
.

.

Latest updates: hps://dl.acm.org/doi/10.1145/3769763
.

.

RESEARCH-ARTICLE

Aribute Filtering in Approximate Nearest Neighbor
Search: An In-depth Experimental Study

MOCHENG LI, The Chinese University of Hong Kong, Shenzhen,
Shenzhen, Guangdong, China
.

XIAO YAN, Wuhan University, Wuhan, Hubei, China
.

BAOTONG LU, Microso Research, Redmond, WA, United States
.

YUE ZHANG, The Chinese University of Hong Kong, Shenzhen, Shenzhen,
Guangdong, China
.

JAMES SHEUNG CHENG, Chinese University of Hong Kong, Hong Kong,
Hong Kong
.

CHENHAO MA, The Chinese University of Hong Kong, Shenzhen,
Shenzhen, Guangdong, China
.

.

.

Open Access Support provided by:
.

Chinese University of Hong Kong
.

Wuhan University
.

The Chinese University of Hong Kong, Shenzhen
.

Microso Research
.

PDF Download
3769763.pdf
04 January 2026
Total Citations: 0
Total Downloads: 103
.

.

Published: 05 December 2025
.

.

Citation in BibTeX format
.

.

Proceedings of the ACM on Management of Data, Volume 3, Issue 6 (December 2025)
hps://doi.org/10.1145/3769763

EISSN: 2836-6573

.

https://dl.acm.org
https://www.acm.org
https://libraries.acm.org/acmopen
https://dl.acm.org/doi/10.1145/3769763
https://dl.acm.org/doi/10.1145/3769763
https://dl.acm.org/doi/10.1145/contrib-99661776082
https://dl.acm.org/doi/10.1145/institution-60108865
https://dl.acm.org/doi/10.1145/institution-60108865
https://dl.acm.org/doi/10.1145/contrib-99661776401
https://dl.acm.org/doi/10.1145/institution-60029306
https://dl.acm.org/doi/10.1145/contrib-99659526446
https://dl.acm.org/doi/10.1145/institution-60021726
https://dl.acm.org/doi/10.1145/contrib-99661775620
https://dl.acm.org/doi/10.1145/institution-60108865
https://dl.acm.org/doi/10.1145/institution-60108865
https://dl.acm.org/doi/10.1145/contrib-81408594266
https://dl.acm.org/doi/10.1145/institution-60002798
https://dl.acm.org/doi/10.1145/institution-60002798
https://dl.acm.org/doi/10.1145/contrib-99659485588
https://dl.acm.org/doi/10.1145/institution-60108865
https://dl.acm.org/doi/10.1145/institution-60108865
https://libraries.acm.org/acmopen
https://dl.acm.org/doi/10.1145/institution-60002798
https://dl.acm.org/doi/10.1145/institution-60029306
https://dl.acm.org/doi/10.1145/institution-60108865
https://dl.acm.org/doi/10.1145/institution-60021726
https://dl.acm.org/action/exportCiteProcCitation?dois=10.1145%2F3769763&targetFile=custom-bibtex&format=bibtex

Attribute Filtering in Approximate Nearest Neighbor Search:
An In-depth Experimental Study
MOCHENG LI, The Chinese University of Hong Kong, Shenzhen, China
XIAO YAN, Institute for Math & AI, Wuhan, Wuhan University, China
BAOTONG LU,Microsoft Research, China
YUE ZHANG, The Chinese University of Hong Kong, Shenzhen, China
JAMES CHENG, The Chinese University of Hong Kong, China
CHENHAO MA∗, The Chinese University of Hong Kong, Shenzhen, China

With the growing integration of structured and unstructured data, new methods have emerged for performing
similarity searches on vectors while honoring structured attribute constraints, i.e., a process known as Filtering
Approximate Nearest Neighbor (Filtering ANN) search. Since many of these algorithms have only appeared
in recent years and are designed to work with a variety of base indexing methods and filtering strategies,
there is a pressing need for a unified analysis that identifies their core techniques and enables meaningful
comparisons.

In this work, we present a unified Filtering ANN search interface that encompasses the latest algorithms
and evaluate them extensively from multiple perspectives. First, we propose a comprehensive taxonomy of
existing Filtering ANN algorithms based on attribute types and filtering strategies. Next, we analyze their
key components, i.e., index structures, pruning strategies, and entry point selection, to elucidate design
differences and tradeoffs. We then conduct a broad experimental evaluation on 10 algorithms and 12 methods
across 4 datasets (each with up to 10 million items), incorporating both synthetic and real attributes and
covering selectivity levels from 0.1% to 100%. Finally, an in-depth component analysis reveals the influence
of pruning, entry point selection, and edge filtering costs on overall performance. Based on our findings,
we summarize the strengths and limitations of each approach, provide practical guidelines for selecting
appropriate methods, and suggest promising directions for future research. Our code is available at: https:
//github.com/lmccccc/FANNBench.

CCS Concepts: • Information systems→ Top-k retrieval in databases; Data structures.

Additional Key Words and Phrases: Approximate Nearest Neighbor, Filtering, Benchmark, Survey

ACM Reference Format:
Mocheng Li, Xiao Yan, Baotong Lu, Yue Zhang, James Cheng, and Chenhao Ma. 2025. Attribute Filtering
in Approximate Nearest Neighbor Search: An In-depth Experimental Study. Proc. ACM Manag. Data 3, 6
(SIGMOD), Article 298 (December 2025), 26 pages. https://doi.org/10.1145/3769763

∗Corresponding author.

Authors’ Contact Information: Mocheng Li, mochengli1@link.cuhk.edu.cn, The Chinese University of Hong Kong, Shenzhen,
Shenzhen, China; Xiao Yan, Institute for Math & AI, Wuhan, Wuhan University, Wuhan, China, yanxiaosunny@whu.edu.cn;
Baotong Lu, Microsoft Research, Beijing, China, baotonglu@microsoft.com; Yue Zhang, The Chinese University of Hong
Kong, Shenzhen, Shenzhen, China, 223040247@link.cuhk.edu.cn; James Cheng, The Chinese University of Hong Kong, Hong
Kong, China; Chenhao Ma, The Chinese University of Hong Kong, Shenzhen, Shenzhen, China, machenhao@cuhk.edu.cn.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the
full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be honored.
Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee. Request permissions from permissions@acm.org.
© 2025 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM 2836-6573/2025/12-ART298
https://doi.org/10.1145/3769763

Proc. ACM Manag. Data, Vol. 3, No. 6 (SIGMOD), Article 298. Publication date: December 2025.

https://orcid.org/0000-0002-5524-1042
https://orcid.org/0000-0002-2122-915X
https://orcid.org/0000-0002-0230-1048
https://orcid.org/0009-0009-5199-7799
https://orcid.org/0000-0001-6313-6288
https://orcid.org/0000-0002-3243-8512
https://github.com/lmccccc/FANNBench
https://github.com/lmccccc/FANNBench
https://doi.org/10.1145/3769763
https://orcid.org/0000-0002-5524-1042
https://orcid.org/0000-0002-2122-915X
https://orcid.org/0000-0002-0230-1048
https://orcid.org/0009-0009-5199-7799
https://orcid.org/0000-0001-6313-6288
https://orcid.org/0000-0002-3243-8512
https://doi.org/10.1145/3769763

298:2 Mocheng Li et al.

Vector index &
structured attribute

40<attr<50

Vector query &
restirction

Results &
matched attribute

attr=45

attr=42

Vector Index

Vector query Top 2 results

Vector query

40<$<50 45$

Vector query &
restriction

Result

Result & matched
attribute

Embedded
figure

Embedded
figure

Embedded
figure

Embedded
figure

(a) ANN search

Vector index &
structured attribute

40<attr<50

Vector query &
restirction

Results &
matched attribute

attr=45

attr=42

Vector Index

Vector query Top 2 results

Vector query

40<$<50 45$

Vector query &
restriction

Result

Result & matched
attribute

Embedded
figure

Embedded
figure

Embedded
figure

Embedded
figure

(b) Filtering ANN search

Fig. 1. Example of ANN search and Filtering ANN search.

1 Introduction
The advent of Transformer architectures [57] and modern embedding techniques [53] has led to the
widespread use of vector representations for unstructured data such as text, video, audio, and images.
These breakthroughs in representation learning have driven rapid progress in Approximate
Nearest Neighbor (ANN) search technologies, whose core objective is to efficiently retrieve
the top-𝑘 vectors that are approximately most similar to a given query vector (Figure 1a). ANN
search is integral to vector databases [2, 4, 7, 44, 58, 61, 65], serving as the fundamental system
for recommendation systems [43, 46, 51], pattern matching [14, 34?], and retrieval-augmented
generation (RAG) [20, 28, 29].
Various indexing methods have been developed for efficient ANN search, including graph-

based [31, 59], quantization-based [24, 32], hashing-based [16, 27], and tree-based [10, 55] ap-
proaches. According to recent academic and industrial studies [11, 54, 60, 63], graph-based and
quantization-based methods are most prominent. Graph-based algorithms construct neighborhood
graphs that offer high query efficiency and recall by traversing from an entry point to successively
closer neighbors [12, 35, 37, 49, 56]. On the other hand, quantization-based methods compress
vectors—via dimensionality reduction [30] or lower-bit encoding [45, 48]—resulting in low memory
usage, good GPU parallelism compatibility, and often integrate inverted file structures for enhanced
efficiency.

2 Filtering ANN Search
Building upon the foundation of ANN search, there is a growing need for hybrid ANN search
scenarios that integrate vector similarity search with relational database-style functionalities. This
hybrid search treats vectors as a native data type while enabling SQL-like queries over structured
attributes. For example, one might search for visually similar products while restricting results by
price (see Figure 1b) or retrieve similar photos taken by the same individual. We refer to this hybrid
search task as Filtering Approximate Nearest Neighbor (Filtering ANN) search.

Various Filtering ANN search methods have been developed through multiple integration strate-
gies between attribute filtering and vector similarity search [6, 8, 42]. Moreover, somemethods focus

Proc. ACM Manag. Data, Vol. 3, No. 6 (SIGMOD), Article 298. Publication date: December 2025.

Attribute Filtering in Approximate Nearest Neighbor Search: An In-depth Experimental Study 298:3

Table 1. Attribute types and corresponding filtering types.

Attribute Type Filtering Type Query Predicates
Numerical Range 𝑙 ≤ 𝑂𝑖 .𝑎 ≤ 𝑢
Categorical Label 𝑓 ∈ 𝑂𝑖 .𝐴

Arbitrary General Any filtering expression

Query

Attribute-matched vectors

Attribute-mismatched vectors

1. Filtering on dataset 2. ANN search

(a) Pre-filtering
1. ANN search 2. Filtering on candidates

(b) Post-filtering

Filtering while ANN search

(c) Joint-filtering

Fig. 2. ANN filtering strategies.

on specific attribute types for better performance [26, 59, 67], but this complicates the classification
of filtering tasks. To effectively handle different attribute types, we provide a systematic taxonomy
from two perspectives: attribute types and filtering strategies.
Filtering Attributes. Current systems or methods predominantly target two attribute types:

Numerical and Categorical, corresponding to Range Filtering ANN search and Label Filtering ANN
search, respectively.
• Numerical Attributes and Range Filtering. Numerical attributes, such as price or date, represent
continuous values. Range filtering retrieves nearest neighbors whose attribute values fall within
a specified interval (e.g., products within a price range or photos taken between two dates). For
a range Filtering ANN query, let 𝑂𝑖 denote a vector–attribute pair (𝑣, 𝑎) with index 𝑖 , where
𝑂𝑖 .𝑎 represents its numerical attribute. Let 𝑙 and 𝑢 denote the query’s lower and upper bounds,
respectively, as shown in Table 1. Several approaches, including SeRF [67], iRangeGraph [62],
and UNIFY [38], have been designed to address this scenario.

