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The enumeration of hop-constrained simple paths is a building block in many graph-based areas. Due to

the enormous search spaces in large-scale graphs, a single machine can hardly satisfy the requirements

of both efficiency and memory, which causes an urgent need for efficient distributed methods. In practice,

it is inevitable to produce plenty of intermediate results when directly extending centralized methods to

the distributed environment, thereby causing a memory crisis and weakening the query performance. The

state-of-the-art distributed method HybridEnum designed a hybrid search paradigm to enumerate simple paths.

However, it makes massive exploration for the redundant vertices not located in any simple path, thereby

resulting in poor query performance. To alleviate this problem, we design a distributed approach DistriEnum

to optimize query performance and scalability with well-bound memory consumption. Firstly, DistriEnum

adopts a graph reduction strategy to rule out the redundant vertices without satisfying the constraint of

hop number. Then, a core search paradigm is designed to simultaneously reduce the traversal of shared

subpaths and the storage of intermediate results. Moreover, DistriEnum is equipped with a task division

strategy to theoretically achieve workload balance. Finally, a vertex migration strategy is devised to reduce

the communication cost during the enumeration. The comprehensive experimental results on 10 real-world

graphs demonstrate that DistriEnum achieves up to 3 orders of magnitude speedup than HybridEnum in

query performance and exhibits superior performances on scalability, communication cost, and memory

consumption.
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1 INTRODUCTION
Given a vertex pair (𝑠, 𝑡) and a hop constraint 𝑘 , hop-constrained path enumeration (HcPE) returns

all simple paths between 𝑠 and 𝑡 from a given graph 𝐺 , where the length of each path is no more
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than 𝑘 . HcPE is one of the fundamental problems in graph analytics and serves as a building

block in many graph-based areas [11, 23], including E-commerce networks [14, 22], knowledge

graphs [26, 27], and biological networks [16, 22]. Several representative scenarios are listed as

follows.

(1) E-commerce Networks. In E-commerce networks, the online shopping process can be

represented as a graph. In this graph, individual users such as sellers and buyers are depicted as

vertices, while online transactions like online payment and shipment of goods are represented by

edges [23, 25]. By analyzing this graph, we can identify circles that indicate potential fraudulent

activities among the users involved [23]. To calculate all the new cycles created by inserting an edge

(𝑠, 𝑡), one can obtain all the simple paths between 𝑠 and 𝑡 . Furthermore, introducing the constraint

of the hop number can help reduce the occurrence of false alarms [23, 25].

(2) Knowledge Graphs. Knowledge graphs play a vital role in recommendation systems, but

their incompleteness can significantly impact the user experience. To address this issue, path

enumeration techniques can be employed to augment the edges between different entities by

enumerating simple paths connecting them. These supplemented edges can then serve as features

to train models and predict missing relationships [28]. The constraint of hop number can be

utilized to enhance the connectivity between entities, thereby improving the overall quality of the

knowledge graph [26, 27]. It should be noted that long paths are generally less useful in capturing

strong relationships between two entities, as their corresponding relation strength tends to be

weak [23].

Motivation. In real-life scenarios, the data graphs tend to be large and grow exponentially [14].

However, processing such large graphs becomes challenging for a single machine due to the

limited memory and computation resources, rendering centralized algorithms unsuitable and

non-scalable for these scenarios [14]. To overcome this challenge, designing efficient distributed

approaches that offer good query efficiency and scalability is crucial [14]. While the literature

contains numerous excellent centralized techniques, implementing them in the distributed setting

is often not feasible. For instance, state-of-the-art centralized methods like PathEnum [28] and

EVE [6] have successfully constructed condensed graphs to reduce the search space of simple paths.

However, when deployed in the distributed setting, the enumeration process can meet memory

bottleneck caused by intermediate results, especially for large values of 𝑘 , resulting in substantial

memory consumption.

As the pioneering work in studying distributed HcPE, HybridEnum [14] introduced a novel hybrid

search paradigm that ensures lowmemory overhead. It also employed a divide-and-conquer strategy

to reduce unnecessary computations during the enumeration process. Moreover, the algorithm

incorporated mechanisms such as work-stealing and caching to handle unbalanced workloads and

optimize communication costs, respectively. Although HybridEnum adopted effective strategies

to prune computations, it still encountered exploration for redundant vertices not involved in

any simple paths. Additionally, frequent message exchanges among different machines adversely

impacted its query performance. Inspired by these limitations, our goal is to develop an efficient

and scalable distributed algorithm to address HcPE. The proposed algorithm aims to optimize the

performance of query efficiency, scalability, and memory cost for large-scale graphs.

Challenges. Developing an algorithm that simultaneously achieves the aforementioned goals

presents several challenges. Improving query performance necessitates minimizing the exploration

of redundant vertices that are not located in any simple path and reducing the frequency of message

exchanges between machines. To optimize scalability, it is crucial to design an effective task division

strategy that achieves workload balance with reasonable time costs. Additionally, constraining the

number of intermediate results, such as subpaths and communication messages, becomes essential

to decrease memory consumption and enhance scalability.

Proc. ACM Manag. Data, Vol. 2, No. 1 (SIGMOD), Article 22. Publication date: February 2024.



Efficient Distributed Hop-Constrained Path Enumeration on Large-Scale Graphs 22:3

OurApproach. Based on the aforementioned analysis, we propose an efficient distributed approach

called DistriEnum that simultaneously optimizes query performance and scalability, whilst provid-

ing a well-bound memory consumption. DistriEnum consists of four modules, each contributing

to optimizing the overall performance of the approach. The core components of DistriEnum are

the first two modules, while the latter two modules further enhance its performance. The detailed

descriptions of these modules are as follows:

• Graph reduction. This module not only reduces the exploration by ruling out vertices that

cannot satisfy the hop constraint but also provide pruning operations to early terminate the

search.

• Core search paradigm. This module adopts a depth-first search (DFS) procedure to traverse the

backbone of paths and the join-oriented method to acquire the final results, respectively. This

search paradigm reduces the memory cost of subpath storage and minimizes the computational

cost of concatenating subpaths.

• Task division. In this module, we theoretically analyze the upper bound of the searching scope

of query tasks and propose an effective task division strategy to achieve workload balance,

thereby largely improving scalability.

• Vertex migration. This module implements a vertex-cut partitioning strategy to migrate

candidate vertices to corresponding machines, which helps to avoid frequently exchanging

messages and reduce intermediate results. Additionally, it optimizes workload balance by

addressing the uneven distribution of candidate vertices.

Furthermore, our method can be easily extended to solve the problem of path enumeration with

other constraints, such as edge labels [10], distance [19], and time series [8, 23], which are relevant

to various real-life applications. For example, edge labels can be utilized to identify specific types

of enzymes or reactions in biological networks. Time series can be employed to monitor epidemic

situations [23].

Contributions. In this paper, we make the following principal contributions:

• We propose an efficient solution, DistriEnum, which employs a core search paradigm on a

sketch graph to enable fast enumeration of simple paths while maintaining well-bound memory

consumption.

• To further enhance query efficiency and scalability, we introduce the modules of task division

and vertex migration into DistriEnum.

• We conduct extensive experiments with various workloads to demonstrate the superior perfor-

mance of our proposed method.

Roadmap. The rest of the paper is organized as follows. Section 2 reviews important related work.

Section 3 presents the problem of HcPE and analyzes existing methods, and Section 4 provides a

detailed introduction to the DistriEnum framework. Section 5 evaluates the performance of our

method, and finally, Section 6 concludes the paper.

2 RELATEDWORK
In this section, we discuss the related work on path enumeration, specifically focusing on hop-

constrained path enumeration (HcPE). We also provide a brief review of other path-related problems,

including reachability queries and distance queries.

2.1 Path Enumeration
We begin with the simple path enumeration problem and next discuss the hop-constrained path

enumeration, i.e., HcPE, the focus of this paper.
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Simple Path (or Cycle) Enumeration. Several existing works [5, 21, 25, 32] focus on efficiently

listing the simple paths or cycles between source and target nodes. These methods leverage

representation structures to avoid explicitly storing each individual result, but they can incur

significant memory costs. However, it is time-consuming for these methods to resolve HcPE [4, 7, 17]

since the search space of each query cannot be pruned when neglecting the hop constraints.

Additionally, some works [2, 3, 13] focus on detecting the existence of cycles in dynamic graphs

rather than enumerating the results.

Hop-constrained Path Enumeration (HcPE). In [23], the authors proposed a barrier-based

pruning technique to accelerate the performance of HcPE. This strategy leverages failure enumera-

tion results to avoid exploring non-promising search branches in the future. Moreover, a join-based

method, called JOIN, is constructed to further optimize the query efficiency with large 𝑘 values by

reducing the redundant traversal of shared subpaths while taking expensive space overhead.

PathEnum [28] constructed a lightweight index to exclude the vertices which cannot satisfy

the constraint of hop numbers, thereby avoiding exploring non-promising search branches. They

further propose a DFS-based approach and an effective join-oriented method to enumerate all

simple paths. EVE [6] improves upon PathEnum by establishing a more condensed graph, reducing

exploration spaces, and accelerating enumeration.

Although these algorithms provide effective strategies to prune redundant computation and

enhance query efficiency, they may encounter performance issues, such as intermediate results

and frequent communication, when directly applied to distributed environments.

2.2 Reachability and DistanceQueries
Reachability Queries. Reachability queries involve confirming the existence of directed paths

between two vertices in a graph. Many works [12, 23, 29, 33, 34] improve query efficiency by

building effective indexes. In [9, 23, 30], the reachability queries can be resolved based on the 2-hop

index without the data graph. However, the simple paths of each vertex pair are not recorded in

the 2-hop index. Therefore, it is impossible to only use this index to enumerate all simple paths

between the given two vertices. More details have been summarized in [35].

