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As a building block of many graph-based areas, the 𝑠-𝑡 path enumeration problem aims to find all paths

between 𝑠 and 𝑡 by satisfying a given constraint, e.g., hop numbers. In many real-world scenarios, graphs are

multi-attribute, where vertices and edges are associated with numerical attributes, such as expense or distance

in road networks. However, existing methods have not fully leveraged all attributes in 𝑠-𝑡 path analysis. Hence,

in this paper, we study the problem of skyline path enumeration, which aims to identify paths that balance

multiple attributes, ensuring that no skyline result is dominated by another, thus meeting diverse user needs.

To efficiently tackle this problem, we design a task-oriented core attribute index, called CAI, to rule out all

redundant vertices and edges not located in any skyline path. Additionally, we introduce a hop-dependency

label propagation strategy to construct the CAI index in parallel, improving the indexing process. Based

on this index, we further design a CAI-based querying strategy that reduces fruitless explorations between

candidate vertices not in the same skyline path, significantly optimizing query processing time. Experimental

evaluations on fifteen real-world graphs show that CAI outperforms existing methods by up to four orders of

magnitude in speed while demonstrating enhanced scalability and well-bound memory costs.
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1 Introduction
Graphs are fundamental data structures composed of vertices and edges, used to represent complex

relationships among entities [6, 7, 11, 23, 24, 37, 39]. Among the core problems in graph analytics,

𝑠-𝑡 path enumeration involves returning all specific paths between a source node 𝑠 and a target

node 𝑡 that satisfy predefined constraints. This problem serves as a building block in various

graph-based domains [5, 8, 17, 29, 33, 40]. For example, in E-commerce, transaction loops can

indicate potential fraudulent activities among users, and path enumeration helps identify new loops

resulting from user transactions [29, 33]; In biological networks, path enumeration aids in analyzing
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chains of interactions between substances [5]; In knowledge graphs, this technique can enhance

the connections between entities for improving the overall quality of the knowledge graph [40].

Motivation. In many real-world applications, the nodes/edges are often associated with numeri-

cal attributes which can be obtained from their profiles or the statistical information computed by

different network analysis methods (e.g., the degree, PageRank, influence, etc.). For example, the

edges in road networks are associated with many attributes, including distance, driving time, the

number of traffic lights, and maximum load bearing, etc [14, 18, 26]; In addition, each author in the

Aminer scientific collaboration network (aminer.org) has several numerical attributes, including

the number of published papers, h-index, activity, diversity, sociability, etc [19]; Such network data

is typically modeled as a multi-attribute graph where each node/edge is associated with 𝑑 (𝑑 ≥ 1)

numerical attributes.

In multi-attribute graphs, users often need to consider multiple criteria simultaneously when

enumerating 𝑠-𝑡 paths, e.g., travel time and expenses in road networks. Existing path enumeration

approaches [5, 17, 29, 33, 40] often prioritize one numerical attribute for query efficiency, such as

enumerating all paths whose length is within a certain threshold. However, this single-attribute

focus limits their ability to provide query results that fully represent all relevant attribute features,

potentially leading to suboptimal or unsuitable paths in practical applications. For example, the

shortest path may be the most expensive, or it may traverse edges with insufficient load-bearing

capacity for heavy vehicles. To address these limitations, the skyline operator [18, 26] is introduced

to identify all non-dominated paths, where a path is non-dominated if it excels in at least one

numerical attribute compared to others, making them highly suitable for varied graph-based

applications and enhancing decision-making accuracy [14, 18, 22, 26]. By enumerating skyline

paths, users are provided with a comprehensive set of optimal choices, accommodating diverse

preferences and requirements.
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Fig. 1. (a) a road network𝐺 and (b) the 3-dimensional cost vector of𝐺 where 𝑐1, 𝑐2, and 𝑐3 represent distance
(𝑚𝑖), expense ($), and the maximum load-bearing value (𝑡𝑜𝑛), respectively.

To effectively compute skyline paths in multi-attribute graphs, it is crucial to define suitable

cost functions that accurately capture the attributes of interest [14, 18, 22, 26]. To our knowledge,

most skyline query methods adopt the sum of node/edge numerical attributes as the cost function

of paths [18, 26] and aim to find the paths equipped with the smallest cost value in at least one

dimension [14, 22]. However, we find that this setting does not work for a part of attributes in

many real-world applications. For example, the route planning service in the road network aims

to provide suitable routes from the start node to the destination node. In the road network 𝐺

(Figure 1(a)), each edge has a 3-dimensional cost vector: distance 𝑐1 (miles), expense 𝑐2 (dollars), and

load-bearing capacity 𝑐3 (tons). The goal is to find skyline paths from 𝑣1 to 𝑣6. (1) Path 𝑝1 = ⟨𝑣1, 𝑣2, 𝑣6⟩
minimizes distance: 𝐶1 (𝑝1)=𝑐1 (𝑒1) + 𝑐1 (𝑒2) = 9 mi. (2) Path 𝑝2 = ⟨𝑣1, 𝑣3, 𝑣6⟩ minimizes expense:

𝐶2 (𝑝2) = 𝑐2 (𝑒3) + 𝑐2 (𝑒4) = 20 $. However, for load-bearing capacity, the minimum value along

a path determines suitability. Both 𝑝1 and 𝑝2 have a maximum load-bearing capacity of 15 tons,

i.e., 𝐶3 (𝑝1) = min{𝑐3 (𝑒1), 𝑐3 (𝑒2)} = 15, making them unsuitable for trucks heavier than 15 tons.
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Path 𝑝3 = ⟨𝑣1, 𝑣4, 𝑣6⟩ is better for heavier trucks, as it has a higher load-bearing capacity (𝐶3 (𝑝3) =
min{𝑐3 (𝑒5), 𝑐3 (𝑒6)} = 20 tons). Similarly, assessing the closeness between two individuals is a pivotal

concern in social networks [24, 38, 39]. A standard measure for this is the distance separating

them, with smaller distances typically indicating greater proximity. Additionally, the tie strength

between individuals can be represented as an edge attribute to enhance the precision of such

assessments. Compared with the sum operator, the minimal operator is more suitable for capturing

the tie strength attribute of a path, as larger minimal values typically signify a closer relationship.

Consequently, the skyline path query can be employed to offer users high-quality results by

enumerating the paths that are not dominated by others in terms of both distance and tie strength

attributes. Based on the above analysis, we introduce two different skyline cost functions to improve

the diversity and accuracy of query results. The first cost function, called “sum”, is the sum of

node/edge numerical attributes in each dimension, while the second cost function, called “min”, is

the minimal value of node/edge numerical attributes in each dimension. Note that we pursue the

minimal and maximal values of the “sum” and “min” cost functions, respectively.

Challenges. The significance of the skyline path enumeration problem in multi-attribute graphs

necessitates an effective and efficient resolution. However, efficiently addressing the problem

involves overcoming two primary hurdles:

(1) Unpredictable and explosive search space. The number of possible paths between two

nodes can grow exponentially with the hop number value [5, 29, 33], especially in large-scale

graphs. When multiple attributes are considered for skyline computation, the search space

becomes even more extensive and unpredictable. Exhaustively exploring all possible paths

is computationally infeasible, necessitating strategies to effectively prune the search space

without missing any skyline paths.

(2) Massive redundant and non-skyline path. Many paths are dominated by others across

all attribute dimensions and thus are not part of the skyline. Enumerating these non-skyline

paths leads to redundant computations and significant performance degradation. Efficiently

identifying and pruning these dominated paths early in the search process is challenging,

especially without prior knowledge of the skyline cost values.

Although various approaches have been developed for 𝑠-𝑡 path enumeration with hop con-

straints [5, 29, 33], they face significant challenges when extended to skyline path enumeration.

Specifically, hop-constrained methods may enumerate redundant paths that are dominated and

thus not part of the skyline, leading to unnecessary computations. Moreover, by imposing strict

hop limits, these methods can miss longer skyline paths that exceed the hop constraint but are

optimal in certain attribute dimensions. Consequently, these methods are inadequate for efficiently

identifying all skyline paths, as they both generate redundant results and potentially overlook

optimal paths. In addition, existing skyline path query methods [18, 26] focus on finding limited

optimal paths with minimal cost values, resulting in incomplete enumerated results. The detailed

analysis of the above techniques is listed in Section 3.

Our Approach. Based on the above analysis, we design a task-oriented Core Attribute Index,

called CAI, to efficiently enumerate all skyline paths of any query task. By executing a hop-

dependency label propagation strategy, this index not only exactly computes the cost values of

all types of skyline paths between the source and target nodes, but also identifies the position of

each candidate node on the corresponding skyline paths. Specifically, given a query task 𝑞(𝑠, 𝑡),
it is required that each node 𝑣 maintains a label set 𝐿(𝑣) where each label entry in 𝐿(𝑣) records
the position of 𝑣 in the corresponding skyline path between 𝑠 and 𝑡 . Specifically, the CAI index is

equipped with the following excellent properties.

(1) Redundant vertices/edges elimination. The CAI index can accurately rule out all redundant

vertices and edges that are not located in any skyline path, thus effectively avoiding fruitless

explorations of these elements.
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(2) Exact skyline paths computation. The positions of each node on the corresponding skyline

paths can be determined exactly based on the CAI index, thereby avoiding fruitless explorations

of any two vertices that are not located in the same skyline path

(3) Parallel index construction. The label propagation strategy not only avoids the significant

time cost caused by path traversal recursion but can also accelerate the construction of CAI

via parallel optimization, largely reducing the time cost.

Contributions. In this paper, we make the following principal contributions:

• We design a hop-dependency label propagation strategy to build the CAI index in parallel. This

index can directly rule out all redundant vertices and edges that are not located in any skyline

path

• We design a CAI-based searching method to further avoid the fruitless explorations of any two

candidate vertices that are not located in the same skyline path, thus reducing the processing

time.

• Extensive experiments demonstrate the superior performance of CAI, which achieves up to

four orders of magnitude speedup than the state-of-the-art path enumeration methods.

Roadmap. The rest of the paper is organized as follows. Section 2 presents the SkyPE problem

and analyzes existing methods. Section 3 describes the extension of existing methods on SkyPE.

Section 4 describes the index structure and querying strategy of CAI and the index construction

method is introduced in Section 5. Section 6 evaluates the performance of our method. Finally,

Section 7 reviews important related work and Section 8 concludes the paper.

2 Preliminary
In this section, we begin by presenting the skyline path enumeration problem (SkyPE). Subsequently,

we thoroughly summarize the most related approaches to the skyline path query problem. Table 1

summarizes frequently used notations in this paper.

Table 1. Notations and meanings.
Notations Meanings

𝐺 (𝑉 , 𝐸, 𝑋 ) a 𝜅-attribute undirected graph

(𝑠, 𝑡) a vertex pair

𝑁 (𝑣) the neighbor set of 𝑣 in 𝐺

𝑑𝑒𝑔(𝑣) the degree of 𝑣

𝑋 (𝑒) a 𝜅-dimensional vector of the edge 𝑒

𝑘 the dimension number of the “min” operator

𝑝 (𝑠, 𝑡) a path between 𝑠 to 𝑡

|𝑝 (𝑠, 𝑡) | the hop number of 𝑝 (𝑠, 𝑡)
𝐶 (𝑝) a 𝜅-dimensional cost vector of the path 𝑝

𝐶𝑙 (𝑝) the 𝑙-th dimension cost value of 𝑝

𝑆𝑃 (𝑠, 𝑡) a set of all skyline paths between 𝑠 to 𝑡

𝑃𝑑 (𝑠, 𝑡) a set of paths where ∀𝑝∗ ∈ 𝑃𝑑 satisfies |𝑝∗ | = 𝑑

2.1 Problem Description.
Let 𝐺 (𝑉 , 𝐸, 𝑋 ) be a multi-attribute undirected graph where 𝑉 and 𝐸⊆𝑉×𝑉 are sets of 𝑛 vertices

and𝑚 edges respectively, and 𝑋 is a set of 𝜅-dimensional vectors. Here, each edge 𝑒 (𝑢, 𝑣) ∈ 𝐸 is

associated with a 𝜅-dimensional real-valued vector denoted by 𝑋 (𝑒 (𝑢, 𝑣)) = [𝑥1 (𝑒), · · · , 𝑥𝜅 (𝑒)]. For
simplicity, 𝑋 (𝑒 (𝑢, 𝑣)) is abbreviated as 𝑋 (𝑢, 𝑣). 𝑁 (𝑣)={𝑢 |𝑒 (𝑢, 𝑣)∈𝐸} is the neighbor set of 𝑣 in 𝐺 .