• Categorical Attributes and Label Filtering. Categorical attributes represent discrete labels. For
example, YouTube videos often carry tags like “music”, “comedy”, or “news” that describe their
content. Label filtering finds nearest neighbors (i.e., similar videos) that share one or more of
these tags. In Table 1, 𝑓 denotes the query’s attribute, while 𝑂𝑖 .𝐴 represents the categorical
attribute set of 𝑂𝑖 . Filtered DiskANN [26] is a classic example of this approach.

• Arbitrary Filtering. Beyond categorical and numerical filters, some systems support more flexible
filtering restrictions via a user-defined filtering function. These methods either integrate closely
with traditional databases, e.g., VBASE [65] and Milvus [58] or manage arbitrary subset searches
while abstracting away filtering details, e.g., Faiss [19] and ACORN [50].
Filtering Strategies. Figure 2 illustrates common approaches to integrating attribute filtering

with ANN search. These approaches differ in the order in which filtering is applied relative to the

Proc. ACM Manag. Data, Vol. 3, No. 6 (SIGMOD), Article 298. Publication date: December 2025.

298:4 Mocheng Li et al.

ANN search process, and we classify them into three categories: pre-filtering, post-filtering, and
joint-filtering. In this context, selectivity refers to the fraction of data items that pass a filtering
condition: high selectivity means many pass, while low selectivity means few do.
• Pre-filtering applies filtering prior to the similarity search to reduce the search space—effective
for data-independent indexes such as the Inverted File Index (IVF). However, in graph-based
methods, pruning nodes based on attributes may disrupt traversal paths and reduce recall.

• Post-filtering performs the ANN search first and then removes candidates that do not meet the
attribute constraints. This approach is efficient when filter selectivity is high but becomes costly
in low-selectivity scenarios, as many invalid candidates need to be discarded after the search.

• Joint-filtering integrates attribute filtering directly into the ANN search. For example, in a graph-
based search, the traversal is restricted to edges connecting to nodes that satisfy the attribute
constraints, allowing the algorithm to prune paths early. This dynamic approach is especially
effective when filter selectivity is moderate.

2.1 Our Contributions
Motivated by the rising demand for efficient Filtering ANN algorithms and the diversity of existing
filtering strategies, we conduct a comprehensive experimental survey to clarify their strengths,
limitations, practical application scenarios, and open problems. Our contributions are summarized
as follows:

Taxonomy Study (Section 3).While numerous methods have reported impressive performance
gains, it remains challenging to identify their core ideas, advantages, and limitations. We systemati-
cally review 12 systems and algorithms, providing a unified classification based on their indexing
methods, filtering strategies, and key techniques (Figure 4 and Table 3). Our two-axis taxonomy
categorizes methods by filtering type (label, range, and arbitrary filtering) and by filtering strategy
(pre-filtering, post-filtering, and joint-filtering), offering clear insights into their design trade-offs.

Comprehensive Experimental Evaluation (Section 5.2, 5.3 and 5.5). Given that most
algorithms in this area have been published recently and involve numerous hyperparameters, com-
parisons remain challenging. To address this, we develop a unified interface that enables consistent
evaluation, and we conduct extensive experiments across 12 methods from 10 representative papers,
covering both label and range filtering tasks with query selectivity ranging from 0.1% to 100%.
Our results indicate that segmented graph indexing excels in range filtering scenarios, while label
filtering techniques are often unstable due to suboptimal graph quality.

ComponentAnalysis (Section 4, 5.6, 5.7, and 5.8).Weanalyze the core components of Filtering
ANN algorithms to determine which factors contribute most significantly to overall performance.
Our analysis reveals that constructing an index for all possible subsets is both intuitive and effective.
Additionally, we identify underexplored components in graph-based methods, such as pruning
strategies and entry point selection, that are crucial for performance. We have several interesting
findings: (1) Relative Neighbor Graph (RNG) pruning breaks down at low selectivity; (2) hierarchical
multi-layer indexes boost performance only at high selectivity and are otherwise optional; and (3)
bypassing hierarchy in these indexes by increasing bottom-layer entry points consistently improves
performance across all selectivity levels.

Usage and Development Guidelines (Section 6). Recognizing that Filtering ANN algorithms
are designed for distinct scenarios, we propose practical guidelines (Figure 15) to help practitioners
select the most suitable method based on specific filtering needs and data characteristics. We also
discuss emerging trends and potential future research directions to drive further innovations in
this field.

Proc. ACM Manag. Data, Vol. 3, No. 6 (SIGMOD), Article 298. Publication date: December 2025.

Attribute Filtering in Approximate Nearest Neighbor Search: An In-depth Experimental Study 298:5

Table 2. Notations in our paper.

Notations Descriptions
D = {𝑂} Vector dataset with attributes.

𝑂
= (𝑣, 𝑎) Vector and numerical attribute.
= (𝑣, 𝐴) Vector and categorical attribute set.

𝑄 = (𝑞, 𝑟) Label query vector and its restriction.

𝑟
= (𝑙, 𝑢) Lower/upper bound for range query.
= 𝑓 Label for label query.
𝑛 Size of D.
D𝑟 Subset of D filtered by the restriction 𝑟 .
𝑑 Dimension per vector in 𝑉 .
𝑀 Maximum degree for graph ANN index.

𝜙 (𝑣𝑖 , 𝑣 𝑗) Similarity between vector 𝑣𝑖 and 𝑣 𝑗 .

2.2 Preliminaries
Most Filtering ANN algorithms build upon Inverted File (IVF) or graph-based methods, often
enhanced with quantization strategies. To set the stage for filtering methods, we briefly review
these foundational ANN approaches, with key notations summarized in Table 2.

2.3 VectorQuantization
Efficient similarity search on high-dimensional data often requires reducing the computational
burden. One common approach is to reduce the bit size of each dimension through quantization.
For example, Product Quantization (PQ) [32, 48] compresses vectors by clustering one or more
dimensions, typically represented as 32-bit floating-point values, into 256 clusters. Each cluster is
encoded with an 8-bit code, approximating the original values with substantially lower memory
cost.
More advanced quantization techniques, such as Optimized Product Quantization (OPQ) [25],

Scalar Quantization (SQ) [15], and RabitQ [24], build on these principles to improve encoding
accuracy and computational efficiency, demonstrating strong performance in practical applications.

2.4 Inverted File
Another key building block is the Inverted File (IVF) method, which divides vectors into several
partitions using k-means clustering [39]. During a search, only the partitions closest to the query
vector are processed.

IVF is commonly combined with quantization techniques (e.g., PQ), forming systems such as
IVFPQ [19, 32], to further decrease both computation and memory overhead.

2.5 Graph-Based ANN Search
Graph-based ANN search builds an index by connecting vectors based on distance. Key differences
among these methods stem from their pruning strategies and entry point selection. While many
approaches exist [60], only a few are suitable for Filtering ANN. Below, we summarize the most
widely used graph indexes in this context.

KGraph [18] initially connects vectors randomly. For each vector, it iteratively refines the
neighbors to the nearest ones by examining the neighbors of its neighbors, following the rule
that neighbors are more likely to be neighbors of each other [22]. This design allows KGraph to

Proc. ACM Manag. Data, Vol. 3, No. 6 (SIGMOD), Article 298. Publication date: December 2025.

298:6 Mocheng Li et al.

v1

v2

v3

v1

v2

v3

v1

v2

v3

v1

v2

v3

(a) Edge not to be pruned.

v1

v2

v3

v1

v2

v3

v1

v2

v3

v1

v2

v3

(b) Edge to be pruned.

Fig. 3. RNG pruning example.

be constructed efficiently, but it sacrifices connectivity, often resulting in multiple disconnected
components [60].

Relative Neighbor Graph (RNG) [56] does not initialize a random graph but instead searches
for the nearest neighbors of each vector to be inserted and connects them iteratively. The connection
step employs a pruning-based strategy to build a high-quality graph, taking into account the spatial
distribution of neighbors. For instance, in Figure 3, suppose point 𝑣1 has candidate neighbors 𝑣2
and 𝑣3, and edge 𝑒 (𝑣1, 𝑣2) already exists. RNG prunes edge 𝑒 (𝑣1, 𝑣3) if 𝑣3 is closer to 𝑣2 than to
𝑣1, implying that a direct connection is redundant. This strategy maintains a well-connected and
scalable structure while limiting the number of neighbors per node. Modern graph-based ANN
indexes, such as Vamana Graph [31], NSG [23], NSW [40], and HNSW [41], are built upon RNG or
its variants.
Vamana Graph (VG) [31], introduced in DiskANN, starts from a randomly connected graph,

performs a one-pass ANN search for each vector, and then prunes each vector’s neighbor list to
at most 𝑀 using the pruning strategy of RNG. This design also retains edges to remote vectors,
thereby ensuring connectivity and accelerating search convergence.
Hierarchical Navigable Small World (HNSW) [41] constructs a multi-layer graph index

where each higher layer is a subsampled version of the one below. In each layer, HNSW leverages the
Navigable Small World (NSW) principle by preserving both nearest neighbors for local connectivity
and long-range links for global navigation. It also employs an RNG-inspired pruning strategy to
eliminate redundant edges, thus ensuring the graph remains sparse yet well-connected. With a
single entry point at the top layer, this hybrid design guarantees efficient index construction and
rapid query processing.

2.6 Filtering ANN Search
Formally, the Filtering Nearest Neighbor Search (Filtering NN) is defined as:

𝑁𝑁 (𝑞 |𝑟) = arg min
𝑜∈𝐷, 𝑟 (𝑜.𝑎)

| |𝑞 − 𝑜.𝑣 | |,

where 𝑁𝑁 (𝑞 |𝑟) denotes the exact nearest neighbor whose vector 𝑜.𝑣 is closest to the query vector
𝑞 under a given distance metric (e.g., L2, cosine, or inner product), and whose attribute 𝑜.𝑎 satisfies
predicate 𝑟 .

In practice, retrieving exact results is often prohibitive, so approximate solutions (Filtering ANN)
are used as the algorithmic search target to improve efficiency.

3 Overview of Filtering ANN Algorithms
Building on the foundational techniques discussed earlier, recent research has advanced ANN search
in filtering scenarios by developing diverse algorithms that combine vector similarity with attribute

Proc. ACM Manag. Data, Vol. 3, No. 6 (SIGMOD), Article 298. Publication date: December 2025.

