodic neighbors {2, 3, 4, 5}, p {“1 day,” “1 week”}, Q {4, 8,
16, 32}, :C , :4 {2, 4, 8}, kernel number {8, 16, 32}, kernel size {8, 16, 32}, dimension of hidden state �′
{8, 16, 64, 128}, and distance threshold W {50, 100, 200, 300} meters.

6.1.6 PerformanceMetrics. Weevaluate byMeanKullback-LeiblerDivergenceRatio (MKLR)
and Fraction of Likelihood Ratio (FLR) as [27]. Historical Average (HA) is the average of
training data. The smaller the MKLR is, the better the quality is:

" !' =

∑ | T |
8=1

∑ |� |
9=1 1)8 ,4 9 · KL(ℎ�4 9 ,)8 | |ℎ̂4 9 ,)8 )∑ | T |

8=1

∑ |� |
9=1 1)8 ,4 9 · KL(ℎ�4 9 ,)8 | |HA4 9 )

, (26)

�!' =

∑ | T |
8=1

∑ |� |
9=1 1)8 ,4 9 |!'4 9 ,)8 > 1|∑ | T |
8=1

∑ |� |
9=1 1)8 ,4 9

, (27)

where !'4 9 ,)8 =
∏ |> |

:=1 (%ℎ̂ (>: ))∏ |> |
:=1 (%HA (>: ))

, |> | is the total number of ground truth records, %
ℎ̂
(>: ) and %HA (>: )

are the probabilities of observing >: from ℎ̂ and HA. The higher the FLR value is, the better the
method is.

6.2 Effectiveness Evaluation (RQ1)
We set rm as 0.5–0.8 for XN and CD datasets as [27]. In HK, we do not remove any data and only
evaluate prediction as the sparsity is already 90% (“None” for rm in Tables 2 and 3).

6.2.1 Estimation. In Tables 2 and 3, the MKLR values on the estimation task in the XN and CD
datasets increase—recall that a low MKLR value is better—as rm increases. The reason is that when
more edges are removed, less information can be used when propagating the correlation among
edges and time intervals. And the FLR values in the XN and CD datasets decrease—recall that a
high FLR value is better—as rm increases. The reason is the same as for MKLR since fewer data
provide less information. RegGC achieves the best performance on all datasets. For example, its
average improvements of MKLR and FLR values over advanced model A-GCWC on estimation
are 7.75% and 9.32%. And its average improvements of MKLR and FLR values over the ConGC
model on estimation are 1.50% and 2.24%. Moreover, RegGC has better performance compared with
ST-SHN [71], e.g., 3.31% improvements on estimation task on average. The reason is that ST-SHN
[71] constructs the hypergraph in a data-driven way, which cannot achieve the optimal results
with missing values. Furthermore, RegGC outperforms advanced methods designed to address the
sparsity issue, such as DTIGNN [38] and LSCGF [5], particularly when the removal ratio (rm) is
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Table 2. MKLR (Lower Is Better ) on Three Datasets

Datasets Functionalities  rm RF CNN DSAE DCRNN ASTGCN ST-ResNet A-GCWC GC ConGC ST-SHN LSCGF DTIGNN RegGC

XN

Estimation

0.5 0.91 0.49 0.37 1.07 0.47 0.72 0.22 0.21 0.14 0.16 0.23 0.25 0.13
0.6 1.00 0.54 0.58 1.29 0.57 0.76 0.27 0.24 0.23 0.29 0.29 0.36 0.23
0.7 0.95 0.54 1.13 1.16 0.52 0.60 0.39 0.37 0.26 0.28 0.41 0.37 0.25
0.8 0.95 0.60 1.93 1.16 0.61 0.65 0.59 0.59 0.59 0.58 0.61 0.6 0.57