𝑑𝑒𝑔(𝑣) = |𝑁 (𝑣) | denotes the degree of 𝑣 . We represent a path between 𝑠 and 𝑡 as 𝑝 (𝑠, 𝑡) = ⟨𝑣0 =

𝑠, · · · , 𝑣 𝑗 , · · · , 𝑣𝑘 = 𝑡⟩, where 𝑒 (𝑣𝑖 , 𝑣𝑖+1) ∈ 𝐸 for 𝑖 ∈ [0, 𝑘−1] and 𝑝 (𝑠, 𝑡) = 𝑝 (𝑠, 𝑣 𝑗 ) ∥ 𝑝 (𝑣 𝑗 , 𝑡). Here,
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𝑝 (𝑠, 𝑣 𝑗 ) is a subpath in 𝑝 (𝑠, 𝑡), denoted as 𝑝 (𝑠, 𝑣) ⊂ 𝑝 (𝑠, 𝑡). |𝑝 (𝑠, 𝑡) | denotes the hop number of 𝑝 (𝑠, 𝑡)
and 𝑝 (𝑠, 𝑡)=⟨𝑠, 𝑡⟩ is a 1-hop path if 𝑒 (𝑠, 𝑡) ∈ 𝐸. For convenience, 𝑒 𝑗 = 𝑒 (𝑣 𝑗 , 𝑣 𝑗+1) denotes the 𝑗-th edge
in the path 𝑝 (𝑠, 𝑡). The 𝑙-th dimension vector of 𝑝 (𝑠, 𝑡) is denoted as 𝑋𝑙 (𝑝) = [𝑥𝑙 (𝑒1), · · · , 𝑥𝑙 (𝑒 |𝑝 | )].
Then, we formally define the “min” and “sum” cost functions of the 𝑙-th dimension about 𝑝 (𝑠, 𝑡) as

𝐶𝑙 (𝑝) =
{
𝑚𝑖𝑛(𝑋𝑙 (𝑝)) = min𝑗∈[1, |𝑝 | ] 𝑥𝑙 (𝑒 𝑗 ) if 𝑙 ≤ 𝑘,

𝑠𝑢𝑚(𝑋𝑙 (𝑝)) =
∑ |𝑝 |

𝑗=1
𝑥𝑙 (𝑒 𝑗 ) otherwise.

(1)

In Equation 1, the “min” operator computes the minimal values of the first 𝑘 dimensional

features with 𝑘 < 𝜅, while the “sum” operator computes the cumulative value of the remaining

𝜅−𝑘 dimensional features. Accordingly, 𝐶 (𝑝)=[𝐶1 (𝑝), · · · ,𝐶𝜅 (𝑝)] denotes as a 𝜅-dimensional cost

vector of 𝑝 (𝑠, 𝑡). For any path 𝑝1 (𝑠, 𝑡) = 𝑝2 (𝑠, 𝑣) ∥ 𝑝3 (𝑣, 𝑡), we have 𝐶 (𝑝1) = 𝐶 (𝑝2) ⊕ 𝐶 (𝑝3) where
the 𝑙-th dimensional cost value is computed as

𝐶𝑙 (𝑝2) ⊕ 𝐶𝑙 (𝑝3) =
{
min{𝐶𝑙 (𝑝2),𝐶𝑙 (𝑝3)} if 𝑙 ≤ 𝑘,

𝐶𝑙 (𝑝2) +𝐶𝑙 (𝑝3) otherwise.
(2)

Next, we present “cost domination” and “path domination” as follows.

Definition 1 (Cost Domination). For the 𝑙-th dimensional cost of two paths 𝑝1 and 𝑝2, we have
𝐶𝑙 (𝑝1)≺𝐶𝑙 (𝑝2) if (1) 𝐶𝑙 (𝑝1)>𝐶𝑙 (𝑝2) with 𝑙≤𝑘 or (2) 𝐶𝑙 (𝑝1)<𝐶𝑙 (𝑝2) with 𝑙 > 𝑘 .

Definition 2 (Path Domination [10, 22]). Let 𝑝1 (𝑠, 𝑡) and 𝑝2 (𝑠, 𝑡) be two different paths, where
𝐶 (𝑝1) and𝐶 (𝑝2) are the corresponding cost vectors, respectively. We have 𝑝1 dominates 𝑝2, denoted by
𝐶 (𝑝1) ≺ 𝐶 (𝑝2), if there exists an 𝑙 ∈ [1, 𝜅] such that
• 𝐶𝑙 (𝑝1)≺𝐶𝑙 (𝑝2) and,
• 𝐶 𝑗 (𝑝1)=𝐶 𝑗 (𝑝2) or 𝐶 𝑗 (𝑝1)≺𝐶 𝑗 (𝑝2) with ∀𝑗∈[1, 𝜅] \ 𝑙 .

Definition 3 (Skyline Path [10, 18, 19, 22, 26]). Given a pair of vertices (𝑠, 𝑡), 𝑝 (𝑠, 𝑡) is a
skyline path if there is no other path 𝑝∗ (𝑠, 𝑡) to satisfy 𝐶 (𝑝∗) ≺ 𝐶 (𝑝).

Without loss of generality, we use 𝑆𝑃 (𝑠, 𝑡) to denote the set of all skyline paths between 𝑠 and 𝑡 .

Problem Definition. Given a multi-attribute graph 𝐺 and a query task 𝑞(𝑠, 𝑡), the skyline path
enumeration problem aims to find all skyline paths between 𝑠 and 𝑡 .

3,1,1

1,3,1

2,1,3

2,1,1

3,2,1

3,1,2

3,1,2

3,1,2

3,2,3 2,2,1

Fig. 2. Example of a multi-attribute graph where the “min” operator is used for the first dimension marked in
red, whilst the rest attributes are equipped with the “sum” operator.

Example 1. Figure 2 depicts a multi-attribute graph 𝐺 , where each edge is equipped with a 3-
dimensional real-valued attribute and 𝑘 = 1. Given a vertex pair (𝑣1, 𝑣6), there are two skyline
paths 𝑝1 = ⟨𝑣1, 𝑣2, 𝑣4, 𝑣6⟩ and 𝑝2 = ⟨𝑣1, 𝑣2, 𝑣5, 𝑣6⟩ since 𝐶 (𝑝1) = [2, 4, 3] and 𝐶 (𝑝2) = [3, 4, 4] are not
dominated by other cost vectors. In contrast, 𝑝3 = ⟨𝑣1, 𝑣3, 𝑣6⟩ is not a skyline path since𝐶 (𝑝3) = [1, 4, 3]
is dominated by 𝐶 (𝑝1).
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2.2 Skyline PathQuery Approaches
This part introduces the most related approaches to the skyline path query problem.

ARSC [18]. The authors focused on finding all preference shortest paths in a multi-attribute

network graph, where the “preference distance” is defined as the weighted sum over all considered

edge attributes. During the path-finding process, a route domination relationship is proposed to

avoid traversing subpaths that are dominated by other results, thus reducing the processing time.

However, considering that the cost function of each path is the weighted sum of edge attributes, the

pruning strategies in ARSC cannot guarantee the discovery of all skyline paths based on Definition 3.

Furthermore, it is inevitable that ARSC will produce massive fruitless explorations when extending

to solve the SkyPE problem.

LSA [26]. The authors focused on finding top-𝑘 paths between a given node and facility points,

where the rest of the paths cannot dominate the cost values of these paths. Then, they proposed

LSA to perform the 𝜅 cost expansions concurrently on a multi-cost network and stop when none

of them may lead to new skyline facilities.

However, we observe that the optimal paths in any single dimension can also be dominated by

other results. For example, consider 𝑞(𝑠, 𝑡) in a 2-attribute graph with 𝑘 = 0. Let 𝑝1 (𝑠, 𝑡) and 𝑝2 (𝑠, 𝑡)
be two paths with cost vectors𝐶 (𝑝1) = [1, 3] and𝐶 (𝑝2) = [1, 4]. Apparently, 𝑝2 is not skyline since
it is dominated by 𝑝1. Therefore, this strategy inevitably results in fruitless explorations, leading to

significant time costs. More importantly, based on the path domination relationship in Definition 2,

several skyline paths are not optimal in any dimension. Similarly, let 𝑝3 (𝑠, 𝑡) and 𝑝4 (𝑠, 𝑡) be two
skyline paths with 𝐶 (𝑝3) = [1, 3] and 𝐶 (𝑝4) = [3, 1], respectively. Assuming that 𝑝5 (𝑠, 𝑡) exists in
this graph with 𝐶 (𝑝5) = [2, 2], we can conclude that 𝑝5 is also a skyline path even though the cost

in each dimension is not smallest. Therefore, the correctness of query results cannot be guaranteed

when directly using LSA to resolve the SkyPE problem.

ParetoPrep [32]. ParetoPrep is a pre-processing method that collects the minimal values of all

dimensions between each vertex to the target node. This strategy avoids exploring the redundant

edges which are not located in the shortest paths. However, computing the minimal feature values

of all vertices sequentially can be time-consuming, especially for large-scale graphs. Additionally,

similar to LSA, this strategy cannot be used to enumerate all skyline paths, as some of these paths

may not be optimal in all dimensions.

2.3 State-of-the-art Approaches on Hop-constrained Path Enumeration
In this part, we introduce the SOTA approaches to hop-constrained path enumeration (HcPE), and

these methods can be extended to solve the SkyPE problem. Specifically, HcPE aims to enumerate

all simple paths between the source and target vertices, where the hop number of each simple path

is no larger than a given constraint.

BCDFS [29]. This method adopts a barrier-based pruning technique to update the hop number

of vertices to the target node, thus avoiding exploring non-promising search branches in the future.

However, considering that the hop number of each skyline path is uncertain, this strategy needs to

sequentially enumerate all possible paths, leading to inevitable and extensive fruitless explorations.

In addition, the pruning strategy may not work well in SkyPE since each exploration in BCDFS

cannot provide an accurate bound for the unexplored branches.

PathEnum [33]. PathEnum introduces a lightweight index to rule out the redundant edges that

cannot satisfy the hop constraint. Despite its effectiveness on HcPE, the extension of PathEnum

exhibits two limitations. First, due to the constraint of multi-dimensional features, the redundant

vertices and edges cannot be accurately ruled out, resulting in an ineffective reduction in the search

spaces. Second, to ensure query result correctness, PathEnum must enumerate all simple paths,

though this can be time-consuming due to the abundance of non-skyline paths.

EVE [5]. EVE improves upon PathEnum by eliminating redundant vertices and edges that do

not participate in any simple path, thus compressing the search space of query tasks. Similar to
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PathEnum, it is difficult for this strategy to precisely identify all candidate vertices and edges that

are located in the corresponding skyline paths.

3 Extension of Hop-constrained path enumeration methods
Based on the analysis presented in Section 2.2, the existing skyline path query methods [10, 18,

19, 22, 26] face significant challenges in addressing the SkyPE problem due to limitations in query

correctness. Conversely, HcPE can be readily extended to address the SkyPE problem by providing

a precise maximal hop count across all skyline paths. Therefore, in this section, we primarily focus

on introducing how to adapt two existing HcPE methods, namely BCDFS [29] and PathEnum [33],

to solve the SkyPE problem. Before that, we outline a general pruning strategy based on skyline

paths to eliminate unnecessary explorations, as detailed below.

Lemma 1 (Skyline path-based pruning). Let 𝑝 (𝑠, 𝑡) be a skyline path between 𝑠 and 𝑡 .
Assuming that 𝑝∗ (𝑠, 𝑣) is a subpath between 𝑠 and 𝑣 , we can deduce that all paths extended from
𝑝∗ (𝑠, 𝑣) are not skyline if 𝐶 (𝑝 (𝑠, 𝑡)) ≺ 𝐶 (𝑝∗ (𝑠, 𝑣)).