Attribute Filtering in Approximate Nearest Neighbor Search: An In-depth Experimental Study 298:7

Subset
Identification

Faiss

ACORN

Segmented
Edges

Segmented
Subgraphs

BST
2-hop scan

Stitched
Edges

Cross-subgraph
edges

Joint
DistanceLabeled

Edges

NHQ

FDiskANN-VG

FDiskANN-SVG

SeRF

DSG

UNIFY

iRangeGraph

Arbitrary Filtering
Label Filtering

Range FilteringAlgorithm

Key Technique

Filtering ANN

Filtering ANN

Skip Table

Milvus

Partition

β-WST

Fig. 4. A roadmap of Filtering ANN algorithms.

Table 3. Filtering ANN algorithms.

Algorithm Filtering ANN Index Filtering Attribute IndexType Strategy
SeRF [67] Range HNSW Joint-filtering Segmented edges
DSG [52] Range HNSW Joint-filtering Segmented edges
𝛽-WST [21] Range VG Pre-filtering Segmented subgraphs (Binary search tree)
UNIFY [38] Range HNSW Pre/Post/Joint-filtering Segmented subgraphs (Cross-subgraph edges) + Skip list

iRangeGraph [62] Range RNG Pre-filtering Segmented subgraphs (Binary search tree)
FDiskANN-VG [26] Label VG Joint-filtering Labeled edges
FDiskANN-SVG [26] Label VG Joint-filtering Labeled edges + Stitched graph

NHQ [59] Label NSW/KGraph None Joint distance
Milvus [58] Arbitrary HNSW/IVF Pre-filtering Partition

Faiss-HNSW [19, 41] Arbitrary HNSW Post-filtering Subset identification
Faiss-IVFPQ [19, 32] Arbitrary IVF Pre-filtering Subset identification

ACORN [50] Arbitrary HNSW Joint-filtering Subset identification + Two-hop scan

filtering. Table 3 presents a selection of these methods, which integrate various structural designs
and core ideas to achieve distinct performance. In the following subsections, we detail approaches
for range, label, and arbitrary filtering. Figure 4 illustrates our taxonomy of the algorithms and
their relationship to key techniques.
Index partitioning is employed across all filtering methods, enabling the search range to be

pre-defined during construction, especially for range filtering. Label filtering tags edges or encodes
labels in distances, while arbitrary filtering identifies subsets before search.

3.1 Range Filtering ANN Search
Range Filtering ANN search exploits the natural ordering of continuous numerical attributes,
inspiring a diverse set of algorithmic approaches.
SeRF [67] constructs range-aware edges by first sorting the dataset by attribute values and

then incrementally inserting vectors into the graph in ascending order. For each vector 𝑣𝑖 , SeRF
performs neighbor searches over all subranges [𝑗, 𝑖] (with 𝑗 ≤ 𝑖), by creating segmented edges. For
example, it first identifies the top𝑀 neighbors for the range [0, 𝑖], then for [1, 𝑖], [2, 𝑖], and so on.
This segmentation implicitly encodes range constraints via insertion order. During search, SeRF

Proc. ACM Manag. Data, Vol. 3, No. 6 (SIGMOD), Article 298. Publication date: December 2025.

298:8 Mocheng Li et al.

abandons the traditional HNSW structure and instead selects three entry points within the queried
range, which enhances efficiency by guiding the search only through valid edges.
DSG [52] builds on SeRF by optimizing construction efficiency. Its key innovation is dynamic

vector insertion, which eliminates the need for pre-sorting, thereby enabling real-time index
updates.
𝛽-WST [21] tackles range filtering by constructing a binary search tree (BST) based on attribute

ranges, with each BST node hosting a dedicated subgraph that contains only the vectors within
that node’s attribute range. This hierarchical design yields log(𝑛) layers, confining the search to the
subgraphs relevant to the query range. In its basic form, a query may intersect multiple subgraphs,
potentially reducing efficiency. To address this, an enhanced variant, OptPostFiltering, introduces
controlled subgraph overlap combined with post-filtering to streamline the search process.

iRangeGraph [62] also leverages a BST to build log(𝑛) layers of subgraphs but differs in query
execution. Instead of independently searching subgraphs and merging results, iRangeGraph collects
entry points from all subgraphs matching the query range and uses them to traverse the subgraphs
as if they are unified, thus avoiding the overhead of post-filtering or result merging.
UNIFY [38] partitions the dataset into attribute-based segments and builds subgraphs on a

unified HNSW index. Subgraphs are linked via Cross-subgraph edges, with each edge annotated by
a mask list for segment membership. The search strategy adapts dynamically based on selectivity
and the hyperparameters Sel_low and Sel_high:
• Small-range queries (selectivity < Sel_low): Uses a skip list to pre-filter and scan only the matched
vectors.

• Medium-range queries (selectivity Sel_low∼Sel_high): Applies joint-filtering within the perti-
nent segmented subgraph.

• Large-range queries (selectivity > Sel_high): Switches to post-filtering over the full HNSW
index.
Although coarse segmentation can be challenging for low-selectivity queries, UNIFY’s adaptive

strategy selection maintains efficient performance across diverse query types.

3.2 Label Filtering ANN Search
Label filtering retrieves similar vectors that satisfy categorical constraints in datasets with a limited
number of distinct labels.
Filtered-DiskANN [26] extends the Vamana Graph (VG) [31] by introducing labeled edges to

navigate query searching across valid nodes.
Filtered-DiskANN introduces the Stitched graph to enhance connectivity, which builds subgraphs

for individual categorical values and then merges them into a unified graph. Although this approach
slows index construction, it significantly improves filtering performance.

NHQ [59] supports multi-attribute queries where each vector is labeled with exactly one value
per attribute (e.g., color, trademark, and origin), and queries must specify a value for every attribute.
To combine vector similarity with label matching, NHQ employs a joint distance metric defined as:

𝜙 ′ (𝑂𝑖 ,𝑂 𝑗) =𝑤1 · 𝜙 (𝑂𝑖 .𝑣,𝑂 𝑗 .𝑣) +𝑤2 ·
|𝑂.𝐴 |∑︁
𝑡=1

I{𝑂𝑖 .𝐴𝑡 =𝑂 𝑗 .𝐴𝑡 },

where 𝜙 (𝑂𝑖 .𝑣,𝑂 𝑗 .𝑣) is the vector distance between 𝑂𝑖 and 𝑂 𝑗 , I{𝑂𝑖 .𝐴𝑡 = 𝑂 𝑗 .𝐴𝑡 } is an indicator
function that returns 1 if the 𝑡-th attribute of 𝑂𝑖 matches that of 𝑂 𝑗 and 0 otherwise, and𝑤1 and
𝑤2 balance the contributions from the vector and attribute similarities. Although NHQ efficiently
guides search using this heuristic, its results may not always perfectly match the filter criteria.

Proc. ACM Manag. Data, Vol. 3, No. 6 (SIGMOD), Article 298. Publication date: December 2025.

Attribute Filtering in Approximate Nearest Neighbor Search: An In-depth Experimental Study 298:9

v6

v3

v1

Step : Range: (1, 6), Nbr: (v1, v3)
Step : Range: (2, 6), Nbr: (v3, v4)
Step : Range: (4, 6), Nbr: (v4, v5)v4

v5 v2

  







Points v1 v2 v3 v4 v5 v6

1 2Attributes 3 4 5 6

(a) Search range selection steps
1 2Attribute

Points

3 4 5 6

v1 v2 v3 v4 v5 v6

v6

v3

v1

Step : Range: (1, 6), Nbr: (v1, v3)
Step : Range: (2, 6), Nbr: (v3, v4)
Step : Range: (4, 6), Nbr: (v4, v5)v4

v5 v2

  







1 2Attribute

Points

3 4 5 6

v1 v2 v3 v4 v5 v6

  

(b) Edge selection steps

Fig. 5. Segmented edge selection example. M = 2; the order of distances to 𝑣6 is: 𝑣1, 𝑣3, 𝑣4, 𝑣5, 𝑣2; ‘Nbr’ denotes
the selected neighbors for each range.

3.3 Arbitrary Filtering ANN Search
Arbitrary filtering encompasses scenarios where filtering conditions are flexible, allowing users to
define custom subsets of the dataset or custom filtering functions.
Faiss [19] is a library that supports various ANN methods (e.g., HNSW, LSH, IVF) as well as

quantization techniques (e.g., PQ, SQ). It enables arbitrary filtering via Subset identification, which
labels matched items before Filtering ANN search. The is_member(id) function checks whether
a vector belongs to the subset that meets the filtering constraint during search. In Faiss’s HNSW
implementation, is_member(id) is invoked during the final layer search to filter results (post-
filtering), whereas in IVFPQ it is applied after selecting the nprobe clusters and before computing
distances (pre-filtering), thus avoiding unnecessary computations.
Milvus [58], built on Faiss, is a vector database that supports arbitrary filtering conditions.

Milvus is popular for being a representative of several vector database systems for its high efficiency,
versatility [47], and widespread adoption in LLM applications [20]. It improves filtering performance
by first partitioning the dataset into multiple subsets (64 by default) based on a specified attribute,
which simplifies search tasks confined to specific segments.

ACORN [50] employs a predicate-agnostic strategy by ignoring filtering constraints during
index construction. Its indexing method is similar to HNSW but incorporates two key modifications:
it prunes neighbors using a two-hop rule (see Section 4.2), and, during the search, it expands to two-
hop neighbors when immediate neighbors are insufficient. While effective for arbitrary filtering,
this general-purpose connectivity may lead to slower convergence for categorical or numerical
queries compared to specialized methods.

4 Detailed Analysis of Key Components
In this section, we examine the core techniques and design components of Filtering ANN algorithms,
emphasizing their distinctive features and implementation nuances.

4.1 Attribute Index
We focus on analyzing range Filtering ANN indexes, as they are significantly more complex and
worthy of detailed examination. Range filtering relies on partitioning the dataset according to the
natural ordering of numerical attributes. As used in Milvus, a simple strategy is to divide the dataset
into segments and build a separate index for each subset. However, many range filtering algorithms
employ more sophisticated segmentation strategies. Based on the techniques summarized in Table 3
and Figure 4, we classify them into two main approaches: segmented edges and segmented
subgraphs.
Segmented edges. SeRF and DSG build edges annotated with range indicators that support

queries over different intervals, ensuring that every query can effectively locate its target vectors.
The core idea is to create edges covering all possible query ranges.

Figure 5a illustrates how the new node 𝑣6 is inserted and connected to existing nodes, while
Figure 5b presents its edge sets along with their corresponding filtering ranges.

Proc. ACM Manag. Data, Vol. 3, No. 6 (SIGMOD), Article 298. Publication date: December 2025.

298:10 Mocheng Li et al.

[a, a1] (a1, a2] (a2, a3] (a3, b]

[a, a1]

(a1, a2] (a2, a3]

(a3, b]

[a, a
3]

(a1,b]

[a,
 a 2]

(a1, a3]

[a
, b

]

(a 2,
b](a

1 , b]

(a) Binary search tree
[a, a1] (a1, a2] (a2, a3] (a3, b]

[a, a1]

(a1, a2] (a2, a3]

(a3, b]

[a, a
3]

(a1,b]

[a,
 a 2]

(a1, a3]

[a
, b

]

(a 2,
b](a

1 , b]

(b) Cross-subgraph edges

Fig. 6. Different implementations of segmented subgraph approaches.