Distance Queries.A distance query asks about the distance between two vertices in a graph, which

receives a lot of research interests [1, 9, 19, 20, 24]. In [1], the authors constructed a landmark-based

index to serve all queries and evaluated the query with the pre-computed results. In [19], the

authors proposed a parallel method to accelerate the construction of the 2-hop index. However,

these methods or indexes cannot be used for path enumeration.

3 PRELIMINARY
In this section, we begin by presenting the problem of HcPE. Subsequently, we thoroughly examine

the state-of-the-art approaches. Table 1 summarizes frequently used notations in this paper.

3.1 Problem Description.
Let 𝐺=(𝑉 , 𝐸) be an undirected graph where 𝑉 is a set of 𝑛 vertices and 𝐸⊆𝑉×𝑉 is a set of𝑚 edges.

We use 𝑁 (𝑣,𝐺)={𝑢 |𝑒 (𝑢, 𝑣)∈𝐸} as the neighbor set of 𝑣 in 𝐺 . 𝑑𝑒𝑔(𝑣)=|𝑁 (𝑣,𝐺) | denotes the degree
of 𝑣 . Given a pair of vertices (𝑠, 𝑡), we represent a walk between 𝑠 and 𝑡 with potentially duplicate

vertices as𝑤 (𝑠, 𝑡) = ⟨𝑣0 = 𝑠, 𝑣1, . . . , 𝑣𝑘−1, 𝑣𝑘 = 𝑡⟩, where 𝑒 (𝑣𝑖 , 𝑣𝑖+1) ∈ 𝐸 for 𝑖 ∈ [0, 𝑘 − 1]. Comparably,

𝑝 (𝑠, 𝑡) denotes a simple path between 𝑠 and 𝑡 with no duplicate vertices. ℎ𝑜𝑝 (𝑝) denotes the hop
number (the number of edges) of this path 𝑝 . We say a path 𝑝 is a k-hop-constrained path if

ℎ𝑜𝑝 (𝑝) ≤ 𝑘 , where 𝑘 is a pre-defined hop number. For presentation simplicity, we use a hc-s-t path

to denote a hop-constrained 𝑠-𝑡 simple path.
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Table 1. Notations and meanings.

Notations Meanings

𝐺=(𝑉 , 𝐸) an undirected graph

(𝑢, 𝑣) a vertex pair

𝑁 (𝑣,𝐺) the neighbor set of 𝑣 in 𝐺

𝑑𝑒𝑔(𝑣) the degree of 𝑣

𝑤 (𝑠, 𝑡) a walk from 𝑠 to 𝑡

𝑝 (𝑠, 𝑡) a simple path from 𝑠 to 𝑡

ℎ𝑜𝑝 (𝑝) the hop number of the simple path 𝑝

𝑣 .𝑠 and 𝑣 .𝑡 the minimal hop numbers from 𝑣 to 𝑠 and 𝑡

𝑊 (𝑠, 𝑡, 𝑘,𝐺) a set of walks from 𝑠 to 𝑡

𝑃 (𝑠, 𝑡, 𝑘,𝐺) a set of simple paths from 𝑠 to 𝑡

SP𝑠 and SP𝑡 sets of source and target paths

SP𝑚 sets of backbone paths

Graph Partitioning. In the distributed environment, the data graph is divided into partitions

based on vertices and distributed across multiple machines. The entire adjacency list of the graph

is spread across different machines. It is ensured that for each vertex, its corresponding adjacency

list is stored in the same memory space. By default, we utilize the commonly adopted partitioning

method [18] to divide the data graph.

Problem Definition. Given an undirected graph 𝐺 , a hop constraint 𝑘 , and two vertices 𝑠 and

𝑡 , the query task 𝑞(𝑠, 𝑡, 𝑘) aims to find all simple paths between 𝑠 and 𝑡 , where the length of each

simple path is no more than 𝑘 .

v0 v8

v6

v7 v2

v4

v9v3

v11

v13 v5

s v12

v10 t

v1

Fig. 1. Example of graph 𝐺 stored in two machines

Example 1. Fig. 1 depicts a graph𝐺 where the vertices represented by white and grey in𝐺 are stored
in two machines respectively. The dotted line means that the vertices of this edge are placed in different
machines. Given an HcPE query task 𝑞(𝑠, 𝑡, 4), two hc-s-t paths can be found, namely ⟨𝑠, 𝑣1, 𝑣7, 𝑣4, 𝑡⟩
and ⟨𝑠, 𝑣1, 𝑣7, 𝑣2, 𝑡⟩.

3.2 State-of-the-art Approaches
PathEnum [28]. PathEnum introduces a lightweight index structure to identify candidate vertices

and employs two index-based search approaches, IDX-DFS and IDX-JOIN, for enumeration. IDX-

DFS utilizes a depth-first search (DFS) strategy to generate all simple paths, while IDX-JOIN
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incorporates path concatenation to optimize the traversal of shared subpaths. However, IDX-DFS

often traverses numerous identical subpaths, resulting in extensive redundant computations [28],

and IDX-JOIN requires additional memory to store these subpaths. Despite its effectiveness, the

distributed extension of PathEnum exhibits two limitations:

• Memory consumption. The DFS-based strategy utilizes memory efficiency in a centralized

setting by maintaining a data list to track the visited vertices. Directly applying the DFS-

oriented approach in IDX-DFS results in significant intermediate result generation, especially

for large values of 𝑘 . Compared to IDX-DFS, IDX-JOIN adopts a join-oriented operation to

minimize redundant traversal of shared subpaths. However, this method incurs significant

memory overhead due to the storage of all subpaths, and the time overhead of concatenating

subpaths is also expensive.

• Poor scalability. PathEnum faces challenges in achieving workload balance and scalability in

the distributed setting. Theoretically, the generation of subtasks with comparable workloads is

difficult to achieve. Moreover, the uneven distribution of candidate vertices can lead to signifi-

cant differences in computational overhead among machines. Specifically, DFS is inherently

sequential and challenging to parallelize effectively in distributed systems [14], limiting the

exploitation of computational resources of distributed systems. Furthermore, the uneven distri-

bution of subpaths across machines can lead to memory overflow in certain machines, adversely

affecting scalability and practicality.

EVE [6]. EVE improves upon PathEnum by further compressing the search space of query tasks

through the elimination of redundant vertices and edges that do not participate in any simple

path. However, EVE still relies on the DFS-based and JOIN-based paradigms for obtaining the final

results. As the reduced graph is distributed among different machines, it is necessary to exchange

messages when visiting the graph placed in other machines, thus producing many communication

costs and seriously damaging the query efficiency.

HybridEnum [14]. HybridEnum adopts a divide-and-conquer strategy to minimize memory con-

sumption and enhance enumeration efficiency. It introduces work-stealing and caching mechanisms

to address workload imbalances and optimize communication costs. However, HybridEnum has

the following three shortcomings:

• Redundant computations. Although HybridEnum employs effective strategies to reduce search

spaces, it does not directly eliminate redundant vertices that do not meet the hop number

constraint. As a result, query efficiency is negatively impacted.

• Frequent communication. HybridEnum necessitates frequent message exchanges among ma-

chines due to the random distribution of candidate vertices. This communication overhead can

hamper query performance. Although a cache mechanism is deployed in HybridEnum to store

a part of common vertices and edges, this strategy heavily relies on the size of the cache graph

and cannot avoid the production of intermediate results.

• Workload imbalance.While HybridEnum incorporates a work-stealing mechanism to migrate

subtasks to idle machines and enhance query efficiency, achieving theoretical workload balance

across all machines during enumeration is challenging since this strategy needs to be executed

frequently during enumeration and is not equipped with a theoretical guarantee to keep

workload balance.

Based on the aforementioned analysis, there is a need for a more effective distributed method

that optimizes query efficiency, scalability, and memory utilization.

Example 2. Take 𝑞(𝑠, 𝑡, 6) in Fig 1 as an example. The reduced graphs in PathEnum and EVE
are the same as in Fig. 3(a), as every edge belongs to at least one simple path. For a simple path
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𝑝 (𝑠, 𝑡) = ⟨𝑠, 𝑣1, 𝑣7, 𝑣4, 𝑡⟩ of this query, each dashed line in this path represents a message exchange.
PathEnum and EVE need to make three message exchanges to get this simple path. Based on this
calculation, the total number of message exchanges over all paths of 𝑞(𝑠, 𝑡, 6) is 186. Apparently, the
frequent communication heavily impairs the query efficiency.
By contrast, HybriEnum needs to make a DFS-based paradigm to visit all vertices where the hop

number away from 𝑠 is no more than 6. Therefore, it is inevitable for this method to visit the redundant
vertices 𝑣8 to 𝑣13.

4 OUR FRAMEWORK OVERVIEW
In this section, we first give an overview of the framework of DistriEnum. Then, we introduce each

module deployed in DistriEnum in detail.

4.1 Overview
According to the analysis in Section 3.2, we aim to overcome the difficulties of existing methods in

the distributed setting. The overview of our DistriEnum approach is illustrated in Fig. 2. When

given a query task 𝑞(𝑠, 𝑡, 𝑘) in the graph 𝐺 , we first apply the graph reduction module to eliminate

redundant vertices and generate a sketch graph. This sketch graph serves as the basis for subsequent

procedures. Then, we design a new search paradigm to efficiently enumerate all simple paths with

limited memory overhead. Furthermore, we design two optimization modules of task division and

vertex migration to optimize query efficiency and scalability. The task division module establishes

the theoretical upper bound on the search space for each query subtask and employs an efficient

method to achieve workload balance among machines. The vertex migration module focuses on

migrating candidate vertices from the sketch graph to their respective machines, which helps

maintain workload balance and reduces communication costs.