Proof. Based on Equation 2, for each path 𝑝∗ (𝑠, 𝑡) extended from 𝑝∗ (𝑠, 𝑣), we have𝐶 (𝑝∗ (𝑠, 𝑡)) =
𝐶 (𝑝∗ (𝑠, 𝑣)) ⊕𝐶 (𝑝∗ (𝑣, 𝑡)). For the first 𝑘 dimensions,𝐶𝑙 (𝑝∗ (𝑠, 𝑡)) = min{𝐶𝑙 (𝑝∗ (𝑠, 𝑣)),𝐶𝑙 (𝑝∗ (𝑣, 𝑡))} ≤
𝐶𝑙 (𝑝 (𝑠, 𝑣)) with 𝑙 ≤ 𝑘 . Similarly, we have 𝐶𝑙 (𝑝∗ (𝑠, 𝑡)) > 𝐶𝑙 (𝑝∗ (𝑠, 𝑣)) with 𝑙 > 𝑘 . Based on Defini-

tion 2, we have 𝐶 (𝑝∗ (𝑠, 𝑡)) ≺ 𝐶 (𝑝∗ (𝑠, 𝑣)), proving that 𝐶 (𝑝∗ (𝑠, 𝑡)) ≺ 𝐶 (𝑝 (𝑠, 𝑡)). Therefore, all paths
extended from 𝑝∗ (𝑠, 𝑣) are not skyline paths. □

Example 2. Take a query 𝑞(𝑣1, 𝑣6) in Figure 2 as an example. 𝑝1 (𝑣1, 𝑣6) = ⟨𝑣1, 𝑣2, 𝑣4, 𝑣6⟩ is a skyline
path with𝐶 (𝑝1) = [2, 4, 3]. For the subpath 𝑝2 (𝑣1, 𝑣3), we find that each neighbor 𝑢 ∈ 𝑁 (𝑣3) cannot be
visited since 𝐶 (𝑝1) ≺ 𝐶 (𝑝2) ⊕ 𝑋 (𝑣3, 𝑢). Similarly, for the subpath 𝑝2 (𝑣1, 𝑣5) = ⟨𝑣1, 𝑣3, 𝑣5⟩ in Figure 2,
considering that𝐶 (𝑝2) = [1, 4, 3] which is dominated by𝐶 (𝑝1), we can conclude that all paths extended
from 𝑝2 are not skyline paths.

For any given query task, two baselines require the maximum hop number 𝑑𝑚𝑎𝑥 to ensure the

completeness of query results and prevent unnecessary exploration. It is noted that this parameter

can be calculated via our CAI index, where the details are shown in Section 5.

3.1 Extension of BCDFS
The essence of BCDFS hinges upon an innovative barrier-based pruningmethodology, where the hop

number of each candidate node towards the target node is dynamically adjusted. This mechanism

is meticulously designed to steer clear of unfruitful search trajectories in future iterations. Yet, the

challenge lies in the unpredictable nature of the hop counts associated with each potential skyline

path, necessitating a rigorous, sequential examination of every conceivable route. This, in turn,

results in an inevitable proliferation of exploratory endeavors that may ultimately yield limited

dividends. Additionally, within the framework of SkyPE, the pruning strategy may not exhibit

optimal efficacy, as the individual exploratory steps within BCDFS lack the precision to establish a

definitive criterion for guiding subsequent actions.

To tackle these challenges, we introduce BCDFS
∗
, an advanced extension of BCDFS that integrates

sophisticated pruning strategies based on both hop number and skyline path considerations to

effectively address the SkyPE problem. As shown in Algorithm 1, given a query 𝑞(𝑠, 𝑡) in 𝐺 and a

maximal hop number 𝑑𝑚𝑎𝑥 , BCDFS
∗
initializes the barrier value of each node 𝑣 ∈ 𝑉 (denoted as

𝑣 .𝑏𝑎𝑟 ) (Line 1). It then proceeds to recursively explore the graph to find all skyline paths (Lines 2-3).

Specifically, the BCSearch() procedure is invoked from the source node 𝑠 and gradually expanded

to other vertices. During this process, 𝑆𝑡𝑘 is used to collect the visited vertices, while 𝑃𝑡ℎ denotes a

set of paths where the hop number of each path does not exceed 𝑑𝑚𝑎𝑥 .

Algorithm 2 depicts the pseudo-code for the BCSearch() procedure. Specifically, if a subpath
𝑝 (𝑠, 𝑣) in 𝑆𝑡𝑘 ends at 𝑡 (𝑣 = 𝑡 ), it is inserted into 𝑃𝑡ℎ (Line 3). In addition, the exploration branch

from 𝑝 (𝑠, 𝑣) to any neighbor 𝑢 ∈ 𝑁 (𝑣) is fruitless when satisfying
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(1) |𝑝 (𝑠, 𝑣) | + 1 + 𝑢.𝑏𝑎𝑟 > 𝑑𝑚𝑎𝑥 (Lines 6-7). The subpath 𝑝 (𝑠, 𝑣) and the node 𝑢 are not located in

a simple path 𝑝 (𝑠, 𝑡) with |𝑝 (𝑠, 𝑡) | ≤ 𝑑𝑚𝑎𝑥 .

(2) ∃𝑝′ ∈ 𝑃𝑡ℎ with 𝐶 (𝑝′) ≺ 𝑐∗ (Lines 8-9). Based on Lemma 1, all paths extended from 𝑝 (𝑠, 𝑣)
are dominated by 𝑝′.

In addition, when the hop number of subpath 𝑝 (𝑠, 𝑣) stored in 𝑆𝑡𝑘 is larger than 𝑑𝑚𝑎𝑥 , we

execute the UpdateBarrier() procedure to update the barrier values of vertices, thereby pruning

the searching space of query task (Line 11). When finishing the BCSearch() procedure, each path

𝑝∗ (𝑠, 𝑡) is removed if it is dominated by the other results in 𝑃𝑡ℎ (Lines 4-5 in Algorithm 1).

Algorithm 1: BCDFS∗

Input: 𝐺 , 𝑞(𝑠, 𝑡), 𝑃𝑡ℎ, 𝑑𝑚𝑎𝑥

Output: all skyline paths between 𝑠 and 𝑡

1 𝑣 .𝑏𝑎𝑟 ← 0 with ∀𝑣 ∈ 𝑉
2 Stk← (𝑠)
3 BCSearch(𝑡, 𝑆𝑡𝑘, 𝑃𝑡ℎ, 𝑑𝑚𝑎𝑥 )

4 foreach 𝑝∗ ∈ 𝑃𝑡ℎ do

5 Remove 𝑝∗ from 𝑃𝑡ℎ if 𝐶 (𝑝′) ≺ 𝐶 (𝑝∗) with ∃𝑝′ ∈ 𝑃𝑡ℎ
6 return 𝑃𝑡ℎ

Algorithm 2: BCSearch

1 Procedure BCSearch(𝑡 , 𝑆𝑡𝑘 , 𝑃𝑡ℎ, 𝑑𝑚𝑎𝑥 )

2 𝑝 (𝑠, 𝑣) ← the subpath stored in 𝑆𝑡𝑘

3 if 𝑣 = 𝑡 then Insert 𝑝 (𝑠, 𝑣) into 𝑃𝑡ℎ;
4 else if |𝑝 (𝑠, 𝑣) | < 𝑑𝑚𝑎𝑥 then

5 foreach 𝑢 ∈ 𝑁 (𝑣) and 𝑢 ∉ 𝑆𝑡𝑘 do

6 if |𝑝 (𝑠, 𝑣) | + 1 + 𝑢.𝑏𝑎𝑟 > 𝑑𝑚𝑎𝑥 then

7 continue // Hop-based constraint

8 𝑐∗ ← 𝐶 (𝑝 (𝑠, 𝑣)) ⊕ 𝑋 (𝑣,𝑢)
9 if ∃𝑝′ ∈ 𝑃𝑡ℎ with 𝐶 (𝑝′) ≺ 𝑐∗ then continue // Lemma 1;

10 BCSearch(𝑡 , 𝑆𝑡𝑘 ∪ {𝑢}, 𝑃𝑡ℎ, 𝑑𝑚𝑎𝑥 )

11 UpdateBarrier(𝑣 , 𝑑𝑚𝑎𝑥 − |𝑝 (𝑠, 𝑣) | + 1, 𝑆𝑡𝑘)
12

13 Procedure UpdateBarrier(𝑣 , 𝑙 , 𝑆𝑡𝑘)

14 if 𝑣 .𝑏𝑎𝑟 > 𝑙 or 𝑣 .𝑏𝑎𝑟 = 0 then

15 𝑣 .𝑏𝑎𝑟 = 𝑙

16 foreach 𝑢∈𝑁 (𝑣) with 𝑢∉𝑆𝑡𝑘 do

17 UpdateBarrier(𝑢, 𝑙 + 1, 𝑆𝑡𝑘)

Lemma 2 (Correctness of BCDFS
∗
). With a proper 𝑑𝑚𝑎𝑥 , the query result of BCDFS∗ in

Algorithm 1 is correct.

Proof. Given a query 𝑞(𝑠, 𝑡), let 𝑑𝑚𝑎𝑥 be the maximal hop number of all paths in 𝑆𝑃 (𝑠, 𝑡),
i.e., 𝑑𝑚𝑎𝑥 = max𝑝 (𝑠,𝑡 ) ∈𝑆𝑃 (𝑠,𝑡 ) |𝑝 (𝑠, 𝑡) |. We can conclude that 𝑆𝑃 (𝑠, 𝑡) ⊂ 𝑃𝑡ℎ based on Definition 3.

Therefore, the rest of the paths in 𝑃𝑡ℎ are all skyline, thus guaranteeing the correctness of query

results. □
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Time complexity. Let 𝐶 𝑗 be the number of explored paths where the hop number of each path

is 𝑗 . In the worst case, each node 𝑣 in an explored path 𝑝 is visited at most 𝑗 − 1 times if |𝑝 | = 𝑗 .

Therefore, the time cost of BCDFS
∗
can be upper-bounded by 𝑂 (∑𝑑𝑚𝑎𝑥

𝑗=1
𝐶 𝑗 · 𝑗 · 𝑛).

Space complexity. In the worst, for a given query 𝑞(𝑠, 𝑡), BCDFS∗ needs to store all paths between
𝑠 and 𝑡 . Therefore, the space cost can be upper-bounded by 𝑂 (∑𝑑𝑚𝑎𝑥

𝑗=1
𝐶 𝑗 · 𝑗).

3.2 Extension of PathEnum
The foundational principle of PathEnum lies in the introduction of a lean index structure, which

serves to eliminate edges that fail to meet the hop constraint. When adapting PathEnum to the

SkyPE problem, the accuracy of the query results becomes influenced by the specified hop number.

Moreover, the complexities introduced by multi-dimensional features pose a challenge, rendering it

difficult to precisely exclude redundant vertices and edges. Consequently, this leads to a suboptimal

reduction in the searching space of any query.

To resolve these problems, we design the extension of PathEnum, named PathEnum
∗
, where

the pseudo-code is shown in Algorithm 3. Given a query 𝑞(𝑠, 𝑡) and a maximal hop number 𝑑𝑚𝑎𝑥 ,

PathEnum
∗
first computes the shortest distances of each node 𝑣 𝑖𝑛𝑉 to 𝑠 and 𝑡 (denoted as 𝑑𝑖𝑠 (𝑣, 𝑠)

and 𝑑𝑖𝑠 (𝑣, 𝑡)) and sorts the neighbors of 𝑣 if 𝑑𝑖𝑠 (𝑣, 𝑠) + 𝑑𝑖𝑠 (𝑣, 𝑡) ≤ 𝑑𝑚𝑎𝑥 (Lines 2-4). Then, the

Enumerate() procedure is invoked from the source node 𝑠 to find all skyline paths (Line 5) and

Lemma 1 is applied to reduce the fruitless exploration of subpaths which are dominated by the

existing results in 𝑃𝑡ℎ (Lines 17-21). In contrast to BCDFS
∗
, PathEnum

∗
benefits from precomputed

distance information to avoid visiting redundant vertices that cannot satisfy the hop constraint

(Lines 15-16). This approach significantly improves query performance by reducing unnecessary

computations and explorations, making PathEnum
∗
more efficient for finding skyline paths in

graphs.

Lemma 3 (Correctness of PathEnum
∗
). With a proper 𝑑𝑚𝑎𝑥 , the query result of PathEnum∗

in Algorithm 3 is correct.

Proof. Similar to Lemma 2, PathEnum can enumerate all simple paths where the hop number

of each path is no larger than 𝑑𝑚𝑎𝑥 , thus covering all skyline paths. Therefore, the query result of

PathEnum is correct. □

Time complexity. Given a query 𝑞(𝑠, 𝑡) with the maximal hop number 𝑑𝑚𝑎𝑥 , let 𝑛
∗
be the number

of vertices that satisfy 𝑑𝑖𝑠 (𝑣, 𝑠) + 𝑑𝑖𝑠 (𝑣, 𝑡) ≤ 𝑑𝑚𝑎𝑥 . Then, the time cost of PathEnum
∗
can be

upper-bounded by 𝑂 (∑𝑑𝑚𝑎𝑥

𝑗=1
𝐶 𝑗 · 𝑗 · 𝑛∗), where 𝐶 𝑗 is the number of explored paths with |𝑝 | = 𝑗 .