The algorithm performs a progressive search, from the largest to the smallest query range, as
follows:

1○. For range (1, 6), select the nearest neighbors 𝑣1 and 𝑣3.
2○. For range (2, 6), choose {𝑣3, 𝑣4}, reusing distances computed in 1○.
3○. Skip range (3, 6) as it shares the same neighbors as (2, 6); for range (4, 6), select 𝑣4 and 𝑣5.
Technically, DSG constructs one extra range for each edge, ensuring that they can guide range

queries that do not match the current node and help find closer paths. Additionally, incremental
insertion is supported, as the insertion order is no longer a strict requirement.

Segmented subgraphs. Another strategy for range Filtering ANN indexing is to build dedicated
subgraphs for different query intervals. For instance, 𝛽-WST and iRangeGraph organize data into a
BST, with each tree node hosting a subgraph that covers a specific range, as illustrated in Figure 6a.
Queries then combine the relevant subgraphs from the corresponding BST layers. UNIFY adopts
a similar approach but creates a fixed set of disjoint subgraphs—one per range—and introduces
Cross-subgraph edges to maintain global connectivity, as shown in Figure 6b.
A BST can produce up to log(𝑛) layers, resulting in 2𝑛 − 1 subgraphs and supporting a large

spectrum of range combinations. By contrast, UNIFY’s subgraph count remains fixed, generating
fewer possible combinations. Consequently, UNIFY relies on post-filtering for specialized or narrow
ranges, reducing its efficiency under low-selectivity conditions.

4.2 Pruning Techniques
Many Filtering ANN algorithms (e.g., Milvus, SeRF, DSG, 𝛽-WST, iRangeGraph, UNIFY) employ
RNG pruning to boost search efficiency. For each vector, RNG pruning removes edges to vectors
that are too close to its current neighbors, retaining only distinctive, diverse connections. However,
since RNG pruning considers only distance and ignores attribute diversity, a crucial factor in
filtering scenarios, several algorithms have introduced specialized pruning techniques.

Two-hop pruning. ACORN restricts pruning to two-hop neighbors (Figure 7b) without caring
about relative distances like RNG but aligning with its two-hop search strategy. By excluding
immediate neighbors from pruning, ACORN retains more potentially useful connections, improving
both search efficiency and accuracy.

Label-covered pruning. Filtered-DiskANN enhances RNG pruning by integrating label infor-
mation. An edge 𝑒 (𝑣1, 𝑣3) is pruned only if two conditions hold: (1) the RNG condition is met—that
is, there exists a vector 𝑣2 such that 𝜙 (𝑣1, 𝑣2) < 𝜙 (𝑣1, 𝑣3) and 𝜙 (𝑣3, 𝑣2) < 𝜙 (𝑣1, 𝑣3); and (2) 𝑣2’s
attribute set covers those of both 𝑣1 and 𝑣3. For instance, Figure 7d shows that 𝑒 (𝑣1, 𝑣3) is pruned

Proc. ACM Manag. Data, Vol. 3, No. 6 (SIGMOD), Article 298. Publication date: December 2025.

Attribute Filtering in Approximate Nearest Neighbor Search: An In-depth Experimental Study 298:11

v1

v2

v3

ACORN prune

v1

v2

v3

v1

v2

v3

v1

v2

v3

(a)

v1

v2

v3

ACORN prune

v1

v2

v3

v1

v2

v3

v1

v2

v3

(b)

v1:{1,2}

v2:{1,2,3}

v3:{1,3,4}

v2:{1,2,3,4}
v1:{1,2}

v3:{1,3,4}

v1:{1,2}
v2:{1,2,3}

v3:{1,3,4}

v2:{1,2,3,4}
v1:{1,2}

v3:{1,3,4}

(c)

v1:{1,2}

v2:{1,2,3}

v3:{1,3,4}

v2:{1,2,3,4}
v1:{1,2}

v3:{1,3,4}

v1:{1,2}
v2:{1,2,3}

v3:{1,3,4}

v2:{1,2,3,4}
v1:{1,2}

v3:{1,3,4}

(d)

Fig. 7. Examples of two-hop and label pruning: (a) Edge not to be pruned in two-hop pruning, (b) Edge to be
pruned in two-hop pruning, (c) Edge not to be pruned in label-covered pruning, and (d) Edge to be pruned in
label-covered pruning.

when both conditions are satisfied, whereas in Figure 7c only the RNG condition holds, so the edge
is retained. This approach ensures that edges are pruned only when both spatial proximity and
label consistency warrant it, thereby preserving crucial connectivity for categorical filtering tasks.

4.3 Entry Point Strategies
Graph-based Filtering ANN search must eliminate mismatched neighbors at various stages, and a
critical challenge is selecting reliable entry points for graph traversal. Although Table 3 provides a
general classification, important implementation nuances warrant further discussion.

Unrestricted entry points. Traditional approaches—such as Faiss-HNSW with is_member(id)
restrictions—preserve the original entry points for queries. Similarly, post-filtering methods in
ACORN, NHQ, and UNIFY initiate searches from default entry points of the graph index, gradually
converging on matching results.

Specialized entry points. SeRF and DSG bypass the hierarchical navigation of HNSWby directly
selecting multiple entry points from the bottom layer that satisfy the query range constraints.
Instead of using a hierarchical scheme, they select entry points at evenly spaced intervals within
the valid range, ensuring a well-distributed set of starting points without extra overhead.

Other methods handle entry point selection differently. For example, iRangeGraph dynamically
combines entry points from multiple matched subgraphs during query processing, while UNIFY’s
joint-filtering uses a single top-level entry point from selected subgraphs and connects them via
cross-subset edges. In its pre-filtering mode, UNIFY begins from a fixed entry point and delays
distance computations until the skip table reaches the query’s left bound.

5 Experiments
In this section, we present our experimental setup and results, offering a comprehensive evaluation
of various Filtering ANN algorithms along with an in-depth analysis of their key components.

5.1 Setup
Platform. We conducted our experiments on Ubuntu 24.04 LTS, equipped with Intel® Xeon®
Platinum 8358 CPUs @ 2.60GHz, x86-64 architecture, and 2TB of memory, with 128 physical cores.
We use 128 threads for index construction. As query tasks are read-only, all methods exhibit similar
performance trends with increased parallelism, so we use one thread during the query phase.
Metrics. All datasets use L2 (Euclidean) distance for similarity measurement. We evaluate

algorithms using Queries Per Second (QPS), where a higher QPS indicates faster processing,
and Comparisons per query for graph-based algorithms, where a fewer comparisons signifies

Proc. ACM Manag. Data, Vol. 3, No. 6 (SIGMOD), Article 298. Publication date: December 2025.

298:12 Mocheng Li et al.

Table 4. Dataset statistics.

Dataset Dim Labels Size Query Size
SIFT 1 128 Synthetic 10M 10K

SpaceV 2 100 Synthetic 10M 10K
Redcaps 3 512 Real/Synthetic 1M 10K

Youtube-RGB4 1024 Real/Synthetic 1M 10K

Fig. 8. Query hardness of all datasets.

more efficient navigation. Since all methods apply similar SIMD-based techniques for distance
computation, QPS and comparisons exhibit consistent trends.
Dataset. Our experiments are conducted on four datasets: SIFT [11, 33], SpaceV [13], Redcaps

[17], and Youtube-RGB (see Table 4). These datasets include up to 10 million vectors with varying
dimensions and label types (synthetic or real). Unless specified otherwise, real labels are used for
Redcaps and Youtube-RGB.
To ensure a fair comparison across all algorithms, synthetic labels are generated using the

following strategy: each vector is assigned an integer value between 0 and 100,000 for numerical
attributes, and one of 500 integer values for categorical attributes, maintaining consistent label
cardinality for both Filtered-DiskANN and NHQ. For each query task, we retrieve 10,000 items
sequentially to evaluate the performance of all algorithms. For range queries, we control selectivity
by adjusting the upper and lower bounds of the queried attribute. For label queries, we assign
categorical attributes using fixed probabilities to control selectivity (e.g., assigning Label 1 to 50%
of vectors so that querying with Label 1 yields 50% selectivity).
Figure 8 analyzes dataset hardness under varying selectivity levels. We define Dis_Ratio as the

ratio between the average distance of the top-10 ground truth and the average pairwise distance in
the dataset; a higher value implies a broader search range. We also estimate the Jensen-Shannon
divergence (JS_Div) between the full dataset and the queried subset. In general, lower selectivity
leads to harder queries, and both synthetic and real datasets exhibit limited divergence in query
distribution.

Algorithms. In our experiments, we evaluate the latest Filtering ANN algorithms, grouped into
three categories:

• Range Filtering Methods:
1http://corpus-texmex.irisa.fr/
2https://github.com/microsoft/SPTAG/tree/main/datasets/SPACEV1B
3https://redcaps.xyz/
4https://research.google.com/youtube8m/download.html

Proc. ACM Manag. Data, Vol. 3, No. 6 (SIGMOD), Article 298. Publication date: December 2025.

Attribute Filtering in Approximate Nearest Neighbor Search: An In-depth Experimental Study 298:13

– SeRF [67] and DSG [52]
– 𝛽-WST [21], evaluated in two modes: the Vamana graph filtering method (WST-Vamana)
and a super-optimized post-filtering variant (WST-opt)

– iRangeGraph [62] and UNIFY [38], evaluated in two configurations: a hybrid pre-/post-
/joint-filtering strategy (UNIFY-CBO) and a joint-filtering-only setup (UNIFY-joint)

• Label Filtering Methods:
– Filtered-DiskANN [26], evaluated in both its base (FDiskANN-VG) and stitched (FDiskANN-
SVG) forms

– NHQ [59], implemented with NSW (NHQ-NSW) and KGraph (NHQ-KGraph)
• Arbitrary Filtering Methods:
– Faiss [19] (Faiss-HNSW, Faiss-IVFPQ)
– Milvus [58] (Milvus-HNSW,Milvus-IVFPQ)
– ACORN [50]

To ensure fairness, we standardize key settings: parallelism is enabled for SeRF and DSG,
ACORN’s filtering storage is optimized, and Faiss’s is_member() is improved. All methods use
in-memory indexes, including DiskANN, which has a built-in in-memory search component. All
graph-based methods use𝑀 = 40 and ef_construction = 1000. These settings yield near-optimal
performance for up to 10M datasets [41, 52]. Each experiment is averaged over three runs. Full
configurations are in the appendix [9].

5.2 Range Filtering: Performance and Analysis
We evaluate algorithm performance over selectivity levels of 0.1%, 1%, 10%, and 50% to assess
efficiency under various query scenarios. Numerical attributes are generated based on the rules
in Section 5.1. We fine-tune search hyper-parameters (e.g., ef_search, nprobe, etc.) to achieve
optimal performance at 90% recall. Results are shown in Fig. 9. Missing entries indicate failure
to meet the target recall under equivalent indexing configurations. Our key observations are as
follows:

1. Partitioning ensures query availability at low selectivity. Milvus achieves reliable query
service at 0.1% selectivity, a challenging regime where Faiss-HNSW fails completely. This capability
stems from its partitioning mechanism: by distributing the dataset across smaller subsets based
on attributes, the selectivity within each partition becomes significantly higher than the global
selectivity.