Results

P(s, t, k)

Graph G

Task

q(s, t, k)

Input DistriEnum Output

Sec 4.2

Graph 

Reduction Sec 4.4 
Task Division

Sec 4.5 
Vertex Migration

Sec 4.3

Core Search Paradigm

Fig. 2. An overview of DistriEnum

4.2 Graph Reduction
Based on the analysis in “Challenge” of Sec. 1, the key to improving query efficiency is to reduce

unnecessary computation caused by traversing redundant vertices and edges. HybriEnum adopted

a backpropagation mechanism to maintain the barrier levels of vertices, thereby avoiding falling

into the same unnecessary exploration. However, it is inevitable for this strategy to explore the

vertices which cannot satisfy the constraint of hop numbers, thus seriously impairing the query

efficiency. Inspired by the lightweight index adopted in PathEnum, we propose a vertex-centric

graph reduction method to generate a sketch graph 𝐺∗ (𝑉 ∗, 𝐸∗) where each vertex 𝑣∈𝑉 ∗ satisfies
the constraint of hop number. The definition of this sketch graph is listed as follows.

Definition 1 (Sketch Graph). Given a graph 𝐺 (𝑉 , 𝐸) and a query task 𝑞(𝑠, 𝑡, 𝑘), the sketch
graph 𝐺∗ (𝑉 ∗, 𝐸∗) is an induced subgraph of 𝐺 , which satisfies:
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• 𝑉 ∗ ⊆ 𝑉 and 𝐸∗ = 𝐸 ∩ (𝑉 ∗ ×𝑉 ∗);
• ∀𝑣 ∈ 𝑉 ∗, it satisfies 𝑣 .𝑠 + 𝑣 .𝑡 ≤ 𝑘 ;
• ∀𝑢 ∈ 𝑁 (𝑣,𝐺∗), it satisfies 𝑣 .𝑠 + 𝑢.𝑡 ≤ 𝑘 − 1;
• ∀𝑣∈𝑉 ∗, each node 𝑢∈𝑁 (𝑣,𝐺∗) is sorted in an ascending order by 𝑢.𝑡 ,

Here, 𝑣 .𝑠 and 𝑣 .𝑡 denote the minimal hop numbers from 𝑣 to 𝑠 and 𝑡 , respectively. The individual

components of the satisfied properties are explained below: (1) the first one ensures the sketch

graph is an induced subgraph; (2) the second (resp., third) means that there is at least one walk

via 𝑣 (resp., 𝑒 (𝑣,𝑢)), so 𝑣 (resp., 𝑒 (𝑣,𝑢)) should be included; and (3) the fourth enables an effective

pruning strategy in Algorithm 3 (to be explained). After constructing the sketch graph, each hc-s-t

path can be obtained when the corresponding walk does not contain any repeated vertices.

Algorithm 1 presents the details of generating the sketch graph. Given a query task 𝑞(𝑠, 𝑡, 𝑘), we
first compute the minimal hop numbers of each vertex 𝑣 to 𝑠 and 𝑡 (Line 1) by invoking the procedure

Compute() (Lines 8-18) twice. Compute(tgt) performs the breadth-first search (BFS) via vertex-

centric message passing. Initially, the target vertex 𝑡𝑔𝑡 sends the current hop number to its neighbors

(Lines 10-11) when 𝑠𝑢𝑝𝑒𝑟𝑠𝑡𝑒𝑝=0. During the next supersteps, each activated vertex executes three

steps, including receiving messages, updating the minimal hop number, and transmitting messages

to the neighbors (Lines 12-18). This procedure requires 𝑘 iterations to finish at most. Next, we select

the candidate vertices and edges based on their minimal hop numbers (Lines 3-5) and maintain a

two-dimensional matrix 𝐴𝑑 𝑗 to construct the sketch graph 𝐺∗ (Line 6).

Algorithm 1: GraphReduction

Input: 𝐺 (𝑉 , 𝐸), 𝑞(𝑠, 𝑡, 𝑘)
Output: 𝐺∗ (𝑉 ∗, 𝐸∗)

1 Execute Compute(s) and Compute(t) to get 𝑣 .𝑠 and 𝑣 .𝑡 for 𝑣∈𝑉 , respectively

2 Initialize a two-dimensional array 𝐴𝑑 𝑗

3 foreach 𝑣 ∈ 𝑉 with 𝑣 .𝑠 + 𝑣 .𝑡 ≤ 𝑘 do

4 foreach 𝑢 ∈ 𝑁 (𝑣,𝐺) with 𝑣 .𝑠 + 𝑢.𝑡 + 1 ≤ 𝑘 do

5 𝐴𝑑 𝑗 [𝑣] .𝑝𝑢𝑠ℎ(𝑢)
6 Sort 𝐴𝑑 𝑗 [𝑣] based on a ascending order of 𝑢.𝑡

7 Construct 𝐺∗ based on 𝐴𝑑 𝑗 and return it.

8

9 procedure Compute(vertex 𝑡𝑔𝑡 )

10 Initial 𝑣 .𝑡𝑔𝑡←∞ for 𝑣∈𝑉−{𝑡𝑔𝑡}
11 if 𝑠𝑢𝑝𝑒𝑟𝑠𝑡𝑒𝑝 = 0 then

12 Send𝑚𝑠𝑔 to 𝑣 for 𝑣∈𝑁 (𝑡𝑔𝑡,𝐺) with𝑚𝑠𝑔.𝑑𝑖𝑠 ← 1

13 for 𝑠𝑢𝑝𝑒𝑟𝑠𝑡𝑒𝑝 ∈ [1, 𝑘] do
14 foreach vertex 𝑣 ∈ 𝑉 do

15 foreach received message𝑚𝑠𝑔 do

16 𝑣 .𝑡𝑔𝑡←𝑚𝑠𝑔.𝑑𝑖𝑠 with 𝑣 .𝑡𝑔𝑡 > 𝑚𝑠𝑔.𝑑𝑖𝑠

17 if 𝑣 .𝑡𝑔𝑡 is changed and 𝑣 ∉ {𝑠, 𝑡} then
18 𝑚𝑠𝑔.𝑑𝑖𝑠 ← 𝑣 .𝑡𝑔𝑡 + 1
19 Send𝑚𝑠𝑔 to 𝑢 for 𝑢∈𝑁 (𝑣,𝐺)

Time complexity. In the worst case, Algorithm 1 takes 𝑂 ( |𝑉 | + |𝐸 |) time to construct the sketch

graph, assuming that all vertices satisfy the hop number constraint.
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Table 2. A two dimensional matrix which records the minimal hop numbers of each vertex to 𝑠 and 𝑡

Vertex 𝑠 𝑣0 𝑣1 𝑣2 𝑣3 𝑣4 𝑣5 𝑣6 𝑣7 𝑣8 𝑣9 𝑣10 𝑣11 𝑣12 𝑣13 𝑡

𝑣 .𝑠 0 1 1 3 2 3 3 2 2 3 4 4 4 4 3 4

𝑣 .𝑡 4 3 3 1 3 1 1 2 2 4 5 5 5 5 4 0
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Fig. 3. (a) the sketch graph 𝐺∗ of 𝑞(𝑠, 𝑡, 6) and (b) the adjacency structure 𝐴𝑑 𝑗 of 𝐺∗.

Example 3. Consider a query task 𝑞(𝑠, 𝑡, 6) on the graph shown in Fig. 1. We illustrate the execution
of Algorithm1 to generate the sketch graph.
First, the algorithm computes the minimum hop numbers of all vertices to 𝑠 (or 𝑡) and records

the results in Table 2. Next, redundant vertices (𝑣8 to 𝑣13) that violate the hop number constraint
𝑣 .𝑠 + 𝑣 .𝑡 ≤ 6 are ruled out. For each candidate vertex 𝑣 , its neighbors 𝑢 are sorted in ascending order
based on 𝑢.𝑡 . The resulting adjacency structure, shown in Fig. 3(b), depicts the candidate vertices in
blue and their corresponding sorted neighbors in white. Finally, the sketch graph 𝐺∗ shown in Fig. 3(a)
is generated based on this adjacency structure.

4.3 Core Search Paradigm
After constructing the sketch graph 𝐺∗, one straightforward approach is to utilize IDX-DFS and

IDX-JOIN from PathEnum to enumerate all simple paths. However, as introduced in Section 3.2,

these two strategies have certain drawbacks that limit their applicability.

To alleviate these issues, we design a triple concatenation-based search paradigm, named

TCBSearch, that combines the advantages of these two strategies to efficiently enumerate simple

paths with reduced memory consumption. Given a query task 𝑞(𝑠, 𝑡, 𝑘) in the sketch graph𝐺∗, each
simple path is split into three parts: source subpaths (SP𝑠 ), backbone subpaths (SP𝑚), and target

subpaths (SP𝑡 ). SP𝑠 consists of subpaths from 𝑠 to its 2-hop neighbors, while SP𝑡 contains subpaths
from 𝑡 to its 1-hop neighbors. The backbone subpaths 𝑝𝑚 (𝑣1, 𝑣2) ∈ SP𝑚 satisfy the following condi-

tions: 1) 𝑣1 is a 2-hop neighbor of 𝑠 ; 2) 𝑣2 ∈ 𝑁 (𝑡,𝐺∗); and 3) ℎ𝑜𝑝 (𝑝𝑚) ≤ 𝑘 − 3. All simple paths can

be obtained by concatenating subpaths from these three parts.