Space complexity. For a given query 𝑞(𝑠, 𝑡), PathEnum∗ needs to store (1) the distance messages of

each node to 𝑠 and 𝑡 and (2) all paths between 𝑠 and 𝑡 . Therefore, the space cost can be upper-bounded

by 𝑂 (∑𝑑𝑚𝑎𝑥

𝑗=1
𝐶 𝑗 · 𝑗 + 𝑛).

3.3 Limitation of Extended Methods
Based on Lemmas 2 and 3, the correctness of query outcomes from the aforementioned two

extension methods is guaranteed with a proper maximal hop number. However, these methods

still suffer from substantial performance hurdles, particularly when confronted with query tasks

characterized by higher maximal hop number values. The primary cause of this performance

bottleneck stems from the expansive search space and the abundance of redundant outcomes.

To elaborate, the quantity of feasible paths between two nodes escalates exponentially with the

increase in hop number [5, 29, 33], yet a considerable proportion of these paths are dominated

by others despite satisfying the hop constraint. As a result, the enumeration of these non-skyline

paths gives rise to extra computations and substantial performance decline.
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Algorithm 3: PathEnum∗

Input: 𝐺 , 𝑞(𝑠, 𝑡), 𝑃𝑡ℎ, 𝑑𝑚𝑎𝑥

Output: all skyline paths between 𝑠 and 𝑡

1 Stk← (𝑠)
2 Compute the shortest distances 𝑑𝑖𝑠 (𝑣, 𝑠) and 𝑑𝑖𝑠 (𝑣, 𝑡) with ∀𝑣 ∈ 𝑉
3 foreach 𝑣 ∈ 𝑉 with 𝑑𝑖𝑠 (𝑣, 𝑠) + 𝑑𝑖𝑠 (𝑣, 𝑡) ≤ 𝑑𝑚𝑎𝑥 do

4 Sort 𝑢 ∈ 𝑁 (𝑣) based on 𝑑𝑖𝑠 (𝑢, 𝑡) // an ascending order

5 Enumerate(𝑡, 𝑆𝑡𝑘, 𝑃𝑡ℎ, 𝑑𝑚𝑎𝑥 )

6 foreach 𝑝∗ (𝑠, 𝑡) ∈ 𝑃𝑡ℎ do

7 if ∃𝑝′ (𝑠, 𝑡) ∈ 𝑃𝑡ℎ with 𝐶 (𝑝′ (𝑠, 𝑡)) ≺ 𝐶 (𝑝∗ (𝑠, 𝑡)) then
8 Remove 𝑝∗ (𝑠, 𝑡) from 𝑃𝑡ℎ

9 return 𝑃𝑡ℎ

10

11 Procedure Enumerate(𝑡 , 𝑆𝑡𝑘 , 𝑃𝑡ℎ)

12 𝑣 ← the last node in 𝑆𝑡𝑘

13 Get the subpath 𝑝 (𝑠, 𝑣) stored in 𝑆𝑡𝑘

14 foreach 𝑢 ∈ 𝑁 (𝑣) and 𝑢 ∉ 𝑆𝑡𝑘 do

15 if 𝑑𝑖𝑠 (𝑣, 𝑠) + 𝑑𝑖𝑠 (𝑢, 𝑡) + 1 > 𝑑𝑚𝑎𝑥 then

16 break // Hop-based constraint

17 𝑐∗ ← 𝐶 (𝑝 (𝑠, 𝑣)) ⊕ 𝑋 (𝑢, 𝑣)
18 if ∃𝑝′ (𝑠, 𝑡) ∈ 𝑃𝑡ℎ with 𝐶 (𝑝′) ≺ 𝑐∗ then
19 continue // Lemma 1

20 if 𝑢≠𝑡 then Insert 𝑝 (𝑠, 𝑡)=𝑝 (𝑠, 𝑣)∥𝑒 (𝑣, 𝑡) into 𝑃𝑡ℎ ;

21 else Enumerate(𝑡 , 𝑆𝑡𝑘 ∪ {𝑢}, 𝑃𝑡ℎ) ;

4 Core Attribute Index
In this section, we first introduce the structure of the core attribute index, called CAI, which is a

task-oriented and lightweight index. Next, we design a CAI-based querying strategy to efficiently

enumerate all skyline paths.

4.1 Index Structure
Based on the analysis in Sections 3.3, existing techniques always suffer from the inefficiency of

fruitless explorations, causing significant time costs. To address this issue, we design CAI to collect

two types of messages: (1) the cost values of skyline paths where each node is located and (2) the

corresponding positions on these paths. This index can accurately rule out all redundant vertices

and edges that are not located in any skyline path, as defined below.

Definition 4 (core attribute index). Given a query 𝑞(𝑠, 𝑡), each node 𝑣 ∈ 𝑉 collects a label
set 𝐿(𝑣), where each label entry in 𝐿(𝑣) contains two 𝜅-dimensional vectors {𝐶 (𝑝 (𝑠, 𝑡)),𝐶 (𝑝 (𝑠, 𝑣))}
with
(1) 𝑝 (𝑠, 𝑡) denoting a skyline path that passes through 𝑣 , and
(2) 𝑝 (𝑠, 𝑣) denoting a subpath in 𝑝 (𝑠, 𝑡), i.e., 𝑝 (𝑠, 𝑣) ⊂ 𝑝 (𝑠, 𝑡).
Specifically, 𝐶 (𝑝 (𝑠, 𝑡)) and 𝐶 (𝑝 (𝑠, 𝑣)) are the cost vectors of the skyline path 𝑝 (𝑠, 𝑡) and its

subpath 𝑝 (𝑠, 𝑣), respectively. Then, the CAI index is the accumulation of label entries of each

node, i.e., 𝐶𝐴𝐼 =
⋃

𝑣∈𝑉 𝐿(𝑣). Without loss of generality, for the path 𝑝 (𝑢, 𝑣) with 𝑢 = 𝑣 , we have

𝐶𝑙 (𝑝 (𝑢, 𝑣)) = ∞ and 𝐶 𝑗 (𝑝 (𝑢, 𝑣)) = 0 with 𝑙 ≤ 𝑘 and 𝑗 > 𝑘 , respectively.

Lemma 4. Given any query task 𝑞(𝑠, 𝑡), each node 𝑣 ∈ 𝑉 is redundant when 𝐿(𝑣) = ∅.

Proc. ACM Manag. Data, Vol. 3, No. 3 (SIGMOD), Article 124. Publication date: June 2025.



Accelerating Skyline Path Enumeration with a Core Attribute Index on Multi-attribute Graphs 124:11

Proof. Based on Definition 4, we can conclude that the node 𝑣 is not located in any skyline path

between 𝑠 and 𝑡 if 𝐿(𝑣) = ∅. □

Example 3. Given a query task 𝑞(𝑣1, 𝑣6) in Figure 2, the CAI index is shown in Table 2. Based on
𝐿(𝑣1) and 𝐿(𝑣6), there are two distinct types of skyline paths, where the corresponding cost vectors
are [2, 4, 3] and [3, 4, 4], respectively. Here, the node 𝑣3 is redundant since 𝐿(𝑣3) = ∅. In addition, the
rest of the vertices are located in at least one skyline path based on Lemma 4. For example, due to
{[2, 4, 3], [3, 1, 1]} ∈ 𝐿(𝑣2), the node 𝑣2 is located in the skyline path 𝑝1 (𝑣1, 𝑣6) = ⟨𝑣1, 𝑣2, 𝑣4, 𝑣6⟩.

Table 2. The CAI index of 𝑞(𝑣1, 𝑣6) in Figure 2

𝑉 Label entries

𝑣1 {[2, 4, 3], [∞, 0, 0]}, {[3, 4, 4], [∞, 0, 0]}
𝑣2 {[2, 4, 3], [3, 1, 1]}, {[3, 4, 4], [3, 1, 1]}
𝑣3 ∅
𝑣4 {[2, 4, 3], [2, 2, 2]}
𝑣5 {[3, 4, 4], [3, 2, 3]}
𝑣6 {[2, 4, 3], [2, 4, 3]}, {[3, 4, 4], [3, 4, 4]}

Space complexity. For the CAI index, the label size |𝐿(𝑣) | of a node 𝑣 is the number of entries in

𝐿(𝑣). Denote by 𝛿 the largest label size in all vertices, i.e., 𝛿 = max𝑣∈𝑉 |𝐿(𝑣) |, the space complexity

of CAI is 𝑂 (𝑛 · 𝛿).

4.2 CAIQuery Processing
Although CAI can effectively identify all redundant vertices, direct visits to candidate vertices for

enumerating skyline paths may still lead to instances of unproductive exploration. Specifically, for

each subpath 𝑝 (𝑠,𝑢), where 𝑣 ∈ 𝑁 (𝑢) is a candidate node, the fruitless computation arises from

two main aspects, which are (1) 𝑒 (𝑢, 𝑣) is not located in any skyline path and (2) 𝑝 (𝑠,𝑢) and 𝑒 (𝑢, 𝑣)
are not located in a same skyline path. As shown in Table 2, the vertices 𝑣4 and 𝑣5 are located in

two different skyline paths 𝑝1 (𝑣1, 𝑣6) and 𝑝2 (𝑣1, 𝑣6), where 𝐶 (𝑝1) = [2, 4, 3] and 𝐶 (𝑝2) = [3, 4, 4],
respectively. Note that the edge 𝑒 (𝑣4, 𝑣5) is redundant since it is not located in any skyline path.

To avoid unnecessary computations, we design the following two pruning strategies to efficiently

eliminate fruitless edge explorations.

Lemma 5. Let 𝑝 (𝑠, 𝑡) be a skyline path between 𝑠 and 𝑡 , we have 𝐶 (𝑝 (𝑠, 𝑣)) ≺ 𝐶 (𝑝 (𝑠, 𝑡)) if 𝑝 (𝑠, 𝑣)
is the subpath of 𝑝 (𝑠, 𝑡).
Proof. Let 𝑝 (𝑠, 𝑡) = 𝑝 (𝑠, 𝑣) ∥ 𝑝 (𝑣, 𝑡). For simplicity, 𝑝 (𝑠, 𝑡), 𝑝 (𝑠, 𝑣), and 𝑝 (𝑣, 𝑡) are abbreviated

as 𝑝1, 𝑝2, and 𝑝3, respectively. For the first 𝑘 dimensions, we have 𝐶𝑙 (𝑝1) = min{𝐶𝑙 (𝑝2),𝐶𝑙 (𝑝3)} ≤
𝐶𝑙 (𝑝2) with 𝑙 ≤ 𝑘 . Similarly, for the rest𝜅−𝑘 dimensions, we have𝐶𝑙 (𝑝1) = 𝐶𝑙 (𝑝2)+𝐶𝑙 (𝑝3) > 𝐶𝑙 (𝑝2)
with 𝑙 > 𝑘 . Based on Definition 1, we have 𝐶 (𝑝 (𝑠, 𝑣)) ≺ 𝐶 (𝑝 (𝑠, 𝑡)). □

Lemma 6. Let 𝑝 (𝑠, 𝑡) be a skyline path that passes through the vertices 𝑣 and 𝑢. We have 𝑒 (𝑣,𝑢) ∈ 𝐸
is located in 𝑝 (𝑠, 𝑡) if ∃{𝐶1

𝑣 ,𝐶
2

𝑣} ∈ 𝐿(𝑣) and ∃{𝐶1

𝑢,𝐶
2

𝑢} ∈ 𝐿(𝑢) satisfy (1) 𝐶1

𝑣 = 𝐶1

𝑢 = 𝐶 (𝑝 (𝑠, 𝑡)), (2)
𝐶2

𝑣 = 𝐶 (𝑝 (𝑠, 𝑣)) and 𝐶2

𝑢 = 𝐶 (𝑝 (𝑠,𝑢)), and (3) 𝐶2

𝑢 = 𝐶2

𝑣 ⊕ 𝑋 (𝑣,𝑢).
Proof. We prove this lemma by contradiction. If 𝑒 (𝑣,𝑢) ∈ 𝐸 is not located in 𝑝 (𝑠, 𝑡), we can

conclude that 𝑝∗ (𝑠, 𝑡) = 𝑝∗ (𝑠,𝑢) ∥ 𝑝 (𝑢, 𝑡) is not a skyline path, where 𝑝∗ (𝑠,𝑢) = 𝑝 (𝑠, 𝑣) ∥ 𝑒 (𝑣,𝑢).
Based on the definition of the CAI index, we have 𝑝 (𝑠, 𝑡) = 𝑝 (𝑠,𝑢) ∥ 𝑝 (𝑢, 𝑡) where 𝐶 (𝑝 (𝑠,𝑢)) = 𝐶2

𝑢 .