2. IVF-based methods show reliable recall. Although Faiss-IVFPQ generally achieves lower
QPS than Faiss-HNSW, it consistently handles 0.1% selectivity across all datasets. In contrast,
Faiss-HNSW with post-filtering and ACORN often fail under these conditions. This discrepancy is
due to the monotonic search behavior of HNSW, which restricts exploration as the search converges
on the target, whereas the non-monotonic nature of IVF enables it to explore a broader search
range and reliably locate matching targets.
3. The benefits of attribute-aware indexing are less pronounced at high selectivity

levels. Our experiments reveal that when selectivity exceeds 50%, even traditional methods like
Faiss-HNSW achieve competitive performance. This is expected, as the benefit of attribute-aware
indexing is most pronounced under stringent filtering conditions; at high selectivity, the search
range is broad enough that the extra filtering constraints provide little advantage.
4. Range filtering methods achieve similar performance in most cases. UNIFY-hybrid,

WST-opt, iRangeGraph, SeRF and DSG consistently yield the highest QPS in most test scenarios
(1% and 10% selectivity), thanks to subgraph constructions that precompute edges across all query

Proc. ACM Manag. Data, Vol. 3, No. 6 (SIGMOD), Article 298. Publication date: December 2025.

298:14 Mocheng Li et al.

(a) SIFT

(b) Spacev

(c) Redcaps

(d) Youtube-RGB

Fig. 9. QPS for range Filtering ANN algorithms at 90% recall@10.

ranges, ensuring robust connectivity during search. This demonstrates that segmented edges and
subgraphs offer similar effectiveness for range filtering.

5. BST excels at low selectivity compared to cross-subgraph edges. iRangeGraph andWST-
Vamana employ fine-grained subgraphs constructed using BST, achieving outstanding performance
at 0.1% selectivity. In contrast, UNIFY-hybrid’s default partitioning into 8 subsets performs well at
higher selectivity levels but suffers from reduced QPS at 0.1%, even falling behind UNIFY-CBO’s
linear scan based on the skip table.

6. Segmented edges fail at low selectivity. Although SeRF and DSG deliver high QPS at high
selectivity, both methods fail at 0.1% selectivity. Because they rely on a graph-based structure, this
issue mirrors the monotonicity challenge found in Faiss-HNSW. Under extremely narrow filtering
ranges, the initial search during index construction fails due to the absence of valid neighbors,
leading subsequent queries to collapse. Notably, DSG underperforms compared to SeRF, primarily
because it dedicates significant time to edge filtering despite its more refined strategy. Section 5.8
discusses this issue in detail.

5.3 Label Filtering: Performance and Analysis
Following the attribute generation method in Section 5.1 and experimental settings in Section 5.2,
we conduct experiments for label filtering. Figure 10 presents the QPS achieved by each label

Proc. ACM Manag. Data, Vol. 3, No. 6 (SIGMOD), Article 298. Publication date: December 2025.

Attribute Filtering in Approximate Nearest Neighbor Search: An In-depth Experimental Study 298:15

(a) SIFT

(b) Spacev

(c) Redcaps-Synthetic

(d) Youtube-RGB-Synthetic

Fig. 10. QPS for label Filtering ANN algorithms at 90% recall@10.

filtering algorithm while maintaining 90% recall across various selectivity levels. Our analysis
reveals several key insights:

1. Robustness of the stitchedmethod. FDiskANN-SVG generally performs well across datasets
and selectivity levels due to its stitched subgraph design. However, it fails to achieve 90% recall on
SIFT, likely owing to limitations in the quality of the underlying Vamana Graph. In contrast, on
SpaceV, Redcaps, and Youtube-RGB, FDiskANN-SVG meets or exceeds the recall target, indicating
its effectiveness is dataset-dependent.

2. Limitations of joint distance at low selectivity. Both NHQ-KGraph and NHQ-NSW suffer
substantial performance drops when selectivity falls below 1%. This decline stems from difficulties
in maintaining graph connectivity under the joint distance metric; when nodes sharing the same
label are sparse, the metric fails to establish valid neighbor connections, limiting its effectiveness
for high-precision filtering.

3. Simpler pruning outperforms in label filtering search. Our comparison between NHQ-
KGraph and NHQ-NSW reveals that simpler pruning strategies can yield superior performance
in filtered search. By retaining all nearest neighbors, NHQ-KGraph preserves more connections,
leading to improved recall. These findings suggest that, in Filtering ANN contexts, straightforward
connectivity rules can outperform more complex geometric pruning techniques.

Proc. ACM Manag. Data, Vol. 3, No. 6 (SIGMOD), Article 298. Publication date: December 2025.

298:16 Mocheng Li et al.

(a) SIFT

(b) Spacev

(c) Redcaps-Synthetic

(d) Youtube-RGB-Synthetic

Fig. 11. QPS for arbitrary Filtering ANN algorithms at 90% recall@10.

5.4 Arbitrary Filtering Analysis
To evaluate arbitrary filtering performance, we perform two-predicate searches using both cate-
gorical and numerical attributes for hybrid filtering. To achieve 50% overall selectivity, we assign
the categorical label “1” to 60% of vectors and apply a range query with 83% selectivity. Under
uniform distributions, the combined selectivity is approximately 60%× 83% ≈ 50%. Other selectivity
levels are computed similarly. Since Milvus supports partitioning by only one attribute, we use the
numerical attribute for partitioning. The results are presented in Figure 11.

1. Faiss-HNSW and ACORN show competitive performance at high selectivity. At selec-
tivities greater than 10%, ACORN and Faiss-HNSW achieve higher QPS due to their single-index
design without partitioning. Notably, Faiss-HNSW performs best when selectivity exceeds 50%.
These results confirm that Faiss-HNSW remains a strong candidate for arbitrary filtering.

2. Scanning within a partitioned subset offers a simple yet effective strategy at low
selectivity.Milvus-HNSW demonstrates strong performance at low selectivity levels. Interestingly,
varying ef_search has no impact on its QPS or recall, suggesting thatMilvus-HNSW performs direct
scans within partitioned subsets rather than traversing the graph. In contrast, Faiss-HNSW and
ACORN struggle at 0.1% selectivity, likely due to difficulties in identifying and reaching sparse
candidates.
3. Multiple predicate filtering performs similarly to single predicate under uniform

distribution. For uniformly distributed attributes, Faiss and ACORN handle multiple filtering
predicates similarly, resulting in comparable performance between single and multiple predicates

Proc. ACM Manag. Data, Vol. 3, No. 6 (SIGMOD), Article 298. Publication date: December 2025.

Attribute Filtering in Approximate Nearest Neighbor Search: An In-depth Experimental Study 298:17

Table 5. Index size and index time.

Filtering Algorithm SIFT (4.80GB) spacev (3.76GB) Redcaps (1.91GB) Youtube-RGB (3.81GB)
Method Size Mem Time Size Mem Time Size Mem Time Size Mem Time

Arbi-

Faiss-HNSW 7.90 7.99 1733 6.86 6.93 2564 2.22 2.26 247 4.13 4.18 380
Faiss-IVFPQ 0.68 2.90 1354 0.54 2.28 1370 0.25 1.27 1466 0.50 2.51 2165
Milvus-HNSW - 49.15 661 - 49.15 939 - 49.15 235 - 49.15 311
Milvus-IVFPQ - 49.15 507 - 49.15 621 - 49.15 323 - 49.15 548

ACORN 10.45 109.33 3859 9.41 108.29 3321 2.48 12.39 810 4.38 14.31 757

Label-

FDiskANN-VG 6.34 7.24 505 5.30 6.34 465 2.07 2.19 35 3.97 4.12 31
FDiskANN-SVG 6.35 7.11 370 5.30 6.27 325 2.07 2.16 210 3.97 4.00 100
NHQ-KGraph 5.71 12.90 266 4.67 11.06 252 1.97 4.14 17 3.83 7.94 120
NHQ-NSW 6.30 6.36 1658 5.26 5.31 1699 2.06 2.11 171 3.97 4.04 367

Range-

SeRF 6.96 10.44 364 5.88 8.35 374 2.09 3.93 61 3.89 7.76 45
DSG 39.35 40.35 2905 36.88 37.87 3411 5.09 5.22 358 5.10 7.76 1045

WST-opt 40.22 97.69 8048 34.68 92.66 8775 3.69 11.70 2391 4.20 17.41 1914
WST-Vamana 23.62 59.09 4556 20.56 54.04 4839 2.91 9.07 1456 4.04 14.84 837
iRangeGraph 24.27 44.72 69801 20.73 43.82 8455 3.33 5.30 6731 4.66 7.23 12155

UNIFY 30.25 36.96 17721 29.21 34.88 24313 4.46 6.64 2308 6.36 10.48 3088

at the same overall selectivity. However,Milvus-HNSW exhibits different behavior (see point 2)
due to changes in its internal search strategy when multiple predicates are applied.

5.5 Index Analysis
Table 5 reports index size (Size), search memory usage (Mem), and construction time (Time). Blue
and red backgrounds indicate the best and worst performance under each filtering method. For
Milvus, index size is not directly measurable due to compact storage; memory usage is estimated
from total Docker consumption.
Compared to Faiss-HNSW, most algorithms exhibit higher index size, memory footprints and

construction times. Overall, index size correlates positively with construction time (Pearson
coefficient= 0.71).
Index size characteristics. Range filtering methods show significant higher index size than

Faiss-HNSW, for their theoretical index sizes are 𝑂 (𝑀𝑛 log(𝑛)), which is moderate. However, in
practice, SeRF’s memory usage is even lower, thanks both to its effective search performance with
smaller 𝑀 values and its tendency to skip many unnecessary ranges during index construction,
resulting in a significantly reduced practical memory footprint.
In particular, WST-opt is the most memory-intensive, as it duplicates vector storage across

overlapping BST subgraphs. These tradeoffs highlight the balance between filtering capability and
storage efficiency, especially as dataset sizes increase.
Memory characteristics. Filtering ANN methods typically require more memory than naive

approaches.In containerized deployments like Milvus standalone, memory usage is strictly limited
by Docker’s preconfigured allocation regardless of dataset size. Quantization-based methods achieve
better memory efficiency through compressed data representations. ACORN, Filtered-DiskANN
and NHQ-NSW maintain similar edge counts to HNSW, resulting in comparable index size.
Some methods exhibit disproportionately high memory usage relative to their index sizes due

to algorithm designs. For example, ACORN stores a boolean flag per vector for each query, and
NHQ-KGraph duplicates the dataset unnecessarily.
Index construction time. Construction time is closely correlated with memory usage. An

exception is iRangeGraph, which builds subgraphs sequentially (i.e., single-threaded), yielding high-
quality indexes at the expense of parallel efficiency. Its reliance on RNG-based graph construction

Proc. ACM Manag. Data, Vol. 3, No. 6 (SIGMOD), Article 298. Publication date: December 2025.

298:18 Mocheng Li et al.