Prediction

0.5 0.91 0.71 1.17 1.02 0.74 0.74 0.66 0.65 0.65 0.68 0.76 0.75 0.64
0.6 1.04 0.71 1.30 1.25 0.74 0.73 0.66 0.65 0.65 0.68 0.75 0.75 0.64
0.7 0.94 0.71 1.42 1.10 0.71 0.72 0.69 0.63 0.62 0.71 0.73 0.72 0.61
0.8 0.95 0.71 1.63 1.07 0.70 0.75 0.69 0.62 0.61 0.62 0.76 0.73 0.61

CD

Estimation

0.5 0.98 0.70 0.74 0.87 0.77 0.62 0.53 0.44 0.40 0.39 0.55 0.49 0.38
0.6 0.91 0.73 0.94 0.88 0.68 0.64 0.56 0.57 0.54 0.53 0.57 0.61 0.52
0.7 0.99 0.77 1.19 0.89 0.70 0.64 0.72 0.65 0.64 0.68 0.73 0.66 0.62
0.8 0.92 0.80 1.36 0.94 0.79 0.77 0.79 0.80 0.77 0.86 0.81 0.78 0.74

Prediction

0.5 0.99 0.74 1.12 0.90 0.71 0.69 0.72 0.69 0.68 0.68 0.73 0.72 0.68
0.6 0.91 0.74 1.18 0.91 0.71 0.70 0.73 0.70 0.69 0.69 0.74 0.72 0.68
0.7 0.99 0.75 1.24 0.91 0.72 0.70 0.75 0.70 0.69 0.69 0.77 0.73 0.69
0.8 0.93 0.76 1.30 0.92 0.72 0.70 0.76 0.71 0.70 0.70 0.78 0.75 0.70

HK Prediction None 0.92 0.82 1.14 1.27 0.88 0.77 0.80 0.80 0.74 0.75 0.83 0.81 0.72

For each method, we report average results over 10 runs.
MKLR, Mean Kullback-Leibler Divergence Ratio. The best values are highlighted in bold.

Table 3. FLR (Higher Is Better ) on Three Datasets

Datasets Functionalities  rm RF CNN DSAE DCRNN ASTGCN ST-ResNet A-GCWC GC ConGC ST-SHN LSCGF DTIGNN RegGC

XN

Estimation

0.5 0.27 0.53 0.77 0.48 0.53 0.45 0.76 0.80 0.90 0.87 0.75 0.86 0.92
0.6 0.31 0.53 0.74 0.40 0.51 0.43 0.76 0.78 0.82 0.81 0.74 0.8 0.84
0.7 0.25 0.54 0.64 0.44 0.54 0.47 0.71 0.76 0.82 0.82 0.71 0.79 0.83
0.8 0.21 0.49 0.47 0.43 0.50 0.46 0.47 0.52 0.54 0.54 0.46 0.49 0.55

Prediction

0.5 0.27 0.43 0.42 0.50 0.41 0.42 0.44 0.51 0.52 0.46 0.42 0.51 0.53
0.6 0.30 0.43 0.40 0.42 0.41 0.44 0.44 0.51 0.52 0.48 0.41 0.51 0.53
0.7 0.25 0.40 0.38 0.44 0.39 0.41 0.36 0.49 0.50 0.44 0.34 0.5 0.51
0.8 0.22 0.40 0.34 0.45 0.39 0.37 0.36 0.49 0.50 0.48 0.33 0.49 0.50

CD

Estimation

0.5 0.17 0.47 0.61 0.56 0.48 0.53 0.60 0.62 0.67 0.68 0.59 0.67 0.71
0.6 0.15 0.46 0.52 0.56 0.50 0.52 0.57 0.56 0.60 0.60 0.55 0.62 0.63
0.7 0.12 0.44 0.43 0.40 0.49 0.50 0.47 0.51 0.51 0.53 0.46 0.49 0.54
0.8 0.09 0.42 0.35 0.36 0.44 0.47 0.43 0.46 0.48 0.45 0.41 0.45 0.50