Then, we have

𝐶 (𝑝∗ (𝑠, 𝑡)) = 𝐶 (𝑝∗ (𝑠,𝑢)) ⊕ 𝐶 (𝑝 (𝑢, 𝑡))
= 𝐶 (𝑝 (𝑠, 𝑣)) ⊕ 𝑋 (𝑣,𝑢) ⊕ 𝐶 (𝑝 (𝑢, 𝑡))
= 𝐶2

𝑢 ⊕ 𝐶 (𝑝 (𝑢, 𝑡))
= 𝐶 (𝑝 (𝑠, 𝑡)) .

(3)
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This conclusion contradicts the hypothesis, proving that the edge 𝑒 (𝑣,𝑢) ∈ 𝐸 is located in 𝑝 (𝑠, 𝑡). □

Algorithm 4: The CAI-based querying algorithm

Input: 𝐺 (𝑉 , 𝐸), (𝑠, 𝑡),⋃𝑣∈𝑉 𝐿(𝑣)
Output: all skyline paths between 𝑠 and 𝑡

1 𝑆𝑡𝑘 ← (𝑠) // collect the visited vertices

2 Search(𝑡 , 𝑆𝑡𝑘 ,
⋃

𝑣∈𝑉 𝐿(𝑣))
3

4 Procedure Search(𝑡 , 𝑆𝑡𝑘 ,
⋃

𝑣∈𝑉 𝐿(𝑣))
5 𝑣 ← the last node in 𝑆𝑡𝑘

6 Get the subpath 𝑝 (𝑠, 𝑣) stored in 𝑆𝑡𝑘

7 if 𝑣 = 𝑡 then Output 𝑝 (𝑠, 𝑡), return;
8 foreach 𝑢 ∈ 𝑁 (𝑣) and 𝑢 ∉ 𝑆𝑡𝑘 do

9 if 𝐿(𝑢) ≠ ∅ then continue ; // Lemma 4

10 foreach label entry {𝐶1

𝑢 ,𝐶
2

𝑢 } ∈ 𝐿(𝑢) do
11 if 𝐶 (𝑝 (𝑠, 𝑣)) ⊀ 𝐶1

𝑢 then continue; // Lemma 5

12 if ∃{𝐶1

𝑣 ,𝐶
2

𝑣 } ∈ 𝐿(𝑣) with 𝐶1

𝑣 = 𝐶1

𝑢 then

13 if 𝐶2

𝑢 = 𝐶 (𝑝 (𝑠, 𝑣)) ⊕ 𝑋 (𝑣,𝑢) then // Lemma 6
14 Search(𝑡 , 𝑆𝑡𝑘 ∪ {𝑢},⋃𝑣∈𝑉 𝐿(𝑣))

Based on Lemmas 5 and 6, we present a CAI-index-based querying algorithm to efficiently

enumerate all skyline paths, where the pseudo-code is shown in Algorithm 4. Here, 𝑆𝑡𝑘 is used to

collect the visited vertices (Line 1). Given a query task 𝑞(𝑠, 𝑡) in 𝐺 (𝑉 , 𝐸), the Search() procedure is
performed recursively to output all skyline paths (Line 2). Specifically, if the last node in 𝑆𝑡𝑘 is 𝑡 ,

then we find a skyline path and output it (Line 7). Otherwise, we consider the neighbors 𝑢 of 𝑣 such

that 𝑒 (𝑣,𝑢) and 𝑝 (𝑠, 𝑣) are located in the same skyline path, where 𝑝 (𝑠, 𝑣) is the subpath stored in

𝑆𝑡𝑘 (Lines 8-14). During this procedure, the fruitless explorations about redundant vertices and

edges can be avoided based on Lemmas 4 to 6, thus largely reducing the query time cost.

v1

v2v3

v4

v6v3

v5

v4 v5

Fig. 3. Illustrating Algorithm 4 for 𝑞(𝑣1, 𝑣6) in Figure 2. Here, the arrow refers to the direction of path traversal
and the dashed lines represent the redundant vertices and edges.

Example 4. The query procedure of 𝑞(𝑣1, 𝑣6) is shown in Figure 3. The node 𝑣2 is located in two
different skyline paths based on 𝐿(𝑣1) and 𝐿(𝑣2) in Table 2 (Lemma 6). In contrast, the node 𝑣3 is
redundant since 𝐿(𝑣3) = ∅ (Lemma 4), which means that the edges 𝑒 (𝑣1, 𝑣3), 𝑒 (𝑣2, 𝑣3), and 𝑒 (𝑣5, 𝑣3)
are not required to be visited.

Regarding the subpath 𝑝 (𝑣1, 𝑣2), the node 𝑣4 is further visited since (1) the vertices 𝑣2 and 𝑣4 are both
located in the skyline path 𝑝1 (𝑣1, 𝑣6) with𝐶 (𝑝1) = [2, 4, 3] and (2)𝐶 (𝑝 (𝑣1, 𝑣2)) ⊕ 𝑋 (𝑣2, 𝑣4) = [2, 2, 2].
Despite being a neighbor of 𝑣4, the node 𝑣5 is not visited since they are not located in the same skyline
path.
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Finally, we obtain two skyline paths 𝑝1 = ⟨𝑣1, 𝑣2, 𝑣4, 𝑣6⟩ and 𝑝2 = ⟨𝑣1, 𝑣2, 𝑣5, 𝑣6⟩, where the cost
vectors are 𝐶 (𝑝1) = [2, 4, 3] and 𝐶 (𝑝2) = [3, 4, 4], respectively.

Time complexity. In the worst case, we assume that all vertices are not redundant. Specifically,

∀𝑣 ∈ 𝑉 takes 𝑂 (𝛿) to visit the candidate neighbor 𝑢 (Lines 8-14), where 𝛿 is the largest label sizes

in all vertices. Therefore, the time complexity is 𝑂 (∑𝑣∈𝑉 𝑁 (𝑣) · 𝛿) = 𝑂 (𝑚 · 𝛿).

5 CAI Index construction
Given a query 𝑞(𝑠, 𝑡), the task of building CAI poses two primary challenges: (1) computing the cost

vectors of all skyline paths, i.e, {𝐶 (𝑝 (𝑠, 𝑡)) |𝑝 (𝑠, 𝑡) ∈ 𝑆𝑃 (𝑠, 𝑡)} and (2) determining the cost vectors of

subpaths where each node resides, i.e., {𝐶 (𝑝 (𝑠, 𝑣)) |𝑝 (𝑠, 𝑣) ⊆ 𝑝 (𝑠, 𝑡)}. A straightforward method to

address the first challenge involves traversing all paths which are not dominated by other results in

each single dimension. Subsequently, the cost vectors of skyline paths can be derived by eliminating

the vectors that are dominated by others. However, this strategy necessitates traversing a vast

number of non-skyline paths and fails to guarantee the completeness of the cost vectors for the

skyline paths containing each node, thereby inadequately addressing the second challenge. In this

part, we propose a hop-dependency property to efficiently compute the cost values of all subpaths

originating from the source node 𝑠 . This approach not only mitigates the significant computational

burden associated with traversing all paths but also facilitates the parallel construction of the CAI

index.

5.1 Hop-dependency Property
To efficiently compute the cost vectors of all skyline paths, we devise a hop-based label propagation

mechanism. This mechanism allows direct computation of the cost values of each node, thereby

avoiding the need to recursively traverse all possible paths. Given a query 𝑞(𝑠, 𝑡), assuming that

𝑃𝑑 (𝑠, 𝑣) is a set of paths between 𝑠 and 𝑣 , where ∀𝑝 (𝑠, 𝑣) ∈ 𝑃𝑑 (𝑠, 𝑣) satisfies |𝑝 (𝑠, 𝑣) | = 𝑑 . For each

vertex 𝑣 ∈ 𝑉 \ {𝑠}, 𝐶𝐿𝑑 (𝑣) is a cost vector set of 𝑃𝑑 (𝑠, 𝑣), i.e., 𝐶𝐿𝑑 (𝑣) = {𝐶 (𝑝∗) |𝑝∗ ∈ 𝐶𝑑 (𝑣)}. In
addition, we have 𝐶𝐿<𝑑 (𝑣) = ⋃𝑑−1

𝑗=0 𝐶𝐿
𝑗 (𝑣). Then, we prove that the cost vectors of each node can

be collected by gathering the cost vectors of its neighbors in Lemma 7.

Lemma 7 (Hop-based label propagation). Given a query 𝑞(𝑠, 𝑡), for each cost vector 𝑐1 ∈
𝐶𝑑 (𝑣), there is at least one cost vector 𝑐2 ∈ 𝐶𝑑−1 (𝑢) to satisfy 𝑐1 = 𝑐2 ⊕ 𝑋 (𝑢, 𝑣), where 𝑢 ∈ 𝑁 (𝑣).

Proof. We proof this lemma by contradiction. For each cost vector 𝑐2 ∈ 𝐶𝑑−1 (𝑢) with 𝑢 ∈ 𝑁 (𝑣),
we suppose that 𝑐1 ≠ 𝑐2⊕𝑋 (𝑢, 𝑣). Considering that each subpath 𝑝 (𝑠, 𝑣) must pass one neighbor of 𝑣

at least, we have𝐶 (𝑝 (𝑠, 𝑣)) = 𝐶 (𝑝 (𝑠,𝑢)) ⊕𝑋 (𝑢, 𝑣) based Equation 2, where 𝑝 (𝑠, 𝑣) = 𝑝 (𝑠,𝑢) ∥ 𝑒 (𝑢, 𝑣).
Therefore, for each subpath 𝑝 (𝑠, 𝑣) with |𝑝 (𝑠, 𝑣) | = 𝑑 , we have 𝐶 (𝑝 (𝑠, 𝑣)) ≠ 𝑐1 that contradicts the

premise. □

Based on Lemma 7, the cost values of each node originate from its neighbors. Next, we design a

pruning strategy to reduce the redundant computations about non-skyline paths and ensure the

correctness of query results.

Lemma 8. Let 𝑝 (𝑠, 𝑡) = 𝑝1 (𝑠, 𝑣) ∥ 𝑝3 (𝑣, 𝑡) and 𝑝∗ (𝑠, 𝑡) = 𝑝2 (𝑠, 𝑣) ∥ 𝑝3 (𝑣, 𝑡) with𝐶 (𝑝1) ≺ 𝐶 (𝑝2), we
have (1) 𝐶𝑙 (𝑝) ≺ 𝐶𝑙 (𝑝∗) or (2) 𝐶𝑙 (𝑝) = 𝐶𝑙 (𝑝∗).

Proof. This conclusion can be derived via Equation 2 and Definition 1. □

Lemma 9 (Subpath-based pruning). Let 𝑝 (𝑠, 𝑡) = 𝑝1 (𝑠, 𝑣) ∥ 𝑝3 (𝑣, 𝑡) and 𝑝∗ (𝑠, 𝑡) = 𝑝2 (𝑠, 𝑣) ∥
𝑝3 (𝑣, 𝑡) with 𝐶 (𝑝1) ≺ 𝐶 (𝑝2). Then, we have 𝐶 (𝑝) = 𝐶 (𝑝∗) if
• 𝐶𝑙 (𝑝1) > 𝐶𝑙 (𝑝2) ≥ 𝐶𝑙 (𝑝3) with some {𝑙} ⊆ [1, 𝑘] and
• 𝐶 𝑗 (𝑝1) = 𝐶 𝑗 (𝑝2) with ∀𝑗 ∈ [1, 𝜅] and 𝑗 ∉ {𝑙}.