(a) ACORN

(b) SeRF

Fig. 12. Comparative performance of pruning methods at 90% recall@10 (Fewer Comparisons is better).

also results in slower indexing compared to methods using Vamana or KGraph. By contrast, SeRF
maintains efficient construction times, primarily due to its operation with a small𝑀 parameter.

5.6 Pruning Strategy Evaluation
Several Filtering ANN algorithms, such as ACORN and Filtered-DiskANN, modify the standard
RNG pruning strategy to improve connectivity under low-selectivity conditions. Similarly, NHQ-
KGraph uses a KGraph-style pruning rather than NSW to achieve higher QPS, suggesting that
RNG-style pruning may be suboptimal for low-selectivity scenarios. To evaluate this hypothesis,
we modified both SeRF and ACORN to incorporate alternative pruning methods and compared
their performance using comparisons as a detailed performance indicator. During construction
step, ACORN_kg and SeRF_kg connect nearest neighbors directly, whereas ACORN_rng applies
RNG-style pruning method.

Figure 12a shows the performance of different pruning methods across selectivity levels from 1%
to 100% inACORN (all methods failed at 0.1% selectivity). The results indicate thatACORN’s original
two-hop pruning performs best for its architecture with low selectivity, while ACORN_kg achieves
similar performance. Meanwhile, RNG performs better with above 50% selectivity, indicating
different pruning strategies may suit different selectivity.
Figure 12b illustrates the impact of KGraph-style pruning on SeRF. While the original SeRF

benefits from efficient edge construction through both RNG-style pruning and segmented edge
filtering, SeRF_kg shows improved performance below 5% selectivity. However, it still fails to
perform effectively at 0.1%. Overall, RNG-style pruning preserves graph quality at moderate to
high selectivity but remains less effective in extremely selective cases.

5.7 Entry Point Selection Analysis
Entry point selection is a crucial component in graph-based ANN search. However, simple strategies
often rival complex ones in Filtering ANN search. For example, SeRF and DSG select entry points

Proc. ACM Manag. Data, Vol. 3, No. 6 (SIGMOD), Article 298. Publication date: December 2025.

Attribute Filtering in Approximate Nearest Neighbor Search: An In-depth Experimental Study 298:19

Table 6. Comparisons variation w.r.t. various entry point selection strategies on SIFT.

Algorithm ep Selectivity
1% 10% 50% 100%

UNIFY 1 default default default default
UNIFY-B 3 -0.14% 0.10% 1.09% 2.21%
UNIFY-B 30 -0.32% -0.83% -0.91% -1.42%
SeRF 3 default default default default
SeRF 30 -3.34% -2.52% -2.28% -1.34%
SeRF 300 -5.53% -4.19% -3.85% -2.84%
DSG 3 default default default default
DSG 30 -2.78% -2.55% -2.53% -2.18%
DSG 300 -4.38% -4.26% -4.32% -4.18%

UNIFY-B 3 default default default default
UNIFY-B 30 -0.18% -0.93% -1.98% -3.56%
UNIFY-B 300 -0.30% -1.63% -3.33% -4.23%

from the bottom layer and still match the performance of hierarchical methods like UNIFY-joint. In
this analysis, we investigate two factors: (1) the impact of hierarchical structures, and (2) the effect
of varying the number of entry points in single-layer graph indexes.
UNIFY represents the optimal solution with a hierarchical structure. To evaluate the impact of

hierarchy, we compare it with UNIFY-B, which retains only the bottom layer from UNIFY. Since
SeRF and DSG are inherently single-layer indexes, we vary their entry point size (ep) to study the
effect of the number of entry points. Table 6 presents the variation in Comparisons when adjusting
entry point selection methods relative to each algorithm’s default.

Effect of hierarchical structure. Comparing UNIFYwith UNIFY-B reveals that the hierarchical
structure has little impact on low-selectivity queries, but plays a more significant role as selectivity
increases. We reckon that designing a method to reuse top-layer entry points in segmented edge
methods, SeRF and DSG, might also lead to performance gains.
Effect of entry point size. Increasing the number of entry points for single layer indexes

consistently reduces comparisons across all selectivity levels. UNIFY-B, SeRF, and DSG all perform
better when using 30 or 300 entry points rather than just 3. Moreover, increasing the entry point
set size improves search performance without recall loss. Notably, the performance of bottom-layer
entry point selection with 30 or 300 points all surpass the default settings.
Notably, each method is compared with itself under different settings, so the number of com-

parisons directly reflects QPS. For example, in SeRF, using 300 entry points yields a 5.3% increase
in QPS compared to the original method (which uses 3 entry points) at 50% selectivity, with a
corresponding 3.85% decrease in Comparisons. Overall, incorporating more entry points properly
is a worthwhile consideration for improving performance.

5.8 Edge Filtering Overhead Analysis
For most graph-based Filtering ANN search methods, comparisons per query show consistent
performance, DSG show difference. Compared with SeRF, DSG performs fewer comparisons per
query but achieves lower QPS, as shown in Figure 13. A potential reason is the additional overhead
from filtering during neighbor selection. To validate this, we estimate the percentage of query time
spent on neighbor selection.

Proc. ACM Manag. Data, Vol. 3, No. 6 (SIGMOD), Article 298. Publication date: December 2025.

298:20 Mocheng Li et al.

Fig. 13. Recall/QPS and Recall/Comparisons for SeRF and DSG in SIFT at 10% selectivity.

Fig. 14. Edge filtering time (%) in SIFT at 10% selectivity.

Figure 14 demonstrates that DSG spends a significant amount of time finding valid edges, which
becomes a key bottleneck. In contrast, SeRF spends almost no time on this step. As ef_search (the
size of search candidate set) increases, the time required to filter valid edges also increases. This is
mainly because, as the candidate set expands, it needs more time to find matched neighbors.

6 Lessons Learned
In this section, we summarize key insights (I) from our study, provide actionable recommendations,
and outline promising open problems (O) for future study.

6.1 Insights
I1. Fine-grained segmented subgraphs are highly effective solutions to range Filtering
ANN search. The most effective approach for range filtered ANN relies on subset indexing, typi-
cally implemented as segmented subgraphs (e.g., iRangeGraph, 𝛽-WST, UNIFY). These specialized
structures efficiently address the challenges of filtered search by narrowing the search space.

I2. Segmented edge-basedmethods fail at low selectivity due to incomplete search during
index construction. Methods like SeRF and DSG perform well only when their construction
phase successfully connects relevant nodes. In low-selectivity settings, RNG-based techniques often
miss such connections due to their monotonic search nature, indicating the need for alternative
mechanisms that ensure connectivity.

I3. Partitioning is effective for low-selectivity queries. Milvus adopts partitioning to make
low-selectivity queries viable. Similarly, more advanced techniques like stitching and segmented
subgraphs further enhance performance in such settings.
I4. Label filtering algorithms remain underdeveloped. FDiskANN-SVG underperforms

compared to NHQ-KGraph at high selectivity, mainly due to the weak quality of the Vamana graph.
Conversely, NHQ-KGraph is unreliable at low selectivity. No method performs reliably across all
settings, underscoring the need for better label filtering techniques.

Proc. ACM Manag. Data, Vol. 3, No. 6 (SIGMOD), Article 298. Publication date: December 2025.

Attribute Filtering in Approximate Nearest Neighbor Search: An In-depth Experimental Study 298:21

Filtering ANN

Numerical Label Categorical Label Other Label(s)

Range Filtering Label Filtering Arbitrary Filtering

Construction
Time

Label
Cardinality Selectivity

Low Medium High

SeRF

=1 >1 <50% >50%

UNIFY iRangeGraph FDiskANN-SVG NHQ-kgraph ACORN Faiss-HNSWMilvus-HNSW

<1%

Fig. 15. Guidebook for Filtering ANN algorithm usage.

I5. Hybrid distance filtering supports only high-selectivity queries. NHQ often fails at
low selectivity because its connectivity is not guaranteed across all filtered subsets. Moreover,
approaches involving multi-cardinality labels and strict matching are rarely used in practice due to
their rigidity.
I6. Hierarchical structures offer limited benefits. Hierarchical indexing structures show

effectiveness only under high selectivity. For example, UNIFY leverages a hierarchical design to
sample entry points, but its advantage over the non-hierarchical variant becomes evident only
when query selectivity exceeds 50%.

I7. Larger entry point sets improve performance. Increasing the number of entry points
at the bottom layer consistently improves search performance across various algorithms and
selectivity levels, often surpassing hierarchical structures.

6.2 Tool Selection
Figure 15 provides a practical guide for selecting Filtering ANN algorithms based on attribute type,
index construction cost, cardinality, and selectivity.

For numerical attributes, UNIFY and iRangeGraph are strong options. iRangeGraph typically
achieves the best query performance but requires longer index construction time. If construction
efficiency or memory is a concern, SeRF offers a faster alternative, though it performs worse at
low selectivity. Even though WST-opt achieves comparable performance to iRangeGraph, it is not
recommended due to its significantly higher memory consumption. In contrast, while iRangeGraph
has slower index construction, mainly because of its low parallelization, which is relatively easy to
optimize.
For label filtering, FDiskANN-SVG is recommended when the query label cardinality is one.

When cardinality exceeds one, NHQ-KGraph offers better performance.
In arbitrary filtering scenarios involving complex or mixed conditions, ACORN is the most

flexible solution. However, for queries with high selectivity (>50%), traditional methods like Faiss-
HNSW are often more efficient. For very low selectivity (<1%), Milvus-HNSW is preferred because
of its stable and efficient scan strategy.

6.3 Open Problems
O1. Arbitrary Filtering ANN search remains an open challenge. ACORN is currently the only
method designed for arbitrary filtering, yet it struggles with robustness across varying selectivity
levels. The core difficulty lies in supporting arbitrary subset queries, which makes subgraph-based
approaches (e.g., segmented or stitched methods) difficult to apply effectively. A promising direction

Proc. ACM Manag. Data, Vol. 3, No. 6 (SIGMOD), Article 298. Publication date: December 2025.

298:22 Mocheng Li et al.

is to explore IVF-based techniques, whose inherent partitioning structures may better support
flexible and efficient subset search.
O2. Achieving optimal performance requires careful hyperparameter tuning. Filtering

ANN search performance is highly sensitive to hyperparameters in both index construction and
query execution. Optimal settings vary based on factors such as (1) dataset size, (2) vector distribu-
tion, (3) query selectivity, (4) size of 𝐾 to be retrieved, and (5) intrinsic dimensionality for quantized
methods. This makes universal tuning impractical. Future work should explore adaptive tuning
strategies or develop robust algorithms that perform well without extensive manual calibration.
O3. Integration with vector databases remains limited.Most Filtering ANN methods rely

on specialized index architectures tailored for specific filtering tasks (e.g., range or label filtering),
creating barriers to integration with general-purpose vector databases. There is a clear need for
hybrid indexing designs that retain compatibility with traditional ANN structures while supporting
efficient filtering, enabling seamless adoption in real-world database systems.
O4. Dynamic Filtering ANN index is still underexplored. Among existing methods, only

DSG supports dynamic index updates. Other range filtering approaches—such as SeRF, 𝛽-WST,
iRangeGraph, and UNIFY—depend on attribute-sorted vector orders and do not support incremental
insertions or deletions. Overcoming this limitation remains a fundamental challenge for making
Filtering ANN algorithms suitable for dynamic environments.