Specifically, given a query task 𝑞(𝑠, 𝑡, 𝑘), we first execute Algorithm 2 to establish SP𝑠 and SP𝑡 ,
and collect the 2-hop candidate neighbors of 𝑠 (called SrcV). Next, all simple paths 𝑝 (𝑠, 𝑡) with
ℎ𝑜𝑝 (𝑝) ≤ 3 can be directly obtained during the procedure PathCollect() in Algorithm 2.

• ℎ𝑜𝑝 (𝑝)=1. The simple path ⟨𝑠, 𝑡⟩ is unique when satisfying 𝑡 ∈ 𝑁 (𝑠,𝐺∗) (Lines 2-3).
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Algorithm 2: PathCollect

Input: 𝐺∗, 𝑞(𝑠, 𝑡, 𝑘)
Output: SP𝑠 , SP𝑡 , and SrcV

1 foreach 𝑣 ∈ 𝑁 (𝑠,𝐺∗) do
2 if 𝑣 = 𝑡 then

3 Output the simple path ⟨𝑠, 𝑡⟩
4 foreach 𝑢 ∈ 𝑁 (𝑣,𝐺∗) with 𝑣 ≠ 𝑡 do

5 if 𝑢 = 𝑡 then

6 Output the simple path ⟨𝑠, 𝑣, 𝑡⟩
7 else

8 Add the subpath ⟨𝑠, 𝑣,𝑢⟩ to SP𝑠
9 SrcV.𝑝𝑢𝑠ℎ(𝑢)

10 foreach 𝑣 ∈ 𝑁 (𝑡,𝐺∗) with 𝑣 ≠ 𝑠 do

11 if 𝑣 ∈ SrcV and 𝑘 ≥ 3 then

12 foreach ⟨𝑠, 𝑣, 𝑣⟩ ∈ SP𝑠 do
13 Output the simple path ⟨𝑠, 𝑣, 𝑣, 𝑡⟩

14 Add the subpath ⟨𝑣, 𝑡⟩ to SP𝑡

Algorithm 3: TCBSearch

Input: 𝐺∗, 𝑞(𝑠, 𝑡, 𝑘), SP𝑠 , SP𝑡 , SrcV
Output: all simple paths between 𝑠 and 𝑡

1 foreach 𝑣 ∈ SrcV and 𝑘 > 3 do

2 Initial a stack 𝑆𝑡𝑘 to collect vertices

3 Search(Stk, v, k − 3)
4

5 procedure Search(stack 𝑆 , vertex 𝑢, hop number 𝑘ℎ𝑜𝑝)

6 𝑆.𝑝𝑢𝑠ℎ(𝑢) and 𝑣 ← 𝑆 [0]
7 if 𝑝𝑡=⟨𝑢, 𝑡⟩ ∈ SP𝑡 then
8 foreach 𝑝𝑠 ∈ SP𝑠 with 𝑝𝑠 ∩ 𝑆 = {𝑣} do
9 Output the simple path 𝑝 (𝑠, 𝑡) = 𝑝𝑠 ∪ 𝑆 ∪ 𝑝𝑡

10 foreach ¤𝑣 ∈ 𝑁 (𝑢,𝐺∗) do
11 if 𝑙𝑒𝑛(𝑆) + ¤𝑣 .𝑡 > 𝑘ℎ𝑜𝑝 then break;

12 if ¤𝑣 ∉ 𝑆 and ¤𝑣 ≠ 𝑡 then Search(𝑆, ¤𝑣, 𝑘ℎ𝑜𝑝) ;
13 𝑢 is unstacked from 𝑆

• ℎ𝑜𝑝 (𝑝)=2. Each simple path ⟨𝑠, 𝑣, 𝑡⟩ can be confirmed when satisfying 𝑣 ∈ 𝑁 (𝑠,𝐺∗) ∩ 𝑁 (𝑡,𝐺∗)
(Lines 4-6).

• ℎ𝑜𝑝 (𝑝)=3. We first confirm the middle vertex 𝑣 with 𝑣 ∈ SrcV ∩ 𝑁 (𝑡,𝐺∗) (Line 11). Then, each
simple path ⟨𝑠, 𝑣, 𝑣, 𝑡⟩ can be obtained by concatenating ⟨𝑠, 𝑣, 𝑣⟩ and ⟨𝑣, 𝑡⟩ which are stored in

SP𝑠 and SP𝑡 , respectively (Lines 12-13).

Algorithm 3 presents the pseudo-code of TCBSearch. After collecting SP𝑠 and SP𝑡 , for each vertex

𝑣 ∈ SrcV, we first execute a DFS-based search to obtain the backbone subpaths (Lines 1-3). Then, we

adopt a triple concatenation-based method to output the final results. The details are shown in the
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procedure of Search() in Algorithm 3. Similar to IDX-DFS, this search procedure can prune many

redundant computations based on the reordered neighbors of candidate vertices (Line 11). Here,

the stack 𝑆𝑡𝑘 is established to avoid traversing the repeated vertices (Line 12). For each backbone

subpath 𝑝𝑚 (𝑣1, 𝑣2), the corresponding simple path 𝑝 (𝑠, 𝑡) can be obtained by combining 𝑝𝑠 (𝑠, 𝑣1),
𝑝𝑚 (𝑣1, 𝑣2), and 𝑝𝑡 (𝑣2, 𝑡), where 𝑝𝑠 ∩ 𝑝𝑚 = {𝑣1} and 𝑝𝑚 ∩ 𝑝𝑡 = {𝑣2} (Lines 7-9).

Example 4. Consider an HcPE query task 𝑞(𝑠, 𝑡, 6) in Fig. 3(a), where the adjacency structure of
each vertex is shown in Fig. 3(b). As shown in Table 3, we first collect the subpaths in SP𝑠 and SP𝑡 ,
respectively. Then, given an activated vertex 𝑣 ∈ SrcV, we execute the Search() procedure to get the
corresponding backbone subpaths. Take the vertex 𝑣7 as an example. Fig 4 lists a total number of 14
backbone paths from 𝑣7 to the 1-hop neighbors of 𝑡 which are 𝑣2, 𝑣4, and 𝑣5. Furthermore, we execute
a triple concatenation-based method for all backbone paths to output the final results. For example,
according to concatenate 𝑝𝑠 = ⟨𝑠, 𝑣1, 𝑣7⟩, 𝑝𝑚 = ⟨𝑣7, 𝑣2⟩, and 𝑝𝑡 = ⟨𝑣2, 𝑡⟩, we can obtain the simple path
𝑝 (𝑠, 𝑡) = 𝑝𝑠 ∪ 𝑝𝑚 ∪ 𝑝𝑡 = ⟨𝑠, 𝑣1, 𝑣7, 𝑣2, 𝑡⟩.
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Fig. 4. Backbone subpaths of the vertex 𝑣7 of 𝑞(𝑠, 𝑡, 6) in 𝐺∗

Comparison with existing methods. TCBSearch offers three key advantages for path enumera-

tion:

• Reduced memory consumption: TCBSearch only collects subpaths from SP𝑠 and SP𝑡 , and employs

a DFS-based method to traverse subpaths from SP𝑚 instead of storing them in advance. This

significantly reduces memory overhead compared to IDX-JOIN.

• Decreased time cost: TCBSearch is faster than IDX-DFS since decreasing the hop number (from

𝑘 to 𝑘 − 3) indeed prunes the traversal of shared subpaths. Moreover, for each backbone subpath

𝑝𝑚 (𝑣1, 𝑣2) in SP𝑚 , the time complexity of path concatenation can be optimized to 𝑂 (𝑐), where
𝑐 = |SP𝑠 [𝑣1] | is the number of simple paths from 𝑠 to 𝑣1.

• Enhanced scalability: Similar to IDX-JOIN, TCBSearch divides the query task into a series of

finer-grained independent subtasks. This division allows for better load balancing and resource

utilization in the distributed environment, leading to enhanced scalability.

Example 5. Take the query 𝑞(𝑠, 𝑡, 6) in Fig. 3 (a) as an example. The performance comparison of
three methods is listed as follows.

Table 3. The elements in SP𝑠 , SP𝑡 , and SrcV of 𝑞(𝑠, 𝑡, 6)

Symbols Elements

𝑆𝑃𝑠 ⟨𝑠, 𝑣0, 𝑣3⟩, ⟨𝑠, 𝑣0, 𝑣6⟩, ⟨𝑠, 𝑣1, 𝑣3⟩, ⟨𝑠, 𝑣1, 𝑣7⟩
𝑆𝑃𝑡 ⟨𝑣2, 𝑡⟩, ⟨𝑣4, 𝑡⟩, ⟨𝑣5, 𝑡⟩
SrcV 𝑣3, 𝑣6, 𝑣7
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Memory consumption. To resolve this query, TCBSearch collects 7 subpaths in 𝑆𝑃𝑠 and 𝑆𝑃𝑡 . By
contrast, IDX-JOIN needs to get a total number of 46 subpaths for path concatenation, and IDX-DFS
only maintains a queue whose length is no more than 6. Therefore, the memory cost of TCBSearch is
less than that of IDX-JOIN whilst larger than that of IDX-DFS.