Otherwise, we have 𝐶 (𝑝 (𝑠, 𝑡)) ≺ 𝐶 (𝑝∗ (𝑠, 𝑡)), proving that 𝑝∗ (𝑠, 𝑡) is not a skyline path.
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Proof. We first prove the case of 𝐶 (𝑝) = 𝐶 (𝑝∗). For the 𝑙-th dimensional cost with 𝑙 ≤ 𝑘 , we

have 𝐶𝑙 (𝑝) = 𝐶𝑙 (𝑝∗) = 𝐶𝑙 (𝑝3) since 𝐶𝑙 (𝑝1) > 𝐶𝑙 (𝑝2) ≥ 𝐶𝑙 (𝑝3). Similarly, the cost vectors of other

dimensions are consistent, proving that𝐶 (𝑝) = 𝐶 (𝑝∗). For the remaining cases, Lemma 8 establishes

that 𝐶 (𝑝 (𝑠, 𝑡)) ≺ 𝐶 (𝑝∗ (𝑠, 𝑡)), implying all paths extending from 𝑝∗ (𝑠, 𝑣) are not skyline paths. □

Lemmas 1 and 9 both focus on reducing the fruitless computations about non-skyline paths,

thus optimizing the processing time. In particular, Lemma 9 ensures that no valid skyline paths are

incorrectly pruned by preventing the elimination of skyline paths that originate from dominated

subpaths, thus maintaining the completeness of CAI. Note that these two lemmas can also be

applied to reduce the redundant computations of subpaths between each node 𝑣 and 𝑡 .

Example 5. Take a query 𝑞(𝑣1, 𝑣6) as an example. Let 𝑝1 (𝑣1, 𝑣5) = ⟨𝑣1, 𝑣2, 𝑣5⟩ and 𝑝2 (𝑣1, 𝑣5) =
⟨𝑣1, 𝑣2, 𝑣4, 𝑣5⟩ be two subpaths between 𝑣1 and 𝑣5. For a subpath 𝑝3 (𝑣5, 𝑣6) = ⟨𝑣5, 𝑣6⟩, we have 𝐶 (𝑝1 ∥
𝑝3) ≺ 𝐶 (𝑝2 ∥ 𝑝3), proving that all paths extending from 𝑝2 are not skyline paths.

5.2 The Parallelized Labeling Method
Although the time cost of traversal recursion can be optimized by directly computing the cost

vectors of all vertices, it is still time-consuming to sequentially compute the CAI index. To resolve

this problem, we provide a practical labeling method to compute the label entries of all vertices in

parallel.

The pseudo-code of this parallelized labeling method is shown in Algorithm 5. Similar to𝐶𝐿𝑑 (𝑣),
𝐶𝐿𝑑

𝑅
(𝑣) denotes a cost vector set of paths between 𝑡 and other vertices. 𝐶𝑠𝑘 is used to collect

the cost vectors of all skyline paths (Line 1). For simplicity, we have 𝐶 (𝑝1 (𝑠, 𝑣)) ≺∗ 𝐶 (𝑝2 (𝑠, 𝑣)) if
𝐶 (𝑝1) ⊕ 𝐶 (𝑝3) ≺ 𝐶 (𝑝2) ⊕ 𝐶 (𝑝3), where 𝑝3 (𝑣, 𝑡) is a subpath between 𝑣 and 𝑡 .

Generally, we execute a bidirectional search to collect the cost vectors of all skyline paths and

adopt a join-oriented operation to build the label entries of each node. First, we update 𝐶𝐿1 (𝑣) and
𝐶𝐿1

𝑅
(𝑤) where 𝑣 ∈ 𝑁 (𝑠) and𝑤 ∈ 𝑁 (𝑡) (Lines 2-3), respectively. Then, we execute the following two

operations to update the cost vectors. Consider the 𝑑-th step as an example, with details outlined

below.

• Cost vector collection (Line 7). In this part, we execute the PathGet() procedure to collect the
cost vector of each path 𝑝 (𝑠, 𝑡) with |𝑝 (𝑠, 𝑡) | = 𝑑 . Specifically, the new cost vector 𝑐∗ = 𝑐⊕𝑋 (𝑣, 𝑡)
is collected if it is not dominated by existing values (Lines 2-8 in Algorithm 6). Here, we have

𝑐 ∈ 𝐶𝐿𝑑−1 (𝑣) with 𝑣 ∈ 𝑁 (𝑡). Meanwhile, existing cost vectors are also deleted if they are

dominated by the new elements (Line 7 in Algorithm 6).

• Label computation (Lines 8-14). In this part, we compute𝐶𝐿𝑑 (𝑣) and𝐶𝐿𝑑
𝑅
(𝑣) of each node 𝑣 in

parallel based on Lemma 7. Specifically, for each node 𝑣 ∈ 𝑉 , the new cost vector 𝑐∗ = 𝑐⊕𝑋 (𝑢, 𝑣)
is collected if it is not dominated by the existing results (Lines 11-12), where 𝑢 ∈ 𝑁 (𝑣) and
𝑐 ∈ 𝐶𝐿𝑑−1 (𝑢) (Lines 10-13). Similarly, 𝐶𝐿𝑑

𝑅
(𝑣) can be obtained by re-executing Lines 9-12 of

Algorithm 5.

Algorithm 5 stops when each node no longer gets new cost vectors, i.e.,

⋃
𝑣∈𝑉 𝐶𝐿𝑑 (𝑣) = ∅ or⋃

𝑣∈𝑉 𝐶𝐿𝑑
𝑅
(𝑣) = ∅ (Line 16). Finally, we perform the LabelBuild() procedure to get the CAI index

(Line 17). Specifically, for any two cost vectors 𝑐𝑙 ∈ 𝐶𝐿<𝑑 (𝑣) and 𝑐𝑟 ∈ 𝐶𝐿<𝑑𝑅 (𝑣) with 𝑣 ∈ 𝑉 \ {𝑠, 𝑡},
we can conclude that 𝑣 is located in at least one skyline path if 𝑐𝑙 ⊕ 𝑐𝑟 ∈ 𝐶𝑠𝑘 (Lines 11-14 in

Algorithm 6). Note that 𝐿(𝑠) and 𝐿(𝑡) can be directly computed based on 𝐶𝑠𝑘 .

Calculation of maximal hop number 𝑑𝑚𝑎𝑥 .When building the CAI index for any query task

𝑞(𝑠, 𝑡), 𝑑𝑚𝑎𝑥 is updated to 𝑑 (> 𝑑𝑚𝑎𝑥 ) via the PathGet() procedure if a new path 𝑝 (𝑠, 𝑡) fulfills two
conditions: (1) |𝑝 (𝑠, 𝑡) | = 𝑑 and (2) 𝐶 (𝑝) = 𝑐∗ is not dominated by any cost value in 𝐶𝑠𝑘 . Upon

finishing the construction of the CAI index, we can conclude that 𝑑𝑚𝑎𝑥 represents the maximal hop

number of 𝑞(𝑠, 𝑡).
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Algorithm 5: The Parallelized Labeling Method

Input: 𝐺 (𝑉 , 𝐸), 𝑞(𝑠, 𝑡)
Output: the CAI index

⋃
𝑣∈𝑉 𝐿(𝑣)

1 Initial 𝐶𝑠𝑘 // collect the cost vectors

2 Insert 𝑋 (𝑠, 𝑣) into 𝐶𝐿1 (𝑣) with 𝑣 ∈ 𝑁 (𝑠) \ {𝑡}
3 Insert 𝑋 (𝑡,𝑤) into 𝐶𝐿1

𝑅
(𝑤) with𝑤 ∈ 𝑁 (𝑡) \ {𝑠}

4 if 𝑒 (𝑠, 𝑡) ∈ 𝐸 then Insert 𝑋 (𝑠, 𝑡) into 𝐶𝑠𝑘 ;
5 𝑑 ← 2

6 while True do
7 Execute PathGet(𝑑,𝐶𝑠𝑘 ) // compute the cost vectors of skyline paths

8 foreach 𝑣 ∈ 𝑉 \ {𝑠, 𝑡} in parallel do
9 foreach 𝑐 ∈ 𝐶𝐿𝑑−1 (𝑢) with 𝑢 ∈ 𝑁 (𝑣) do
10 𝑐∗ ← 𝑐 ⊕ 𝑋 (𝑢, 𝑣)
11 if ∃𝑐′∈𝐶𝑠𝑘 with 𝑐′≺𝑐∗ then continue // Lemmas 1;

12 if ∃𝑐′∈𝐶𝐿𝑑 (𝑣) with 𝑐′≺∗𝑐∗ then continue // Lemmas 9;

13 Insert 𝑐∗ into 𝐶𝐿𝑑 (𝑣) if 𝑐∗ ∉ 𝐶𝐿𝑑 (𝑣)
14 Execute Lines 9-12 to update 𝐶𝐿𝑑

𝑅
(𝑣)

15 𝑑 ← 𝑑 + 1
16 if

⋃
𝑣∈𝑉 𝐶𝐿𝑑 (𝑣) = ∅ or⋃𝑣∈𝑉 𝐶𝐿𝑑

𝑅
(𝑣) = ∅ then break;

17 return

⋃
𝑣∈𝑉 𝐿(𝑣) ← LabelBuild()

Algorithm 6: Two procedures in Algorithm 5

1 Procedure PathGet(𝑑,𝐶𝑠𝑘 )
2 foreach 𝑣 ∈ 𝑁 (𝑡) do
3 foreach 𝑐 ∈ 𝐶𝐿𝑑−1 (𝑣) do
4 𝑐∗ ← 𝑐 ⊕ 𝑋 (𝑣, 𝑡), flg← 0

5 foreach 𝑐′ ∈ 𝐶𝑠𝑘 do

6 if 𝑐′ ≺ 𝑐∗ then flg← 1, continue;

7 if 𝑐∗ ≺ 𝑐′ then Delete 𝑐′ from 𝐶𝑠𝑘 ;

8 if flg = 0 then Insert 𝑐∗ into 𝐶𝑠𝑘 ;

9

10 Procedure LabelBuild()
11 foreach 𝑣 ∈ 𝑉 \ {𝑠, 𝑡} in parallel do
12 for ∀𝑐𝑙 ∈ 𝐶𝐿<𝑑 (𝑣) and ∀𝑐𝑟 ∈ 𝐶𝐿<𝑑𝑅 (𝑣) do
13 if ∃𝑐′ ∈ 𝐶𝑠𝑘 satisfies 𝑐′ = 𝑐𝑙 ⊕ 𝑐𝑟 then
14 Insert (𝑐′, 𝑐𝑙 ) into 𝐿(𝑣)

15 foreach 𝑐 ∈ 𝐶𝑠𝑘 do

16 Insert (𝑐, 0) and (𝑐, 𝑐) into 𝐿(𝑠) and 𝐿(𝑡), respectively

Example 6. Given a query 𝑞(𝑣1, 𝑣6) in Figure 2, we show the process of Algorithm 5. Table 3 records
the whole process of collecting the skyline path cost vectors. In addition, Tables 4 and 5 record the
process of constructing 𝐶𝐿(𝑣) and 𝐶𝐿𝑅 (𝑣) with ∀𝑣 ∈ 𝑉 \ {𝑣1, 𝑣6}. Specifically,
• When 𝑑 = 1, we have

(1) Cost vector collection.We have 𝐶𝑠𝑘 = ∅ since there is no 1-hop path between 𝑣1 and 𝑣6.
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Table 3. The cost vectors of skyline paths of 𝑞(𝑣1, 𝑣6)
𝑑 = 1 𝑑 = 2 𝑑 = 3

Insert ∅ [1, 4, 3] [3, 4, 4], [2, 4, 3]
Delete ∅ ∅ [1, 4, 3]𝐶𝑠𝑘

Final [3, 4, 4], [2, 4, 3]

Table 4. The cost vector set 𝐶𝐿() of 𝑞(𝑣1, 𝑣6)
𝑉 𝑑 = 1 𝑑 = 2 𝑑 = 3 Total

𝑣2 [3, 1, 1] ∅ ∅ [3, 1, 1]
𝑣3 [1, 3, 1] [3, 3, 4] ∅ [1, 3, 1], [3, 3, 4]
𝑣4 ∅ [2, 2, 2] ∅ [2, 2, 2]
𝑣5 ∅ [3, 2, 3] ∅ [3, 2, 3]

Table 5. The cost vector set 𝐶𝐿𝑅 () of 𝑞(𝑣1, 𝑣6)
𝑉 𝑑 = 1 𝑑 = 2 𝑑 = 3 Total

𝑣2 ∅ [3, 3, 3], [2, 3, 2] ∅ [3, 3, 3], [2, 3, 2]
𝑣3 [3, 1, 2] ∅ ∅ [3, 1, 2]
𝑣4 [2, 2, 1] ∅ ∅ [2, 2, 1]
𝑣5 [3, 2, 1] ∅ ∅ [3, 2, 1]

(2) Label computation. We update the 𝐶𝐿1 (𝑣) and 𝐶𝐿1
𝑅
(𝑤) respectively, where 𝑣 ∈ 𝑁 (𝑠) \ {𝑡}

and 𝑤 ∈ 𝑁 (𝑡) \ {𝑠}. As shown in Table 4, due to 𝑒 (𝑣1, 𝑣2) ∈ 𝐸 and 𝑒 (𝑣1, 𝑣3) ∈ 𝐸, two cost
vectors [3, 1, 1] and [1, 3, 1] are inserted into 𝐶𝐿1 (𝑣2) and 𝐶𝐿1 (𝑣3), respectively. Similarly,
we have 𝐶𝐿1

𝑅
(𝑣3) = {[3, 1, 2]}, 𝐶𝐿1𝑅 (𝑣4) = {[2, 2, 1]}, and 𝐶𝐿1𝑅 (𝑣5) = {[3, 2, 1]}.