O5. The attribute distribution analysis lacks. All generated attributes are assumed to follow
a uniform distribution, a setting adopted by most existing methods. However, this assumption may
not reflect real-world scenarios. Some works such as ACORN [50] and AIRSHIP [66] acknowledge
this issue, but a comprehensive analysis of the interaction between vectors and attributes, as well as
the performance of different methods under varying vector-attribute distributions, is still lacking.

7 Related Work
In addition to the algorithms and systems discussed in this paper, several other notable methods
have been proposed. However, they are excluded from our experiments due to lower efficiency
reported in prior studies or lack of open-source implementation.

Vector database systems. AnalyticDB-V (ADBV) [61] is a vector database system that supports
vector search under arbitrary restrictions. ADBV employs a Voronoi graph (VoG) as an IVF structure
to reduce scan space and combines it with product quantization (PQ) for memory efficiency. A built-
in cost estimator selects the most efficient strategy from among brute-force scan, PQ pre-filtering,
VoGPQ pre-filtering, and VoGPQ post-filtering.

VBASE [65] is a vector database developed by Microsoft, extending PostgreSQL [1] with SQL-
based vector search. It introduces a termination signal mechanism called Relaxed Monotonicity,
which halts the search once retrieved candidates begin to diverge from the query vector. For filtering
queries, VBASE softens the constraints to expand the search space, ensuring sufficient matched
results.
Several other vector database systems are not included in our study, such as Vearch [5, 36],

PASE [64], Weaviate [3], Pinecone [7], and Qdrant [8]. Among all vector database systems, Mil-
vus is the most competitive method for its high efficiency, versatility [47] and widespread LLM
applications [20]. Hence, we pick Milvus as the representative vector database system solution.
Filtering ANN algorithms. RII [42] introduced the concept of subset search, a precursor to

filtered search. Built on IVFPQ, RII uses two scanning strategies based on a threshold: if the subset
size is small, it scans the subset directly to get results; otherwise, it employs id-IVF, an index
structure that maps IDs to clusters and skips clusters that do not contain target IDs. RII is omitted
due to its naive filtering strategy, and its performance is almost identical to Faiss-IVFPQ according
to our preliminary test.

Proc. ACM Manag. Data, Vol. 3, No. 6 (SIGMOD), Article 298. Publication date: December 2025.

Attribute Filtering in Approximate Nearest Neighbor Search: An In-depth Experimental Study 298:23

AIRSHIP [66] is a label Filtering ANN method built on HNSW. It assumes that attribute distribu-
tions are biased and clustered, and samples vectors with diverse labels during index construction
to ensure entry point coverage for all label types. During query execution, it performs both label-
constrained and unconstrained searches using two separate candidate lists, making AIRSHIP
effective under skewed attribute distributions. AIRSHIP was excluded from our experiments due to
the unavailability of its open-source code.

8 Conclusion
In this paper, we present a comprehensive taxonomy and empirical study of filtering approximate
nearest neighbor (ANN) algorithms, analyzing both algorithmic principles and implementation
details. We categorize Filtering ANN methods based on the type of attributes, i.e., numerical (range
filtering) and categorical (label filtering), and highlight the growing trend toward arbitrary filtering
techniques for supporting arbitrary constraints. From a design standpoint, we classify filtering
strategies into pre-filtering, post-filtering, and joint-filtering, each representing distinct trade-
offs. For range filtering, we further examine implementation-level design choices that influence
performance.

Our extensive experiments across diverse query scenarios show that segmented subgraph indexes
consistently achieve superior performance in range filtering tasks. In contrast, label filtering remains
unstable due to the lack of high-quality graph indexes. We identify two key factors limiting edge-
based indexes: (1) pruning strategies and (2) entry point selection. Our study offers practical
guidance for selecting suitable Filtering ANN methods and outlines open challenges that point
toward promising directions for future research.

Acknowledgments
This work is partially supported by NSFC under Grant 62302421, Basic and Applied Basic Research
Fund in Guangdong Province under Grant 2023A1515011280, 2025A1515010439, Ant Group through
CCF-Ant Research Fund, and the Guangdong Provincial Key Laboratory of Big Data Computing,
The Chinese University of Hong Kong, Shenzhen.

References
[1] 1996. PostgreSQL. https://www.postgresql.org/
[2] 2016. Yahoo. Nearest neighbor search with neighborhood graph and tree for high-dimensional data. https://github.

com/yahoojapan/NGT
[3] 2019. Weaviate:Vector database for contextual queries. https://github.com/semi-technologies/weaviate
[4] 2020. Sptag: A library for fast approximate nearest neighbor search. https://github.com/microsoft/SPTAG
[5] 2020. Vearch: A Distributed System for Embedding-based. https://github.com/vearch/vearch
[6] 2021. pgvector. https://github.com/pgvector/pgvector
[7] 2021. Pinecone. https://www.pinecone.io/
[8] 2021. qdrant. http://qdrant.tech/
[9] 2025. The technical report is available in our repository. https://github.com/lmccccc/FANNBench
[10] Akhil Arora, Sakshi Sinha, Piyush Kumar, and Arnab Bhattacharya. 2018. Hd-index: Pushing the scalability-accuracy

boundary for approximate knn search in high-dimensional spaces. arXiv preprint arXiv:1804.06829 (2018).
[11] Martin Aumüller, Erik Bernhardsson, and Alexander Faithfull. 2020. ANN-Benchmarks: A benchmarking tool for

approximate nearest neighbor algorithms. Information Systems 87 (2020), 101374.
[12] Franz Aurenhammer, Rolf Klein, and Der-Tsai Lee. 2013. Voronoi diagrams and Delaunay triangulations. World Scientific

Publishing Company.
[13] BigANN Benchmark. 2021. Billion-Scale Approximate Nearest Neighbor Search Challenge: NeurIPS’21 competition

track.
[14] Thomas Cover and Peter Hart. 1967. Nearest neighbor pattern classification. IEEE transactions on information theory

13, 1 (1967), 21–27.

Proc. ACM Manag. Data, Vol. 3, No. 6 (SIGMOD), Article 298. Publication date: December 2025.

https://www.postgresql.org/
https://github.com/yahoojapan/NGT
https://github.com/yahoojapan/NGT
https://github.com/semi-technologies/weaviate
https://github.com/microsoft/SPTAG
https://github.com/vearch/vearch
https://github.com/pgvector/pgvector
https://www.pinecone.io/
http://qdrant.tech/
https://github.com/lmccccc/FANNBench

298:24 Mocheng Li et al.

[15] Steve Dai, Rangha Venkatesan, Mark Ren, Brian Zimmer, William Dally, and Brucek Khailany. 2021. Vs-quant: Per-
vector scaled quantization for accurate low-precision neural network inference. Proceedings of Machine Learning and
Systems 3 (2021), 873–884.

[16] Mayur Datar, Nicole Immorlica, Piotr Indyk, and Vahab S Mirrokni. 2004. Locality-sensitive hashing scheme based on
p-stable distributions. In Proceedings of the twentieth annual symposium on Computational geometry. 253–262.

[17] Karan Desai, Gaurav Kaul, Zubin Aysola, and Justin Johnson. 2021. Redcaps: Web-curated image-text data created by
the people, for the people. arXiv preprint arXiv:2111.11431 (2021).

[18] Wei Dong, Charikar Moses, and Kai Li. 2011. Efficient k-nearest neighbor graph construction for generic similarity
measures. In Proceedings of the 20th international conference on World wide web. 577–586.

[19] Matthijs Douze, Alexandr Guzhva, Chengqi Deng, Jeff Johnson, Gergely Szilvasy, Pierre-Emmanuel Mazaré, Maria
Lomeli, Lucas Hosseini, and Hervé Jégou. 2024. The faiss library. arXiv preprint arXiv:2401.08281 (2024).

[20] Darren Edge, Ha Trinh, Newman Cheng, Joshua Bradley, Alex Chao, Apurva Mody, Steven Truitt, and Jonathan Larson.
2024. From local to global: A graph rag approach to query-focused summarization. arXiv preprint arXiv:2404.16130
(2024).

[21] Joshua Engels, Benjamin Landrum, Shangdi Yu, Laxman Dhulipala, and Julian Shun. 2024. Approximate Nearest
Neighbor Search with Window Filters. arXiv preprint arXiv:2402.00943 (2024).

[22] Cong Fu and Deng Cai. 2016. Efanna: An extremely fast approximate nearest neighbor search algorithm based on knn
graph. arXiv preprint arXiv:1609.07228 (2016).

[23] Cong Fu, Chao Xiang, Changxu Wang, and Deng Cai. 2017. Fast approximate nearest neighbor search with the
navigating spreading-out graph. arXiv preprint arXiv:1707.00143 (2017).

[24] Jianyang Gao and Cheng Long. 2024. RaBitQ: Quantizing High-Dimensional Vectors with a Theoretical Error Bound
for Approximate Nearest Neighbor Search. Proceedings of the ACM on Management of Data 2, 3 (2024), 1–27.

[25] Tiezheng Ge, Kaiming He, Qifa Ke, and Jian Sun. 2013. Optimized product quantization. IEEE transactions on pattern
analysis and machine intelligence 36, 4 (2013), 744–755.

[26] Siddharth Gollapudi, Neel Karia, Varun Sivashankar, Ravishankar Krishnaswamy, Nikit Begwani, Swapnil Raz, Yiyong
Lin, Yin Zhang, Neelam Mahapatro, Premkumar Srinivasan, et al. 2023. Filtered-diskann: Graph algorithms for
approximate nearest neighbor search with filters. In Proceedings of the ACM Web Conference 2023. 3406–3416.

[27] Long Gong, Huayi Wang, Mitsunori Ogihara, and Jun Xu. 2020. iDEC: indexable distance estimating codes for
approximate nearest neighbor search. Proceedings of the VLDB Endowment 13, 9 (2020).

[28] Bernal Jiménez Gutiérrez, Yiheng Shu, Yu Gu, Michihiro Yasunaga, and Yu Su. 2024. HippoRAG: Neurobiologically
Inspired Long-Term Memory for Large Language Models. arXiv preprint arXiv:2405.14831 (2024).

[29] Xiaoxin He, Yijun Tian, Yifei Sun, Nitesh V Chawla, Thomas Laurent, Yann LeCun, Xavier Bresson, and Bryan Hooi.
2024. G-retriever: Retrieval-augmented generation for textual graph understanding and question answering. arXiv
preprint arXiv:2402.07630 (2024).

[30] Elias Jääsaari, Ville Hyvönen, and Teemu Roos. 2024. LoRANN: Low-Rank Matrix Factorization for Approximate
Nearest Neighbor Search. Advances in Neural Information Processing Systems 37 (2024), 102121–102153.

[31] Suhas Jayaram Subramanya, Fnu Devvrit, Harsha Vardhan Simhadri, Ravishankar Krishnawamy, and Rohan Kadekodi.
2019. Diskann: Fast accurate billion-point nearest neighbor search on a single node. Advances in Neural Information
Processing Systems 32 (2019).