Time cost. IDX-DFS needs to repeatedly traverses 7 subpaths from 𝑣3 to 𝑡 to obtain the simple paths
originating from the source subpaths ⟨𝑠, 𝑣0, 𝑣3⟩ and ⟨𝑠, 𝑣1, 𝑣3⟩. By contrast, repeated path traversal can
be avoided in DistriEnum by executing path concatenation. Note that, the time complexity of path
concatenation of each source subpath in TCBSearch is𝑂 (1), whilst the complexity of that in IDX-JOIN
is 𝑂 (𝑘).
Scalability. TCBSearch can simultaneously activate the search processes originated from the

subpaths in 𝑆𝑃𝑠 . Similarly, the path concatenation in DFS-Join can also be executed in parallel. By
contrast, it is difficult for IDX-DFS to be performed in parallel, thus impairing the scalability.

Time complexity. In the worst case, Algorithm 2 takes 𝑂 ( |𝐸∗ |) to generate a series of auxiliary

structures. Algorithm 3 takes

∑
𝑣∈SrcV |SP𝑠 [𝑣] |·|SP𝑚 [𝑣] | time to get the simple paths. Here, |SP𝑠 [𝑣] |

and |SP𝑚 [𝑣] | are the numbers of source and backbone subpaths, respectively.

4.4 Task division
While the first two modules offer effective pruning strategies to improve query efficiency, there

is a challenge when it comes to distributing the dynamically confirmed candidate vertices across

multiple machines. As a result, workload imbalance may occur, leading to uneven processing times.

To address this issue, we first analyze the maximum potential search space of each candidate vertex

under various hop numbers, relaxing the non-duplicate requirement. Then, we design a model

to assess the upper-bound workload of each subtask, enabling us to estimate the computational

effort required for processing. Finally, we develop an efficient strategy to divide tasks, ensuring

workload balance and providing a theoretical guarantee. In addition, the vertex migration strategy

can reduce the cutting edges caused by the skewed distribution of data graphs in vertex-centric

distributed systems, thus reducing communication cost. Here, we use the upper bound of the path

count as the estimated measure of the search space. According to the following lemma, we can use

the walk count as the upper bound of the path count.

Lemma 1 (Upper Bound of Path Count). Given a task 𝑞(𝑠, 𝑡, 𝑘), the 𝑘-hop-constrained path
count |𝑃 (𝑠, 𝑡, 𝑘,𝐺∗) | is upper bounded by ∑

1≤𝑖≤𝑘
∑

𝑢∈𝑁 (𝑠,𝐺∗ ) |𝑊 (𝑢, 𝑡, 𝑖−1) |, where𝑊 (𝑣, 𝑡, 𝑖) denotes
the set of walks with ℎ𝑜𝑝 (𝑤 (𝑣, 𝑡)) = 𝑖 .

Proof. Assuming that𝑊 (𝑠, 𝑡, 𝑘,𝐺∗) = {𝑤 (𝑠, 𝑡) |ℎ𝑜𝑝 (𝑤) ≤ 𝑘} and 𝑃 (𝑠, 𝑡, 𝑘,𝐺∗) = {𝑝 (𝑠, 𝑡) |ℎ𝑜𝑝 (𝑝) ≤
𝑘} are the sets of walks and simple paths based on 𝑘 and 𝐺∗, respectively. Since 𝑝 (𝑠, 𝑡) is a special
case of 𝑤 (𝑠, 𝑡), we have 𝑃 (𝑠, 𝑡, 𝑘,𝐺∗) ⊆ 𝑊 (𝑠, 𝑡, 𝑘,𝐺∗) such that |𝑃 (𝑠, 𝑡, 𝑘,𝐺∗) | ≤ |𝑊 (𝑠, 𝑡, 𝑘,𝐺∗) |.
Given a candidate vertex 𝑣 , we have |𝑊 (𝑣, 𝑡, 𝑘,𝐺∗) | = ∑

𝑖∈[0,𝑘 ] |𝑊 (𝑣, 𝑡, 𝑖) | where𝑊 (𝑣, 𝑡, 𝑖) is de-
noted as the set of walks with ℎ𝑜𝑝 (𝑤 (𝑣, 𝑡)) = 𝑖 . Therefore, the upper bound of |𝑃 (𝑠, 𝑡, 𝑘,𝐺∗) | can be

computed by

|𝑃 (𝑠, 𝑡, 𝑘,𝐺∗) | ≤ |𝑊 (𝑠, 𝑡, 𝑘,𝐺∗) | =
∑︁

0≤𝑖≤𝑘
|𝑊 (𝑠, 𝑡, 𝑖) | =

∑︁
1≤𝑖≤𝑘

∑︁
𝑢∈𝑁 (𝑠,𝐺∗ )

|𝑊 (𝑢, 𝑡, 𝑖−1) |

s.t. |𝑊 (𝑡, 𝑡, 0) | = 1.

(1)

□

Referring [15], a dynamic programming-based method is proposed based on Equation 1 to obtain

the walk count, i.e., the upper bound of the path count. The state transition equation can be

expressed by 𝑉𝑆 (𝑣, 𝑖) = ∑
𝑢∈𝑁 (𝑣,𝐺∗ ) 𝑉𝑆 (𝑢, 𝑖−1), where 𝑉𝑆 (𝑣, 𝑖) denotes the walk count |𝑊 (𝑣, 𝑡, 𝑖) |,
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i.e., the walk count from 𝑣 to 𝑡 with 𝑖 hops. The pseudo-code is presented in Algorithm 4. Based on

the state transition equation, we can gradually compute the walk count of each candidate vertex

on different hop numbers (Lines 2-5). It is noted that the redundant computation of search space

can be ruled out by introducing distance judgment (Line 3) and avoiding vertex repetition (Line 4).

Algorithm 4: SearchSpace

Input: 𝐺∗, 𝑞(𝑠, 𝑡, 𝑘)
Output: VS

1 Initialize VS[𝑡] [0]←1 and VS[𝑣] [1]←1 with 𝑣 ∈ 𝑁 (𝑡,𝐺∗)
2 foreach 𝑑∈[2, 𝑘] do
3 foreach 𝑣∈𝑉 ∗ (𝐺) with 𝑣 .𝑠 + 𝑑 ≤ 𝑘 do

4 foreach vertex 𝑢 ∈ 𝑁 (𝑣,𝐺∗) with 𝑢 ∉ {𝑠, 𝑡} do
5 VS[𝑣] [𝑑]←VS[𝑣] [𝑑] + VS[𝑢] [𝑑 − 1]

6 return VS

Table 4 records the walk counts (denoting search spaces) of all candidate vertices for 𝑞(𝑠, 𝑡, 6)
in Fig. 1. Firstly, we have VS[𝑣2] [1]=1, VS[𝑣4] [1]=1, and VS[𝑣5] [1]=1 since 𝑣2, 𝑣4, and 𝑣5 are the

neighbors of 𝑡 . Then, the walk counts of other candidate vertices can be gradually obtained based

on the accumulation of walk counts of neighbors. Finally, each value in VS represents the walk
count of the candidate vertex in a corresponding hop number. For example, VS[𝑠] [6]=70 represents
that the upper bound of path count from 𝑠 to 𝑡 is 70 when |𝑝 (𝑠, 𝑡) | = 6.

Lemma 2 (Workload Model). Given the walk count array VS and the set of source paths SP𝑠 , for
each vertex 𝑣 ∈ 𝑆𝑟𝑐𝑉 , the workload of 𝑣 is𝑊𝑣 =

∑
𝑖∈[0,𝑘−2] VS[𝑣] [𝑖]·|SP𝑠 [𝑣] |, where |SP𝑠 [𝑣] | is the

number of source paths between 𝑠 and 𝑣 .

Proof. Based on the TCBSearch method, for each vertex 𝑣 ∈ 𝑆𝑟𝑐𝑉 , we aim to explore all

backbone paths from 𝑣 and execute a join-oriented method to obtain the corresponding simple

paths. Assuming that𝑊𝑣 denotes the workload of 𝑣 , we have

𝑊𝑣 = |SP𝑚 [𝑣] | · |SP𝑠 [𝑣] | ≤ |𝑊 (𝑣, 𝑡, 𝑘−2,𝐺∗) | · |SP𝑠 [𝑣] |

=
∑︁

𝑖∈[0,𝑘−2]
VS[𝑣] [𝑖] · |SP𝑠 [𝑣] |, (2)

where |SP𝑠 [𝑣] | is the number of source paths between 𝑠 and 𝑣 . □

After obtaining the walk count array VS, we employ an efficient task division strategy to

achieve workload balance. The pseudo-code is presented in Algorithm 5. Firstly, each candi-

date vertex 𝑣∈SrcV is decomposed to a series of subtasks 𝑝 (𝑣, 𝑣) whose workloads are less than

Table 4. A two-dimensional array VS of 𝑞(𝑠, 𝑡, 6)

hop 𝑣0 𝑣1 𝑣2 𝑣3 𝑣4 𝑣5 𝑣6 𝑣7 𝑠 𝑡

0 0 0 0 0 0 0 0 0 0 1

1 0 0 1 0 1 1 0 0 0 0

2 0 0 2 0 1 1 2 2 0 0

3 2 2 6 4 4 4 5 5 0 0

4 9 9 0 14 0 0 21 21 4 0

5 35 35 0 0 0 0 0 0 18 0

6 0 0 0 0 0 0 0 0 70 0
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𝑊𝑎𝑣𝑔 =
∑

𝑖∈[0,𝑘 ] VS[𝑠] [𝑖]/𝑐 , where 𝑐 is the number of machines (Lines 1-6). During the task decompo-

sition, a forward search is executed to obtain the corresponding subpaths 𝑝 (𝑣, 𝑣) until the workload
constraint is satisfied. The workload of 𝑝 (𝑣, 𝑣) is expressed as

∑
𝑖∈[0,𝑘−2−ℎ𝑜𝑝 (𝑝 ) ] VS[𝑣] [𝑖] · |SP𝑠 [𝑣] |.