Prediction

0.5 0.17 0.44 0.40 0.51 0.49 0.54 0.49 0.54 0.55 0.55 0.47 0.52 0.56
0.6 0.14 0.44 0.36 0.50 0.49 0.54 0.48 0.54 0.55 0.55 0.46 0.52 0.56
0.7 0.12 0.43 0.33 0.49 0.48 0.54 0.47 0.54 0.54 0.55 0.44 0.51 0.55
0.8 0.08 0.42 0.31 0.50 0.48 0.53 0.46 0.52 0.53 0.54 0.42 0.51 0.54

HK Prediction None 0.19 0.37 0.44 0.37 0.30 0.43 0.43 0.43 0.45 0.44 0.39 0.42 0.46

For each method, we report average results over 10 runs. The best values are highlighted in bold.

high. This demonstrates RegGC’s ability to transfer available traffic data to roads with missing
values through its multi-granularity spatial-temporal correlation learning approach.

6.2.2 Prediction. In Tables 2 and 3, RegGC beats other methods as well on the prediction task.
The average improvements of MKLR and FLR values over advanced model A-GCWC are 5.00% and
9.67%. And its improvement of FLR values over the ConGC model is 0.71%.

Moreover, RegGC is clearly better than ConGC when rm is large. For the largest rm 0.8 on XN
and CD datasets, the average improvement of RegGC is 1.13% more accurate than ConGC. As for
HK, its average improvement is 1.5% more accurate than ConGC.

6.3 Ablation Study (RQ2)
We conduct an ablation study on RegGC to evaluate the effectiveness of its main steps. One basic
variant ignores coarser spatial correlations among semantic regions modeled by the hypergraph
(Section 5), which is denoted as ConGC. Another variant assigns equal weights for neighbors
without an attention mechanism. We call this variant RegGC_na (no attention). To show the effect
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Fig. 7. The ablation study results on XN and CD w.r.t. MKLR (lower is better) and FLR (higher is better).

Fig. 8. The ablation study results on HK w.r.t. MKLR (lower is better) and FLR (higher is better).

of finer spatial correlations (Sections 4.2 and 4.3), we train the model without finer spatial correla-
tions. We call this variant RegGC_ns (no spatial). Moreover, we remove recent trend aggregator
(Section 4.4) to evaluate the effect of recent trend aggregator. We call this variant RegGC_nt (no
temporal). Finally, we consider a variant of RegGC that does not incorporate periodic pattern
explorer (Section 4.5). We call it RegGC_np (no periodic).

We compare RegGC with five variants on three datasets w.r.t. MKLR and FLR metrics in Figures
7 and 8. Similar to Section 6.2, as the sparsity in HK dataset is very high, we do not remove any data
from the HK dataset and only evaluate the prediction task. This is indicated by the word “None” for
rm in Figure 8. From these figures, we make the following observations:

(1) RegGC beats ConGC on three datasets. In particular, the performance gap becomes larger
under high rm values, e.g., 0.7 and 0.8, on estimation task for MKLR values. It shows that
using coarser spatial correlations among semantic regions is important for information
propagation in the graph.

(2) RegGC achieves better performance than RegGC_na, especially on the HK dataset, and
estimation of XN and CD datasets. It confirms the importance of neighbors by applying the
attention mechanism.

(3) RegGC performs significantly better than RegGC_ns on three datasets. In particular, the
performance gap on the estimation task is the largest gap. It means that topological traffic
propagator is essential in learning stochastic weights.

(4) RegGC outperforms RegGC_nt on three datasets. This shows that recent trend aggregator is
very important for useful temporal information aggregator.

(5) RegGC works better than RegGC_np on three datasets. Specifically, the performance gap on
the prediction task is very significant. It confirms that periodic pattern explorer is important
in learning stochastic weights.
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Fig. 9. Scalability on (a) and (b) moderate; (c) and (d) large road networks; (e) and (f) time dimension; (g) and
(h) efficiency.