• When 𝑑 = 2, we have
(1) Cost vector collection. Considering that [1, 3, 1] ∈ 𝐶𝐿1 (𝑣3), the cost vector 𝑐∗ = [1, 3, 1] ⊕

𝑋 (𝑣3, 𝑣6) = [1, 4, 3] is inserted into𝐶𝑠𝑘 since this cost is not dominated by the existing results
in 𝐶𝑠𝑘 .

(2) Label computation. We update 𝐶𝐿2 (𝑣) and 𝐶𝐿2
𝑅
(𝑣) with ∀𝑣 ∈ 𝑉 . For example, considering

that [3, 1, 1] ∈ 𝐶𝐿1 (𝑣2) and 𝑋 (𝑣2, 𝑣4) = [2, 1, 1], the node 𝑣4 can collect a cost vector 𝑐∗ =
[3, 1, 1] ⊕ [2, 1, 1] = [2, 2, 2], which means that there is a subpath 𝑝2 (𝑣1, 𝑣4) with 𝐶 (𝑝2) =
[2, 2, 2]. Similarly, we have 𝐶𝐿2

𝑅
(𝑣2) = {[3, 3, 3], [2, 3, 2]}.

• When 𝑑 = 3, we have
(1) Cost vector collection.We collect the cost vectors of paths from each node 𝑢 ∈ 𝑁 (𝑣6) with

𝐶𝐿2 (𝑢) ≠ ∅. Accordingly, we collect two vectors 𝐶 (𝑝3) = [2, 4, 3] and 𝐶 (𝑝4) = [3, 4, 4],
where 𝑝3 (𝑣1, 𝑣6) = ⟨𝑣1, 𝑣2, 𝑣4, 𝑣6⟩ and 𝑝4 (𝑣1, 𝑣6) = ⟨𝑣1, 𝑣2, 𝑣5, 𝑣6⟩, respectively. Note that the
cost vector [1, 4, 3] is deleted from 𝐶𝑠𝑘 since it is dominated by 𝐶 (𝑝3).

(2) Label computation. We update 𝐶𝐿3 (𝑣) and 𝐶𝐿3
𝑅
(𝑣) with ∀𝑣 ∈ 𝑉 . For example, the node

𝑣5 can collect the cost vectors [3, 4, 6] = [3, 3, 4] ⊕ [3, 1, 2] and [2, 3, 5] = [2, 2, 2] ⊕ [2, 1, 3]
from 𝑣3 and 𝑣4, respectively. However, these two vectors cannot be inserted into 𝐶𝐿3 (𝑣5) since
they are both dominated by the existing results.

Due to
⋃

𝑣∈𝑉 𝐶𝐿3 (𝑣) = ∅ and⋃𝑣∈𝑉 𝐶𝐿3
𝑅
(𝑣) = ∅, the process of cost vector collection is terminated

in this round.

Example 7. Figure 4 describes the process of LabelBuild() for 𝑞(𝑣1, 𝑣6) in Figure 2. After collecting
all cost vectors, for each node 𝑣 ∈ 𝑉 \ {𝑠, 𝑡}, we execute a join-oriented operation to compute the CAI
index. The essence of the join-oriented operation lies in identifying all cost vector pairs (𝑐𝑙 , 𝑐𝑟 ) with
𝑐𝑙 ∈ 𝐶𝐿(𝑣) and 𝑐𝑟 ∈ 𝐶𝐿𝑅 (𝑣). Specifically, the node 𝑣 is located in the skyline path 𝑝 (𝑠, 𝑡) if𝐶 (𝑝 (𝑠, 𝑡)) =
𝑐𝑙 ⊕ 𝑐𝑟 . For example, the node 𝑣2 is located in two kinds of skyline paths where the cost vectors are
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[3, 4, 4] and [2, 4, 3], respectively. Therefore, we have 𝐿(𝑣2) = {([3, 4, 4], [3, 1, 1]), ( [2, 4, 3], [3, 1, 1])}.
In contrast, we have 𝐿(𝑣3) = ∅ since the corresponding cost vectors of 𝑣3 are [1, 4, 3] and [3, 4, 6] which
are dominated by [2, 4, 3] and [3, 4, 4], respectively.

[3, 1, 1]⊕[3, 3, 3] = [3, 4, 4]

[3, 1, 1]⊕[2, 3, 2] = [2, 4, 3]

[1, 3, 1]⊕[3, 1, 2] = [1, 4, 3]

[3, 3, 4]⊕[3, 1, 2] = [3, 4, 6]

[2, 2, 2]⊕[2, 2, 1] = [2, 4, 3]

[3, 2, 3]⊕[3, 2, 1] = [3, 4, 4]

v2

v3

v4

v5

V CL (v) ⊕ CLR (v)

{[3, 4, 4], [3, 1, 1]}

{[2, 4, 3], [3, 1, 1]}

Ø

Ø

{[2, 4, 3], [2, 2, 2]}

{[3, 4, 4], [3, 2, 3]}

L(v)

Fig. 4. Example of the LabelBuild() procedure in Algorithm 3 for 𝑞(𝑣1, 𝑣6) in Figure 2.

Time complexity. Let 𝛿 be themaximal number of label entries among all vertices. In theworst case,

each node 𝑣 ∈ 𝑉 takes𝑂 (∑𝑢∈𝑁 (𝑣) 𝛿 · log𝛿) and𝑂 (𝛿 · log𝛿) to collect the label entries and compute

the CAI index. Therefore, the time complexity of Algorithm 5 is 𝑂 (∑𝑣∈𝑉 (( |𝑁 (𝑣) | + 1) · 𝛿 · log𝛿))
which can be reduced to 𝑂 (𝑚 · 𝛿 · log𝛿).
Discussion for single dimension cost. In this part, we analyze how to effectively handle the

query tasks in the single-dimensional graphs.

• Single “minimized sums” property. This special case is equivalent to all edges possessing

identical “maximized minimums” attribute values. Our method can directly address this kind

of query task since the index construction process can be terminated normally, guaranteeing

CAI-based querying.

• Single “maximized minimums” property. We observe that an infinite path exists when a

cycle with the largest maximized minimum exists between the source and target vertices. To

address this issue, a straightforward strategy involves introducing an additional dimension

with the “minimized sums” property, where the numerical value of each edge is uniformly set

to 1. Following this strategy, each non-simple path will be dominated by the corresponding

skyline simple path.

6 Experiments
In this part, we introduce the experimental setup and conduct extensive experiments to evaluate

the performance of our methods.

6.1 Setup
Datasets. In the experiments, we employ several real-life datasets (Table 6) that are downloaded

from Stanford Network data
1
, Network Repository

2
, and Laboratory for Web Algorithmic

3
. All

directed data graphs have been converted to undirected graphs. Note that our method can be

adapted to answer any query task in directed graphs.

In this part, we compare the following algorithms:

• BCDFS
∗
. The polynomial delay method in Algorithm 1 with a given hop constraint.

• PathEnum
∗
. The DFS-based method in Algorithm 3 with a given hop constraint.

• EVE
∗
. The adapted version of EVE [5]

1
http://snap.stanford.edu/data/

2
http://networkrepository.com/index.php

3
https://law.di.unimi.it/index.php
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Table 6. Statistic of Real-world Graphs
Alias Dataset |𝑉 | |𝐸 | 𝑑𝑒𝑔𝑚 𝑑𝑒𝑔𝑎𝑣𝑔 Type

CA California 1.9M 2.7M 12 3 Road

TK WikiTalk 2.4M 4.7M 100029 4 Social

YT Youtube 3.2M 9.3M 91751 6 Video

UA USA 20.4M 28.8M 9 2 Road

LJ LiveJournal 3.9M 34.6M 14815 17 Social

SJ SocLiveJ 4.8M 42.8M 20333 17 Social

OK Orkut 2.9M 106.3M 27466 71 Social

WB Webbase 100M 725.4M 772,198 15 Web

IT IT2004 41.3M 1.03B 1,326,744 49 Web

TW Twitter 52.6M 1.61B 3,691,240 75 Social

SK SK2005 50.6M 1.81B 8,563,816 71 Web

FD Friender 65.6M 1.81B 4,531,243 55 Social

U6 UK2006 77.4M 2.6B 5,896,421 39 Web

U7 UK2007 109.4M 3.4B 6,366,528 41 Web

UN UK0607 131.5M 4.7B 6,100,318 71 Web

• CAI. Our method with a single core.

The details of EVE
∗
. Given any query task 𝑞(𝑠, 𝑡), EVE∗ executes the following three steps.

(1) Calculating the maximum hop number 𝑑𝑚𝑎𝑥 of 𝑞(𝑠, 𝑡) via Algorithm 5.

(2) Utilizing EVE to generate the simple path graph 𝐺∗ of 𝑞(𝑠, 𝑡) based on the parameter 𝑑𝑚𝑎𝑥 .

(3) Conducting 𝑃𝑎𝑡ℎ𝐸𝑛𝑢𝑚∗ (Algorithm 3) on 𝐺∗ to get all skyline paths.

The given hop constraint of each query in BCDFS
∗
, PathEnum

∗
, and EVE

∗
is computed based on

Algorithm 5. For each query task, the process time of CAI is the sum of indexing time (Algorithm 5)

and query time (Algorithm 4).

Environment. All algorithms are deployed in a Linux server which has Intel(R) Xeon(R) Silver

4210R with 20 computing cores and 512 GB of main memory. All algorithms are compiled with

O3-level optimization. The parallel optimization is supported by the OpenMP framework.

Edge attributes setting. The multi-attribute graphs are widely used to model many real-world

scenarios. Drawing upon existing works [19, 26], three prevalent types of attribute distribution are

typically employed in each network below:

• Independence. The numerical attributes are generated independently using a uniform distri-

bution.

• Anti-correlation. If an edge is good in one dimension, then it is bad in all the other dimensions.

• Correlation. An edge is good in one dimension, and it is also good in all the other dimensions.

Given that the networks with anti-correlated attributes are common cases (e.g., faster routes often

have higher costs in transportation networks), we have designated the anti-correlation distribution

as the default in our paper. Without specifying, the maximal numerical value of each dimension is

10.

Query task. Referring to [33], we generate disjoint sets 𝑉 ∗ and 𝑉 #
based on the vertex degrees:

(a) 𝑉 ∗ is the set of vertices within the top 10% in the descending order of their degrees, and (b)

𝑉 # = 𝑉 −𝑉 ∗. Then, we have a setting according to the locations of 𝑠 and 𝑡 :𝑉 ∗ ×𝑉 #
and𝑉 # ×𝑉 #

. We

generate 1000 queries by choosing 𝑠 and 𝑡 uniformly at random. Note that in our experiments, CAI

and the three baseline methods use the same set of queries on each dataset. The processing time

is set as INF when an algorithm cannot finish in 10
6
seconds. Without specifying, the dimension

number of attributes in each edge is set as 2.

6.2 Processing time and memory cost
In this section, we mainly examine the processing time and memory cost of all methods.
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• Processing time on all datasets. In this part, we evaluate the processing time of all algorithms

on all datasets. As shown in Fig. 5, CAI achieves up to 4, 4, and 3 orders of magnitude faster process

times compared to BCDFS
∗
, PathEnum

∗
, and EVE

∗
, respectively The superior performance of CAI

can be mainly attributed to its well-suited index structure and effective pruning strategies, signifi-

cantly reducing fruitless explorations by eliminating all redundant vertices and edges. Additionally,

all computations can be optimized based on the parallel computing strategy, thus further improving

the query performance. In contrast, BCDFS
∗
and PathEnum

∗
struggle to complete query tasks with

large maximal distances within a reasonable time limit. This is because these two methods involve

traversing redundant paths during the enumeration process, leading to increased execution time.

Despite EVE
∗
’s effort to eliminate some redundant vertices and edges, it still necessitates traversing

non-skyline simple paths, therefore increasing its execution time.