This strategy helps mitigate the impact of significant workload differences among candidate vertices.

A workload list𝑊 is established by collecting the corresponding search space of each subtask,

denoted as 𝑝 (𝑣, 𝑣)∈SrcV∗ (Lines 7-10). Finally, the subtasks are assigned to machines based on their

workload, one-by-one, with preference given to machines with minimal workload (Lines 11-15).

Algorithm 5: TaskDivision

Input: SrcV, VS, 𝑐
Output: TList

1 Initialize SrcV∗ and𝑊𝑎𝑣𝑔 ←
∑
𝑖∈[0,𝑘 ] VS[𝑠] [𝑖]/𝑐

2 foreach 𝑣 ∈ SrcV with 𝑝 = {𝑣} do
3 Obtain𝑊𝑣 of 𝑣 via Equation 2

4 if𝑊𝑣 >𝑊𝑎𝑣𝑔 then

5 Get all subtasks 𝑝 (𝑣, 𝑣) with𝑊𝑣 <𝑊𝑎𝑣𝑔

6 SrcV∗ .𝑝𝑢𝑠ℎ(𝑝)
7 Initialize𝑊 and TList
8 foreach element 𝑝 (𝑣, 𝑣) ∈ SrcV∗ do
9 Initialize 𝑒 ← ⟨VS[𝑣] [𝑘−2 − ℎ𝑜𝑝 (𝑝)], 𝑝 (𝑣, 𝑣)⟩

10 𝑊 .𝑝𝑢𝑠ℎ(𝑒)
11 Sort𝑊 ⊲ the descending order

12 foreach element 𝑒 ∈𝑊 do

13 Select the 𝑖-th machine with the minimal workload

14 𝑝 (𝑣, 𝑣) ← 𝑒.𝑠𝑒𝑐𝑜𝑛𝑑

15 TList[𝑖] .𝑝𝑢𝑠ℎ(𝑝)
16 return TList

v0 v6

v7

v3s

v1

(a) Task decomposition of 𝑣3

v0 v6

v7

v3s

v1

(b) Task decomposition of 𝑣6 and 𝑣7

Fig. 5. The process of task decomposition with 𝑐 = 3. Here, each candidate vertex 𝑣 ∈ 𝑆𝑟𝑐𝑉 is represented by
bule while orange stands for the tail node of each subtask.

Example 6. Take the query task 𝑞(𝑠, 𝑡, 6) in Fig. 3(a) as an example, where the number of machines
is 2 and SrcV = {𝑣7, 𝑣6, 𝑣3}. Based on Equation 2, the workload of 𝑣7 is𝑊𝑣7 = (𝑉𝑆 [𝑣7] [4] +𝑉𝑆 [𝑣7] [3] +
𝑉𝑆 [𝑣7] [2]) · |𝑆𝑃𝑠 [𝑣7] | = 28. Similarly, we have𝑊𝑣6 = 28 and𝑊𝑣3 = 36. Considering that𝑊𝑣6 and𝑊𝑣3

are less than𝑊𝑎𝑣𝑔 = (𝑉𝑆 [𝑠] [6] +𝑉𝑆 [𝑠] [5] +𝑉𝑆 [𝑠] [4])/2 = 46, the final results of Algorithm 5 are
TList[0] = {𝑣7, 𝑣6} and TList[1] = {𝑣3}.
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Reconsider the query task 𝑞(𝑠, 𝑡, 6) with the machine number as 3 and𝑊𝑎𝑣𝑔 = 31. Fig. 5 illustrates
the corresponding task division process. In this case, only the vertex 𝑣3 is involved in the decomposition
because the workloads of 𝑣6 and 𝑣7 are already less than 31. Based on a forward exploration, we obtain
4 subtasks originated from 𝑣3 which are 𝑝1 = ⟨𝑣3, 𝑣0⟩, 𝑝2 = ⟨𝑣3, 𝑣1⟩, 𝑝3 = ⟨𝑣3, 𝑣6⟩, and 𝑝4 = ⟨𝑣3, 𝑣7⟩.
Assuming that 𝑝5 = ⟨𝑣6⟩ and 𝑝6 = ⟨𝑣7⟩, the final task allocation is as follows: TList[0]={𝑝6, 𝑝2},
TList[1]={𝑝5, 𝑝1}, and TList[2]={𝑝3, 𝑝4}. The total workloads of the three machines are 32, 32, and
28, respectively, achieving a good workload balance.

Time complexity. In the worst case, Algorithm 4 takes 𝑂 (𝑘 · |𝐸∗ |) time to construct the two-

dimensional walk count array 𝑉𝑆 . Similarly, Algorithm 5 takes 𝑂 ( |𝑉 ∗ |) time to construct the task

array TList. Hence, the overhead for performing the task division is very low.

4.5 Vertex migration
To minimize memory consumption, TCBSearch utilizes a DFS-based search strategy to traverse

backbone paths. This approach requires only 𝑂 (𝑘) space to maintain the current backbone paths,

resulting in a reduced memory footprint compared to IDX-JOIN. However, TCBSearch has two

disadvantages:

• Uneven distribution of candidate vertices. The dynamic generation of candidate vertices based on

the query task makes it challenging to evenly distribute these vertices among machines. This

imbalance can negatively impact query performance.

• Production of intermediate results. Although TCBSearch reduces the number of hops in path

traversal, it may still require message exchange between different machines, resulting in a

significant number of intermediate results.

Example 7. As shown in Fig 4, the dashed lines connecting any two vertices represent the process
of exchanging messages between different machines. There are 22 messages exchanged during the
traversal of backbone paths originating from the vertex 𝑣7.

To address these issues, we design a vertex migration strategy to optimize the communication

cost and reduce the production of intermediate results.

Algorithm 6: VertexMigration

1 foreach 𝑣 ∈ 𝑉 ∗−{𝑠, 𝑡} do
2 if 𝑣 .𝑠 = 1 with 𝑣 ∉ SrcV then

3 if ∃𝑢1, 𝑢2∈𝑁 (𝑣,𝐺∗) with 𝑢1, 𝑢2 ∉ {𝑠, 𝑡} then
4 if 𝑢1 .𝑠 + 2 + 𝑢2 .𝑡 ≤ 𝑘 then

5 Duplicate 𝑣 to the machine of 𝑢1

6 else if 𝑣 ∈ SrcV then

7 Initialize ℎ𝑜𝑝 ← 1

8 foreach 𝑢 ∈ SrcV − {𝑣} do
9 ℎ𝑜𝑝 ← 2 with 𝑢 ∉ 𝑁 (𝑣,𝐺∗)

10 if 2 + ℎ𝑜𝑝 + 𝑣 .𝑡 ≤ 𝑘 then

11 Duplicate 𝑣 to the machine of 𝑢

12 else if 𝑣 .𝑠 > 2 then

13 Duplicate 𝑣 to the machine of 𝑢 with 𝑢 ∈ SrcV
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Algorithm 6 presents the pseudo-code of the vertex migration strategy, which can be classified

into the following three cases:

(1) 𝑣 ∉ SrcV with 𝑣 .𝑠 = 1. The vertex 𝑣 is duplicated to the machine of 𝑢1 when 𝑣 is possibly located

in a walk from 𝑢1 to 𝑡 (Lines 2-5).

(2) 𝑣 ∈ SrcV. The vertex 𝑣 is duplicated to the machine of 𝑢 if it satisfies 2 + ℎ𝑜𝑝 + 𝑣 .𝑡 ≤ 𝑘 (Lines

6-11), where ℎ𝑜𝑝 is the minimal distance between 𝑢 and 𝑣 . To reduce time cost, ℎ𝑜𝑝 is set as 2 if

𝑢 ∉ 𝑁 (𝑣,𝐺∗) (Line 9).
(3) 𝑣 .𝑠 > 2. It is time-consuming to make massive judgments between the rest of the vertices and

SrcV. Therefore, the rest of the vertices are duplicated to all machines to reduce time cost (Lines

12-13).

Example 8. Given a query 𝑞(𝑠, 𝑡, 6), Table 5 lists all migrated vertices for each candidate vertex
𝑣 ∈ SrcV. Specifically, the vertex 𝑣0 is moved to the machine of 𝑣3 since 𝑣3.𝑠 + 2 + 𝑣6.𝑡 = 6, where 𝑣3 and
𝑣6 are the neighbors of 𝑣0. Similarly, the vertex 𝑣1 is also migrated to the machine of 𝑣3. In addition,
the vertex 𝑣3 is migrated to the machine of 𝑣6 (𝑣7) since 𝑣6.𝑠 + 1 + 𝑣3 .𝑡 = 6 (𝑣7.𝑠 + 1 + 𝑣3.𝑡 = 6) which
means that two vertices 𝑣3 and 𝑣6 (𝑣7) are located in a walk𝑤 (𝑠, 𝑡). Finally, the rest of the vertices 𝑣2,
𝑣4, and 𝑣5 are migrated to all machines.

Table 5. The migrated vertices which correspond to three cases in Algorithm 6

𝑣3 𝑣6 𝑣7

case 1 𝑣0, 𝑣1 ∅ ∅
case 2 𝑣6, 𝑣7 𝑣3, 𝑣7 𝑣3, 𝑣6
case 3 𝑣2, 𝑣4, 𝑣5

Although the vertex migration strategy incurs additional memory consumption to store these

vertices, it efficiently avoids the generation of intermediate results and optimizes the communication

cost, leading to improved query performance.