6.4 Efficiency Evaluation (RQ3)
We use GeForce GTX 1080 Ti 11 GB GPU for evaluation.

6.4.1 Efficiency Comparison. Figure 9(g) and (h) shows the average training and testing time
for a single instance (i.e., a weight matrix at one time interval for all edges). Firstly, RF, DSAE,
and CNN are faster than others since they only consider spatial data. Second, DCRNN, A-GCWC,
GC, ConGC (one basic variant ignores coarser region semantics), and RegGC have comparable
performance, while ASTGCN, ST-ResNet are much slower. Note that ST-ResNet, ASTGCN, GC,
ConGC, and RegGC consider more data, i.e., spatial, temporal, and periodic data, while DCRNN
only considers spatial and temporal data. Besides, RegGC utilizes multi-level spatial data, i.e.,
coarser region semantics and finer road properties, while other advanced models only consider
single-level spatial data, e.g., road properties. It means that RegGC has comparable performance
even considering more data than other advanced methods.

6.4.2 Scalability w.r.t. the Number of Roads. We manually enlarge the dataset as [27], since large
road networks with dense data are unavailable. The maximum number of edges that one GPU
can process with a batch size 8 is 1,600 for RegGC. We manually enlarge the road network of XN
to 1,536 for Figure 9(a) and (b), and enlarge it to 1 million for Figure 9(c) and (d), and measure
the average running time for an instance (i.e., an instance denotes a weight matrix at one time
interval for all edges). We follow the two settings in [27] and evaluate (1) the scalability of moderate
road networks that fit into one GPU (Figure 9(a) and (b)) and (2) the scalability of very large road
networks which have to be partitioned into multiple small road networks that can be trained
in sequence by batches in one GPU (Figure 9(c) and (d)). We adapt the learning-based methods
using the advanced partitioning-based approach [6] to handle very large road networks feasible.
Specifically, the large road network is partitioned into multiple parts, which are then processed in
batches to fit within the GPU memory. Figure 9(a) and (b) shows that RegGC is scalable on moderate
road networks, and Figure 9(c) and (d) shows that RegGC is scalable on vast road networks.

6.4.3 Scalability w.r.t. the Number of Time Intervals. Similarly, we manually enlarge the dataset
w.r.t. |T | from 1,131 to 452,400, and measure the average training time for 1 epoch and the testing
time for all testing data. Here, |T | = 452, 400 time intervals represent 12.9 years of data with
15-minute intervals. The number of edges is set to 64. Figure 9(e) and (f) shows that the RegGC is
scalable on the time dimension.
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Fig. 10. Hyper-parameter study of RegGC.

6.5 Hyper-Parameter Study (RQ4)
We study the sensitivity of the hyper-parameters in our proposed model. We show the results
about the sensitivity trend of the dimension of hidden state �′ on the CD dataset with FLR values,
and the sensitivity trend of distance W on the XN dataset with FLR values. Note that other settings
have similar sensitivity trends as Figure 10, we omit them due to the space limit.

Dimension of Hidden State �′.The performance is evaluated by varying �′ from {8, 16, 64, 128}. The
performance increases when �′ < 64, and it achieves the best when �′ = 64, then the performance
degrades due to the overfitting issue. It shows that the performance becomes better when we
enlarge �′ until the best setting, then the performance becomes worse when �′ increases further
due to overfitting.

Distance Threshold W . We evaluate performance by varying W as 50, 100, 200, 300 m. Results show
best performance at γ = 50 m, with degradation as W increases. This is because roads closely located
around the same POIs should exhibit similar traffic dynamics. However, as the road distance to the
same POIs grows, traffic similarity between roads diminishes.

7 Conclusions
We study the SWC problem under data sparsity. We propose RegGC to utilize coarser semantic
region functions and finer road properties for learning weights in a multi-granularity way. The
model propagates correlations in both spatial and temporal dimensions from edges with weights
to edges with missing weights. We give a formal definition of our problem setting and evaluate
the effectiveness of the model compared with other state-of-the-art models. Our evaluation results
show that RegGC is more effective, than other competitors, and can scale to large road networks.
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