CA TK YT UA LJ SJ OK WB IT TW SK FD U6 U7 UN

10
0

10
2

10
4

INF

T
i
m
e
c
o
s
t

BCDFS
∗

PathEnum
∗

EVE
∗

CAI

Fig. 5. Process time (s) on all datasets

Figure 6 shows the comparison of time cost between CAI construction and skyline path enumer-

ation. We can observe that the time cost of index construction is much larger than that of skyline

path enumeration.

CA TK YT UA LJ SJ OK WB IT TW SK FD U6 U7 UN

10
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10
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t Index Construction Query

Fig. 6. Comparison of CAI index construction and skyline path enumeration

•Memory cost. In this part, we analyze the memory cost associated with three methods across

various datasets. As depicted in Figure 7, BCDFS
∗
emerges as the most memory-efficient approach

due to its direct execution within the original graph, which necessitates minimal additional storage.

Furthermore, the pre-computed index in PathEnum
∗
is designed solely based on the maximal hop

number constraint, thereby eliminating the need for gathering multi-dimensional attributes, which

contributes to its relatively low memory usage. Similar to PathEnum
∗
, EVE

∗
also exhibits a slightly

lower memory cost compared to our method. CAI incurs a slightly higher memory cost compared

to the other two methods. This can be attributed to the necessity of constructing an index structure

in CAI to minimize redundant computations, which inherently require additional storage space.
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EVE
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BCDFS
∗

Fig. 7. Memory cost (GB) on all datasets

6.3 Scalability evaluation
In this section, we evaluate the scalability of CAI with respect to the process time in different

scenarios.

• Scalability w.r.t the graph size. In this part, we evaluate the processing time of three methods

as the graph size scales from 20% to 100%. Notably, BCDFS
∗
is excluded from this comparison due
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to its inefficiency. Due to the page limitation, we only list the results on 8 datasets, noting that the

trends observed in these datasets are consistent with those from other experiments.
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Fig. 8. Process time (s) when varying the graph size

As illustrated in Fig. 8, as the data graphs are enlarged, the process time for all three methods

increases. This is due to the increased workload associated with each query task. Consequently,

it requires more time for these methods to retrieve all skyline paths. We also observe that CAI

demonstrates superior performance compared to PathEnum
∗
and EVE

∗
in nearly all scenarios, with

the performance disparity widening as the graph size expands. Specifically, CAI achieves processing

speeds that are up to 3 and 2 orders of magnitude faster than PathEnum
∗
and EVE

∗
, respectively. This

significant advantage stems from CAI’s ability to substantially minimize the number of explorations

required and effectively harness available computing resources. In contrast, the other methods incur

significant time costs due to the necessity of traversing numerous redundant paths, particularly

when handling query tasks in large-scale graphs. This redundancy leads to inefficiencies that hinder

their performance, especially as the graph size increases.

• Scalability w.r.t the maximal weight value. In this experiment, we evaluate the efficiency

of CAI by adjusting the maximal edge weight from 10 to 30. Due to the inefficiency, BCDFS
∗
and

PathEnum
∗
are excluded in this part.

As shown in Fig. 9, the average process time of CAI increases with the increase of the weight,

which is caused by two aspects. First, the computational cost of index construction is enlarged

when involving a larger maximal weight. Second, higher maximal edge weights can lead to an

expansion of the search spaces for query tasks. Specifically, the variety and number of potential

skyline paths may increase, making it more challenging and time-consuming for CAI to identify

and evaluate these paths.
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Fig. 9. Process time (s) vs. the maximal weight

• Scalability w.r.t the number of cores. In this experiment, we assess the scalability of CAI by

varying the number of cores from 1 to 16. Note that the other two algorithms are omitted since

they cannot be parallelized.

As shown in Fig. 10, CAI exhibits substantial performance gains when leveraging multiple cores.

Compared to a single-core execution, CAI achieves up to 14.2× (on average 11.2×) acceleration
in terms of process time on all datasets when utilizing 16 cores. This is because (1) the inherent

computational complexity of the skyline path enumeration problem in multi-attribute networks
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Fig. 10. Speedup vs. the number of cores

is significant and (2) CAI employs a hop-dependency label propagation strategy to distribute the

workload across multiple cores, thus reducing the overall process time.

• Scalability w.r.t the dimension of attribute. In this experiment, we evaluate the process

time of CAI by varying the dimension of attributes from 2 to 4. Due to the inefficiency, BCDFS
∗

and PathEnum
∗
are excluded in this part. As shown in Fig. 11, the average process time of CAI also

basically increases when equipping more attributes. The increased time cost is mainly caused by

the large amount of computation in the index construction process.
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Figure 12 illustrates the process time of our method across three scenarios featuring diverse

ratios of properties. Note that the query tasks in SK and IT were accelerated using 20 cores.

Figure 12 (a) shows the trend when varying #dimensions of maximized minimums and fixing

#dimensions of minimized sums to be 1, Figure 12 (b) shows the trend when fixing #dimensions

of maximized minimums to be 1 and varying #dimensions of minimized sums. We can find that

the average process time of our method generally increases with the addition of more dimensions.

Figure 12 (c) demonstrates that the impact of varying combinations of dimensions on process time

is indeterminate when fixing the total number of dimensions.
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6.4 Ablative evaluation
In this section, we evaluate the effect of pruning and searching strategies in CAI.

• Effectiveness of hop-dependency strategy. In this experiment, we evaluate the effectiveness

of the hop-dependency strategy by setting the hop constraint of all query tasks as a larger value

for BCDFS
∗
and PathEnum

∗
(denoted as BCDFS

#
and PathEnum

#
).

As shown in Fig. 13, BCDFS
∗
achieves up to 5.4× (on average 1.24×) speedup compared to BCDFS

#

in terms of process time. Similarly, PathEnum
∗
achieves up to 12.97× (on average 1.97×) speedup
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compared to PathEnum
#
in terms of process time. Specifically, the hop-dependency strategy in CAI

provides accurate maximal hop numbers for all query tasks, thus avoiding fruitless explorations

without satisfying the hop constraint in BCDFS
∗
and PathEnum

∗
.
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• Effectiveness of redundant vertices/edges elimination. In this experiment, we evaluate

the scale of candidate vertices and edges in CAI and PathEnum
∗
. Here, BCDFS

∗
is not set as a

competitor since the search process is executed in the whole graph.

As shown in Fig. 14, CAI achieves up to 11232× (on average 2611×) reduction compared to

PathEnum
∗
in terms of the number of vertices on all datasets. Similarly, it also achieves up to

32532× (on average 7722×) reduction in terms of the number of edges. Specifically, PathEnum
∗
only

eliminates the redundant vertices and edges which cannot satisfy the constriction of hop number.

When facing the query tasks with large maximal path distances, this method inevitably involves

massive redundant results that are actually not located in any skyline path. By contrast, CAI can

rule out all redundant vertices and edges, thus improving the query performance.
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• Effectiveness of different search paradigms. In this part, we evaluate the effectiveness

of the CAI-based searching method in Algorithm 4 by comparing it with a simple DFS method

without pruning strategies, where all redundant vertices and edges have been eliminated.

As shown in Fig. 15, CAI achieves up to 9.76× (on average 2.84×) reduction compared to DFS

in terms of process time on all datasets. Considering that two adjacent edges may be not located

on the same skyline path, it is inevitable for the simple DFS strategy to explore massive fruitless

explorations, especially for the tasks with large-scale search spaces, thus largely increasing the

process time. By contrast, our proposed search technique can avoid all fruitless explorations by

introducing effective pruning strategies.
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6.5 Performance evaluation on directed graphs
We have implemented our CAI method and performed some experiments on directed graphs.

Figure 16 (a) and (b) depict the comparison of running time as the number of dimensions and the

maximum attribute value vary, respectively, with a fixed core number of 20. As the number of

dimensions grows from 1 to 4, we observe a gradual increase in the running time of our method.
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Similarly, Figure 16 (b) shows a minor increase in the running time of our method as the maximum

attribute value is incremented from 10 to 40. Furthermore, Figure 17 demonstrates the speedup

achieved by our method. When utilizing 16 cores, our method exhibits an acceleration of up to 9.7×
(with an average of 9.4×) in running time across all datasets, compared to single-core execution. In

summary, the trends in those three experiments are consistent with those on undirected graphs.
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7 RELATEDWORK
In this section, we discuss the related work on 𝑠-𝑡 path enumeration. We also provide a brief review

of other path-related problems, including reachability queries, distance queries, and skyline queries.

7.1 Path Enumeration
We begin with the simple path enumeration problem and next discuss the hop-constrained path

enumeration.

Simple Path (or Cycle) Enumeration. Existing researches [4, 27, 31, 38] concentrate on efficiently

listing the simple paths or cycles for the query tasks. These methods leverage representation

structures to avoid explicitly storing each individual result, but they can incur significant memory

costs. More importantly, it is time-consuming for these methods to effectively prune the search

space of each query in SkyPE. Additionally, some works [2, 3, 16] focus on detecting the existence

of cycles in dynamic graphs rather than enumerating the results.

Hop-constrained Path Enumeration. HybridEnum [17] proposed a hybrid search paradigm to

enumerate simple paths to solve the HcPE problem in a distributed setting. In addition, the algorithm

incorporated mechanisms such as work-stealing and caching to handle unbalanced workloads

and optimize communication costs, respectively. Compared to HybridEnum, DistriEnum [40]

employs a core search paradigm on a sketch graph to enable fast enumeration of simple paths while

maintaining well-bound memory consumption. In addition, DistriEnum introduces the strategies

of task division and vertex migration to enhance query efficiency and scalability.

Although designing effective pruning strategies to enumerate simple paths, these methods face

a non-negligible performance bottleneck. Considering that the maximal hop number of skyline

paths is an agnostic parameter, the corresponding query results are inaccurate when selecting a

smaller hop number. In contrast, the search space will be enormous when choosing a larger hop

number value. Due to the path domination relationship, these methods inevitably take massive

fruitless explorations when directly applied to handle SkyPE, incurring huge processing time.

7.2 SkylineQueries
In the realm of skyline path queries, several approximation and optimization methods have been

proposed to address the computational challenges associated with finding exact skyline paths in
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large graphs. However, each of these methods has its limitations, particularly when it comes to

finding all exact skyline paths. In [22], the authors designed an approximation method 𝛼-FHL

which uses tree decomposition to hierarchically assign approximation ratios, supporting to find an

approximate constrained skyline path. In [14], the authors proposed a novel hierarchical index and

clusters to abstract the original graph to several summarized graphs, thus reducing the searching

space.

Other research efforts have focused on applying skyline queries to specific domains, such as

road networks. In [18], the authors computed skylines on routes, considering multiple preferences

like distance, driving time, and gas consumption. They employed graph embedding techniques to

enable a best-first-based graph exploration and proposed pruning techniques to reduce the search

space. In [26], the authors designed progressive and incremental methods to solve skyline and

top-k queries in multi-cost transportation networks, respectively. The goal of these methods is to

search for optimal paths in a road network to the underlying optimization criteria. While these

methods are effective for searching for optimal paths in road networks, they are not suitable for

solving the SkyPE problem as they do not provide complete results. The detailed analysis is shown

in Section 2.2 and more works about skyline queries have been summarized in [25].

7.3 Other RelatedQueries
Reachability Queries. Reachability queries involve determining the existence of directed paths

between two vertices in a graph. Many works [15, 29, 34, 41, 42] improve query efficiency by

building effective indexes. In [9, 29, 36], the reachability queries can be resolved based on the 2-hop

index without the data graph. However, the simple paths of each vertex pair are not recorded in

the 2-hop index. Therefore, it is impossible to only use this index to enumerate all simple paths

between the given two vertices. More details have been summarized in [43].

Distance Queries. A distance query asks about the distance between two vertices in a graph,

which receives a lot of research interests [1, 9, 12, 13, 20, 21, 28, 30, 35]. For example, the authors

in [1] constructed a landmark-based index to serve all queries and evaluated the query with the

pre-computed results. In [20], the authors proposed a parallel method to accelerate the construction

of the 2-hop index whilst keeping the minimal property of distance labels. However, these methods

or indexes cannot be used to efficiently resolve the path enumeration problem.

8 Conclusion
In this paper, we address the skyline path enumeration problem. Specifically, we design a core

attribute index to rule out redundant vertices and edges that are not located in any skyline path. In

addition, we propose effective pruning strategies to further reduce the fruitless explorations during

the enumeration. Moreover, a hop-dependency label propagation strategy is designed to accelerate

the construction of CAI. The comprehensive experiments demonstrate that our method achieves

great improvements in terms of query time and scalability while taking a well-bounded memory

consumption.
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