Time complexity. In the worst case, Algorithm 6 takes 𝑂 ( |𝑉 ∗ |) time to complete the migration of

all candidate vertices in 𝐺∗.

4.6 Overall algorithm
Combining the above modules, our distributed path enumeration approach, DistEnum, is shown

in Algorithm 7. Given a query task 𝑞(𝑠, 𝑡, 𝑘), Algorithm 7 first constructs the sketch graph 𝐺∗

to rule out all redundant vertices (Line 1). Then, a series of auxiliary structures, including SP𝑠 ,
SP𝑡 , and SrcV, is generated to support the following procedures (Line 2). Next, the subtasks in

SrcV are decomposed, and evenly distributed to all machines (Line 4) based on the pre-computed

search space array 𝑉𝑆 (Line 3). Furthermore, we adopt the vertex migration strategy to reduce

the production of intermediate results and optimize the communication cost (Line 5). Finally, the

procedure TCBSearch is executed in all machines in parallel to output all simple paths.

Proof of correctness. Given a query task 𝑞(𝑠, 𝑡, 𝑘), the query results of DistriEnum consist of two

parts: (1) all simple paths 𝑃1 whose hop numbers are no more than 3. This part can be obtained

based on Algorithm 2; (2) the rest of paths 𝑃2 whose hop numbers are between 4 and 𝑘 . Based on

the analysis of TCBSearch, we have 𝑃2 =
∑

𝑣∈SrcV
∑

𝑝1∈SP𝑠 [𝑣 ]
∑

𝑝2∈SP𝑚 [𝑣 ] 𝑝1 ∪ 𝑝2 with 𝑝1 ∩ 𝑝2={𝑣}.
Therefore, the query result 𝑃 (𝑠, 𝑡, 𝑘,𝐺) = 𝑃1 ∪ 𝑃2 is complete.

Space Complexity. Assuming that the number of machines is 𝑐 , for a given query task 𝑞(𝑠, 𝑡, 𝑘),
the memory consumption mainly consists of three parts: (1) the memory used for the sketch

graph 𝐺∗, whose space cost can be represented as 𝑂 (𝑐 · |𝐺∗ |); (2) the memory consumption of
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Algorithm 7: DistriEnum

Input: 𝐺 , 𝑞(𝑠, 𝑡, 𝑘)
Output: all simple paths between 𝑠 and 𝑡

1 𝐺∗ ← GraphReduction(G, q) ⊲ Get the sketch graph by Algorithm 1 in Section 4.2

2 SP𝑠 , SP𝑡 , SrcV← PathCollect(G∗, q) ⊲ Collect auxiliary structures by Algorithm 2 in Section 4.3

3 VS← SearchSpace(G∗, q) ⊲ Confirm the upper bound of search space by Algorithm 4 in Section 4.4

4 TList← TaskDivision(SrcV,VS) ⊲ Divide tasks evenly by Algorithm 5 in Section 4.4

5 Execute VertexMigration() ⊲ Migrate candidate vertices by Algorithm 6 in Section 4.5

6 Execute TCBSearch(𝐺∗, 𝑞, SP𝑠 , SP𝑡 , TList) ⊲ Output all simple paths by Algorithm 3 in Section 4.3

TCBSearch concentrates on maintaining the vertices on the current traversal path, whose space

cost is 𝑂 (𝑐 · 𝑘); (3) the constant memory overhead of auxiliary structures, whose space cost is

𝑂 (Δ) = 𝑂 ( |SP𝑠 | + |SP𝑡 | + |SrcV| + |TList|). Therefore, the total memory consumption is𝑂 (𝑐 ·|𝐺∗ |+Δ).
By contrast, the space cost of IDX-DFS is 𝑂 (𝑐 · |𝐺∗ | + Δ∗) where Δ∗ is the intermediate result size

induced by message exchange. Similarly, IDX-JOIN takes 𝑂 (𝑐 · |𝐺∗ | + Δ#) space where Δ#
is the

size sum of intermediate results and subpaths. Here, the reduced graph size |𝐺∗ | is similar among

the three methods. However, our Δ is much less than Δ∗ and Δ#
, especially for the queries with

large-scale search spaces.

Time Complexity. Based on the time complexity analysis of the above modules, for a given query

task 𝑞(𝑠, 𝑡, 𝑘), Algorithm 7 takes 𝑂 ( |𝑉 | + |𝐸 | + ∑𝑣∈SrcV |SP𝑠 [𝑣] |·|SP𝑚 [𝑣] | + 𝑘 · |𝐸∗ | + |𝑉 ∗ | + |𝑉 ∗ |)
which can be simplified as 𝑂 (∑𝑣∈SrcV |SP𝑠 [𝑣] |·|SP𝑚 [𝑣] |).
Message complexity. The message complexity of DistriEnum is𝑂 (𝑐 · |𝐺∗ |) which are produced by

constructing the sketch graph and vertex migration. In the worst case, the communication costs of

IDX-DFS andHybridEnum are𝑂 ( |𝑃 (𝑠, 𝑡, 𝑘,𝐺∗) |), and IDX-JOIN takes𝑂 (∑𝑣∈𝑉𝑀
( |𝑃 (𝑣, 𝑠, ⌈𝑘/2⌉,𝐺∗) |+

|𝑃 (𝑣, 𝑡, ⌊𝑘/2⌋,𝐺∗) |), where 𝑉𝑀 is a set of middle vertex. Clearly, DistriEnum exhibits the lowest

communication cost, especially when dealing with queries spanning large-scale search spaces.

5 EXPERIMENTS
In this part, we conduct extensive experiments to evaluate the performance of our methods.

Section 5.1 introduces the setup of our experiments, followed by the experimental results in

Section 5.2
1
.

5.1 Experimental Setup
Datasets. In the experiments, we employ 10 real-life datasets (Table 6) including social networks

and web graphs that are downloaded from Stanford Large Network data set Collection
2
and Network

Repository
3
. All directed data graphs have been converted to undirected graphs.

Algorithms. In this part, we compare the following algorithms:

• HybridEnum [14]. The state-of-the-art distributed method based on a join-oriented method.

• IDX-DFS [28]. The distributed extension of the DFS-based method.

• IDX-JOIN [28]. The distributed extension of the join-oriented method.

• DistriEnum. Our distributed simple path enumeration method in Algorithm 7.

1
Due to page limit, more experimental results can be found in our full version https://anonymous.4open.science/r/

SIGMOD2024-43FD/FullVersion.pdf

2
http://snap.stanford.edu/data/

3
http://networkrepository.com/index.php
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Table 6. Statistic of Real-world Graphs

Alias Dataset |𝑉 | |𝐸 | Type

TK WikiTalk 2M 5M Miscellaneous

DP DBpedia 4M 14M Miscellaneous

SP SocPokec 0.6M 12M Social Network

SJ SocLiveJ 4.8M 42.8M Social Network

UK UK2005 39.4M 783.1M Web Graph

WB Webbase 0.1B 725.4M Web Graph

IT IT2004 41.3M 1.03B Social Network

TW Twitter 52.6M 1.96B Miscellaneous

SK SK2005 50.6M 1.81B Web Graph

FD Friender 65.6M 1.80B Web Graph

Distributed extensions of IDX-DFS and IDX-JOIN. Given a query task 𝑞(𝑠, 𝑡, 𝑘), the lightweight
index is first built based on a vertex-centric computing paradigm and stored in the corresponding

machines. Secondly, the DFS-based search process is activated from 𝑠 to obtain the visited queues

which represent the simple paths. Thirdly, when finishing the search process in the current machine,

these queues are exchanged to other machines where the next candidate vertices are placed. The

last two steps are repeated until all simple paths are obtained. Similarly, in IDX-JOIN, the indexes

are first distributed on each machine and the middile vertices are confirmed. Then, the DFS-based

search process is activated from the middle vertex to collect subpaths. Finally, the concatenation of

subpaths executes in parallel.

Note that, the search on the subgraph in each machine and the process of path concatenation are

executed in parallel. In addition, the search process across different machines inevitably involves

the data exchange between machines.

Environment. All algorithms are implemented in the distributed graph computing system Blo-

gel [31] which performs computational tasks in a superstep fashion. Blogel is deployed in a local

cluster with 10 computing nodes with AMD 2.6 GHz and 64 GB memory. The communication

among machines is achieved by MPI. All algorithms are achieved by C++ and compiled with

O3-level optimization.

Setting. We generate two disjoint sets 𝑉 ∗ and 𝑉 #
based on the vertex degrees: (a) 𝑉 ∗ is the set

of vertices within top 10% in the descending order of their degrees; and (b) 𝑉 # = 𝑉 − 𝑉 ∗. Then,
we have three settings according to the locations of 𝑠 and 𝑡 : {𝑉 ∗,𝑉 #} × {𝑉 ∗,𝑉 #}. For each setting,

we generate 100 queries by choosing 𝑠 and 𝑡 uniformly at random. The processing time is set as

INF and OM when an algorithm cannot finish in 10
5
seconds or runs out of memory, respectively.

Without specifying, we set the default hop constraint 𝑘 as 6.

5.2 Experimental results
Exp-1: Efficiency and memory consumption on different datasets. In this part, we evaluate

the efficiency of all algorithms on all datasets.