[32] Herve Jegou, Matthijs Douze, and Cordelia Schmid. 2010. Product quantization for nearest neighbor search. IEEE
transactions on pattern analysis and machine intelligence 33, 1 (2010), 117–128.

[33] Hervé Jégou, Romain Tavenard, Matthijs Douze, and Laurent Amsaleg. 2011. Searching in one billion vectors: re-rank
with source coding. In 2011 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). IEEE,
861–864.

[34] Atsutake Kosuge and Takashi Oshima. 2019. An object-pose estimation acceleration technique for picking robot
applications by using graph-reusing k-nn search. In 2019 First International Conference on Graph Computing (GC). IEEE,
68–74.

[35] Joseph B Kruskal. 1956. On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings
of the American Mathematical society 7, 1 (1956), 48–50.

[36] Jie Li, Haifeng Liu, Chuanghua Gui, Jianyu Chen, Zhenyuan Ni, Ning Wang, and Yuan Chen. 2018. The design and
implementation of a real time visual search system on JD E-commerce platform. In Proceedings of the 19th International
Middleware Conference Industry. 9–16.

[37] Wen Li, Ying Zhang, Yifang Sun, Wei Wang, Mingjie Li, Wenjie Zhang, and Xuemin Lin. 2019. Approximate nearest
neighbor search on high dimensional data—experiments, analyses, and improvement. IEEE Transactions on Knowledge
and Data Engineering 32, 8 (2019), 1475–1488.

[38] Anqi Liang, Pengcheng Zhang, Bin Yao, Zhongpu Chen, Yitong Song, and Guangxu Cheng. 2024. UNIFY: Unified
Index for Range Filtered Approximate Nearest Neighbors Search. arXiv preprint arXiv:2412.02448 (2024).

Proc. ACM Manag. Data, Vol. 3, No. 6 (SIGMOD), Article 298. Publication date: December 2025.

Attribute Filtering in Approximate Nearest Neighbor Search: An In-depth Experimental Study 298:25

[39] J MacQueen. 1967. Some methods for classification and analysis of multivariate observations. In Proceedings of 5-th
Berkeley Symposium on Mathematical Statistics and Probability/University of California Press.

[40] Yury Malkov, Alexander Ponomarenko, Andrey Logvinov, and Vladimir Krylov. 2014. Approximate nearest neighbor
algorithm based on navigable small world graphs. Information Systems 45 (2014), 61–68.

[41] Yu AMalkov and Dmitry A Yashunin. 2018. Efficient and robust approximate nearest neighbor search using hierarchical
navigable small world graphs. IEEE transactions on pattern analysis and machine intelligence 42, 4 (2018), 824–836.

[42] Yusuke Matsui, Ryota Hinami, and Shin’ichi Satoh. 2018. Reconfigurable Inverted Index. In Proceedings of the 26th
ACM international conference on Multimedia. 1715–1723.

[43] Yitong Meng, Xinyan Dai, Xiao Yan, James Cheng, Weiwen Liu, Jun Guo, Benben Liao, and Guangyong Chen. 2020.
Pmd: An optimal transportation-based user distance for recommender systems. In Advances in Information Retrieval:
42nd European Conference on IR Research, ECIR 2020, Lisbon, Portugal, April 14–17, 2020, Proceedings, Part II 42. Springer,
272–280.

[44] Jason Mohoney, Anil Pacaci, Shihabur Rahman Chowdhury, Ali Mousavi, Ihab F Ilyas, Umar Farooq Minhas, Jeffrey
Pound, and Theodoros Rekatsinas. 2023. High-throughput vector similarity search in knowledge graphs. Proceedings
of the ACM on Management of Data 1, 2 (2023), 1–25.

[45] Lushuai Niu, Zhi Xu, Longyang Zhao, Daojing He, Jianqiu Ji, Xiaoli Yuan, and Mian Xue. 2023. Residual vector product
quantization for approximate nearest neighbor search. Expert Systems with Applications 232 (2023), 120832.

[46] Shumpei Okura, Yukihiro Tagami, Shingo Ono, and Akira Tajima. 2017. Embedding-based news recommendation for
millions of users. In Proceedings of the 23rd ACM SIGKDD international conference on knowledge discovery and data
mining. 1933–1942.

[47] James Jie Pan, Jianguo Wang, and Guoliang Li. 2024. Survey of vector database management systems. The VLDB
Journal 33, 5 (2024), 1591–1615.

[48] Zhibin Pan, Liangzhuang Wang, Yang Wang, and Yuchen Liu. 2020. Product quantization with dual codebooks for
approximate nearest neighbor search. Neurocomputing 401 (2020), 59–68.

[49] Rodrigo Paredes and Edgar Chávez. 2005. Using the k-nearest neighbor graph for proximity searching in metric
spaces. In String Processing and Information Retrieval: 12th International Conference, SPIRE 2005, Buenos Aires, Argentina,
November 2-4, 2005. Proceedings 12. Springer, 127–138.

[50] Liana Patel, Peter Kraft, Carlos Guestrin, and Matei Zaharia. 2024. ACORN: Performant and Predicate-Agnostic Search
Over Vector Embeddings and Structured Data. Proceedings of the ACM on Management of Data 2, 3 (2024), 1–27.

[51] Arkadiusz Paterek. 2007. Improving regularized singular value decomposition for collaborative filtering. In Proceedings
of KDD cup and workshop, Vol. 2007. 5–8.

[52] Zhencan Peng, Miao Qiao, Wenchao Zhou, Feifei Li, and Dong Deng. [n. d.]. Dynamic Range-Filtering Approximate
Nearest Neighbor Search. ([n. d.]).

[53] Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal, Girish Sastry, Amanda
Askell, Pamela Mishkin, Jack Clark, et al. 2021. Learning transferable visual models from natural language supervision.
In International conference on machine learning. PMLR, 8748–8763.

[54] Patrick Schäfer, Jakob Brand, Ulf Leser, Botao Peng, and Themis Palpanas. 2024. Fast and Exact Similarity Search in
less than a Blink of an Eye. arXiv preprint arXiv:2411.17483 (2024).

[55] Chanop Silpa-Anan and Richard Hartley. 2008. Optimised KD-trees for fast image descriptor matching. In 2008 IEEE
Conference on Computer Vision and Pattern Recognition. IEEE, 1–8.

[56] Godfried T Toussaint. 1980. The relative neighbourhood graph of a finite planar set. Pattern recognition 12, 4 (1980),
261–268.

[57] A Vaswani. 2017. Attention is all you need. Advances in Neural Information Processing Systems (2017).
[58] Jianguo Wang, Xiaomeng Yi, Rentong Guo, Hai Jin, Peng Xu, Shengjun Li, Xiangyu Wang, Xiangzhou Guo, Chengming

Li, Xiaohai Xu, et al. 2021. Milvus: A purpose-built vector data management system. In Proceedings of the 2021
International Conference on Management of Data. 2614–2627.

[59] Mengzhao Wang, Lingwei Lv, Xiaoliang Xu, Yuxiang Wang, Qiang Yue, and Jiongkang Ni. 2024. An efficient and
robust framework for approximate nearest neighbor search with attribute constraint. Advances in Neural Information
Processing Systems 36 (2024).

[60] Mengzhao Wang, Xiaoliang Xu, Qiang Yue, and Yuxiang Wang. 2021. A comprehensive survey and experimental
comparison of graph-based approximate nearest neighbor search. arXiv preprint arXiv:2101.12631 (2021).

[61] Chuangxian Wei, Bin Wu, Sheng Wang, Renjie Lou, Chaoqun Zhan, Feifei Li, and Yuanzhe Cai. 2020. AnalyticDB-V:
a hybrid analytical engine towards query fusion for structured and unstructured data. Proceedings of the VLDB
Endowment 13, 12 (2020), 3152–3165.

[62] Yuexuan Xu, Jianyang Gao, Yutong Gou, Cheng Long, and Christian S Jensen. 2024. iRangeGraph: Improvising
Range-dedicated Graphs for Range-filtering Nearest Neighbor Search. Proceedings of the ACM on Management of Data
2, 6 (2024), 1–26.

Proc. ACM Manag. Data, Vol. 3, No. 6 (SIGMOD), Article 298. Publication date: December 2025.

298:26 Mocheng Li et al.

[63] Shuo Yang, Jiadong Xie, Yingfan Liu, Jeffrey Xu Yu, Xiyue Gao, Qianru Wang, Yanguo Peng, and Jiangtao Cui. 2024.
Revisiting the Index Construction of Proximity Graph-Based Approximate Nearest Neighbor Search. arXiv preprint
arXiv:2410.01231 (2024).

[64] Wen Yang, Tao Li, Gai Fang, and Hong Wei. 2020. Pase: Postgresql ultra-high-dimensional approximate nearest
neighbor search extension. In Proceedings of the 2020 ACM SIGMOD international conference on management of data.
2241–2253.

[65] Qianxi Zhang, Shuotao Xu, Qi Chen, Guoxin Sui, Jiadong Xie, Zhizhen Cai, Yaoqi Chen, Yinxuan He, Yuqing Yang, Fan
Yang, et al. 2023. {VBASE}: Unifying Online Vector Similarity Search and Relational Queries via Relaxed Monotonicity.
In 17th USENIX Symposium on Operating Systems Design and Implementation (OSDI 23). 377–395.

[66] Weijie Zhao, Shulong Tan, and Ping Li. 2022. Constrained approximate similarity search on proximity graph. arXiv
preprint arXiv:2210.14958 (2022).

[67] Chaoji Zuo, Miao Qiao, Wenchao Zhou, Feifei Li, and Dong Deng. 2024. SeRF: Segment Graph for Range-Filtering
Approximate Nearest Neighbor Search. Proceedings of the ACM on Management of Data 2, 1 (2024), 1–26.

Received April 2025; revised July 2025; accepted August 2025

Proc. ACM Manag. Data, Vol. 3, No. 6 (SIGMOD), Article 298. Publication date: December 2025.

	Abstract
	1 Introduction
	2 Filtering ANN Search
	2.1 Our Contributions
	2.2 Preliminaries
	2.3 Vector Quantization
	2.4 Inverted File
	2.5 Graph-Based ANN Search
	2.6 black Filtering ANN Search

	3 Overview of Filtering ANN Algorithms
	3.1 Range Filtering ANN Search
	3.2 Label Filtering ANN Search
	3.3 Arbitrary Filtering ANN Search

	4 Detailed Analysis of Key Components
	4.1 Attribute Index
	4.2 Pruning Techniques
	4.3 Entry Point Strategies

	5 Experiments
	5.1 Setup
	5.2 Range Filtering: Performance and Analysis
	5.3 Label Filtering: Performance and Analysis
	5.4 black Arbitrary Filtering Analysis
	5.5 Index Analysis
	5.6 Pruning Strategy Evaluation
	5.7 Entry Point Selection Analysis
	5.8 Edge Filtering Overhead Analysis

	6 Lessons Learned
	6.1 Insights
	6.2 Tool Selection
	6.3 Open Problems

	7 Related Work
	8 Conclusion
	Acknowledgments
	References