As shown in Fig. 6, DistriEnum consistently outperforms the other distributed methods in

terms of efficiency. On many datasets, DistriEnum achieves up to three orders of magnitude

faster execution times compared to HybridEnum. The superior performance of DistriEnum can be

attributed to its effective pruning strategies, which eliminate redundant vertices and significantly

reduce the traversal of shared subpaths based on TCBSearch. Additionally, the task division strategy

employed by DistriEnum maximizes the utilization of computing resources, further enhancing

query efficiency. In contrast, HybridEnum struggles to complete query tasks on large-scale graphs
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within a reasonable time limit. This is because HybridEnum involves traversing redundant vertices

and exchanging messages during the enumeration process, leading to increased execution times.

Furthermore, DistriEnum demonstrates significant speed improvements compared to IDX-DFS and

IDX-JOIN on the LJ graph, achieving speedups of 41.8× and 18.5×, respectively.

TK DP SP LJ UK WB IT TW SK FD

10
1

10
2

10
3

10
4

INF HybridEnum IDX-DFS IDX-JOIN DistriEnum

Fig. 6. Processing time (s) on all datasets with 𝑘 = 6

TK DP SP LJ UK WB IT TW SK FD

0

160

320

480

OM

Fig. 7. Memory consumption (GB) on all datasets

Another important observation is that both IDX-DFS and IDX-JOIN encounter out-of-memory

issues when dealing with query tasks on large-scale graphs with a large value of 𝑘 . This is primarily

due to the intermediate results generated during the enumeration process. Additionally, IDX-JOIN

requires significant space overhead to store a large number of subpaths, further exacerbating

memory consumption. As shown in Fig. 7, both IDX-DFS and IDX-JOIN run out of memory on

all datasets except SP and LJ. In contrast, HybridEnum can mitigate the memory overhead by

adjusting the number of activated subtasks. However, DistriEnum excels in reducing the storage

requirements for subpaths and intermediate results through its TCBSearch paradigm and vertex

migration strategy, respectively. Hence, it is easy for DistriEnum to handle large-scale graphs.

Exp-2: Efficiency with varying hop constraint 𝑘 . In this experiment, we evaluate the efficiency

of the algorithms as the hop constraint 𝑘 varies from 3 to 7. The average processing time for each

query is depicted in Fig. 8.

As the hop constraint 𝑘 increases, the processing time of all methods also increases due to

the larger search spaces of the query tasks. However, DistriEnum consistently outperforms the

other distributed algorithms. In general, as 𝑘 increases, HybridEnum struggles to complete the

query tasks within a reasonable time. This is because fruitless exploration cannot be fully avoided

by the pruning techniques in HybridEnum, leading to significant time costs. Furthermore, as 𝑘

increases, both IDX-DFS and IDX-JOIN face severe memory consumption issues. This is because

these methods require substantial space overhead to store intermediate results during the message

exchange process. In contrast, DistriEnum avoids memory crises and efficiently completes the

enumeration on all graphs. This is attributed to several factors: (1) DistriEnum effectively prunes

exploration and optimizes resource utilization through the task division strategy, (2) DistriEnum

employs TCBSearch to reduce the storage of subpaths, mitigating excessive memory usage, and

(3) DistriEnum minimizes the production of intermediate results by utilizing the vertex migration

strategy.

Exp-3: Efficiency with varying graph size. In this experiment, we evaluate the efficiency of all

algorithms as the graph size increases from 20% to 100%. We randomly generate several queries for

each graph and measure the average processing time with a hop constraint of 𝑘 = 6.

As shown in Fig 9, the processing time of all the methods increases with the increase in the graph

size. The main reason is that the actual workload of each query task increases. As a result, it takes
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Fig. 8. Processing time (s) when varying hop constraint 𝑘

more time for the above four methods to obtain all simple paths. We also observe that DistriEnum

outperforms the other distributed algorithms in almost all cases, and the performance gap increases

as the graph size increases. For example, on graphs WB and SK, DistriEnum is up to 279.9× and 3

orders of magnitude faster than that of HybridEnum in terms of query time, respectively. Moreover,

DistriEnum can also finish the enumeration efficiently on all graphs. This is because DistriEnum can

largely reduce explorations and efficiently utilize all computing resources. In addition, it is difficult

for IDX-DFS and IDX-JOIN to handle query tasks in large-scale graphs due to the substantial

memory consumption.

Exp-5: Communication cost. In this experiment, we evaluate the communication cost of Hybri-

dEnum and DistriEnum on all datasets. Note that the experimental results in some datasets are not

listed since these algorithms cannot finish within the given time limit.

As shown in Figure 10, DistriEnum always outperforms HybridEnum. Specifically, DistriEnum

is 13.8× (resp. 26.6×, and 5.2×) less than HybridEnum (resp. IDX-DFS and IDX-JOIN) in terms of

communication cost. The communication cost of DistriEnum mainly concentrates on constructing

the sketch graph and executing task division. In contrast, HybridEnum needs to frequently exchange

messages during path traversal, thereby generating serious communication overhead.

Exp-5: Scalability with varying #partitions. In this experiment, we assess the scalability of

DistriEnum by varying the number of partitions from 10 to 60. We randomly generate several

queries whose the predicted search spaces (𝑉𝑆 [𝑠] [𝑘]) are more than 10
12
. In this setting, the other

three algorithms cannot finish the tasks within a reasonable time. The average processing time of

DistriEnum is presented in Fig 11.

As shown in Fig 11, the processing time of DistriEnum decreases as the number of partitions

increases. The main reason is that DistriEnum adopts the task division strategy to divide each
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Fig. 9. Processing time (s) when varying the graph size
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Fig. 11. Processing time (s) when varying the partitions

query task based on the workload distribution and the number of partitions, which helps to keep

the workload balance and constrain the number of subtasks.
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Exp-6: Effectiveness of task division In Exp-6, we evaluate the effectiveness of the task division

module by comparing it with the hash method, where each query task is assigned to the computing

node where the source vertex is located. We refer to these two methods as “Task” and “Hash”,

respectively. Note that, for a majority of the queries in our experiments, the ratio between the

actual measured load and our projected upper bound exceeds 0.6, which helps to optimize the task

division strategy.

In Fig 12, “Task” outperforms “Hash” with a 3.92× improvement in average query time. Further-

more, the query time of “Task” decreases with an increase in the number of cores. This suggests

that the task division mechanism effectively balances the workload among the cores, resulting in

improved query efficiency. Although the task division step incurs additional time, it is beneficial in

reducing the overall processing time by maintaining workload balance.
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Fig. 12. Processing time (s) when varying the cores

In Fig 13, we observe that both “Task” and “Hash” experience an increase in memory consumption

with an increase in the number of cores. This is due to the data structures maintained by Blogel

for each core to support computation. Additionally, the memory consumption of “Task” is slightly

higher than that of “Hash” because “Task” generates a number of query subtasks that is not less

than that of “Hash”. Despite this, both strategies demonstrate consistent performance in terms of

memory usage.
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Fig. 13. Memory consumption (GB) when varying the cores

Exp-7: Effectiveness of vertex migration In this experiment, we evaluate the effectiveness of

the vertex migration module. Here, “DComm” denotes the DistriEnum method without the vertex

migration module. As shown in Fig 14, DistriEnum is 15.4× faster than “DComm” in terms of

processing time. This is because the vertex migration module can keep the balance distribution of

candidate vertices to improve the query efficiency. Moreover, the memory overhead of “DComm” is

23.2% higher than that of DistriEnum. Compared to “DComm”, DistriEnum can avoid the production

of intermediate results while spending little extra space to store the migrated vertices.

Exp-8: Single machine comparison. In this experiment, we compare the performance of all

methods on a single machine, where the data graph is stored in the same memory space. The results
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Fig. 14. The performance evaluation on all datasets

in Figure 15 show that DistriEnum outperforms the other methods by up to 2 orders of magnitude

(resp. 6.48x and 2.95x faster than HybridEnum, IDX-DFS, and IDX-JOIN) in terms of processing

time. This significant improvement is attributed to DistriEnum’s ability to reduce search spaces and

optimize the path traversal and combination through TCBSearch. Moreover, the processing time of

IDX-DFS and IDX-JOIN is lower than that of HybridEnum, as they avoid producing intermediate

results during enumeration, mitigating memory constraints. Additionally, these methods employ

effective index schemes to eliminate redundant vertices and prune exploration.
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Fig. 15. The processing time (s) in a single machine

Exp-9: Effectiveness of hop limits. Regarding the different hop limits of 𝑆𝑃𝑠 and 𝑆𝑃𝑡 , we clarify

that the balance of storage costs and query efficiency is a key motivation. Higher hop limits increase

storage requirements, reduce the number of backbone paths, and increase subpath concatenation

time. Figs. 16 (a) and (b) show the experimental results on query time andmemory cost of DistriEnum

with four combinations respectively, which are (0, 0), (2, 1), (2, 2), and (⌈𝑘/2⌉, ⌊𝑘/2⌋). We can find

that the (2, 1) setting gives the shortest query time in most cases, and takes relatively low memory

costs. Hence, the current (2, 1) setting is the result of a trade-off.
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Fig. 16. Performance with different combinations
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6 CONCLUSION
In this paper, we address the hop-constrained path enumeration problem in the distributed environ-

ment. Specifically, we propose an efficient distributed approach DistriEnum which is composed of

the modules of graph reduction, TCBSearch paradigm, task division, and vertex migration. Based

on the above mechanism, DistriEnum can simultaneously satisfy excellent query performance,

high parallelism, and good scalability with well-bound memory consumption. Our comprehensive

experiments demonstrate that the proposed methods achieve great improvements in terms of query

time, scalability, communication cost, and memory consumption. In future work, we will focus on

evaluating the effect of partitioning strategies on the proposed method.
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