
On Efficient Large Sparse Matrix Chain Multiplication

CHUNXU LIN∗, The Chinese University of Hong Kong, Shenzhen, China

WENSHENG LUO∗†, The Chinese University of Hong Kong, Shenzhen, China

YIXIANG FANG†, The Chinese University of Hong Kong, Shenzhen, China

CHENHAO MA, The Chinese University of Hong Kong, Shenzhen, China

XILIN LIU, HUAWEI CLOUD, China

YUCHI MA, HUAWEI CLOUD, China

Sparse matrices are often used to model the interactions among different objects and they are prevalent in

many areas, including e-commerce, social networks, and biology. As one of the fundamental matrix operations,

the sparse matrix chain multiplication (SMCM) aims to efficiently multiply a chain of sparse matrices, which

has found various real-world applications in areas like network analysis, data mining, and machine learning.

The efficiency of SMCM largely hinges on the order of multiplying the matrices, which further relies on

the accurate estimation of the sparsity of intermediate matrices. Existing matrix sparsity estimators often

struggle with large sparse matrices, because they suffer from the accuracy issue in both theory and practice.

To enable efficient SMCM, in this paper, we introduce a novel row-wise sparsity estimator (RS-estimator), a

straightforward yet effective estimator that leverages matrix structural properties to achieve efficient, accurate,

and theoretically guaranteed sparsity estimation. Based on the RS-estimator, we propose a novel ordering

algorithm for determining a good order of efficient SMCM. We further develop an efficient parallel SMCM

algorithm by effectively utilizing multiple CPU threads. We have conducted experiments by multiplying

various chains of large sparse matrices extracted from five real-world large graph datasets, and the results

demonstrate the effectiveness and efficiency of our proposed methods. In particular, our SMCM algorithm is

up to three orders of magnitude faster than the state-of-the-art algorithms.

CCS Concepts: • Theory of computation→ Design and analysis of algorithms; • Mathematics of
computing;

Additional Key Words and Phrases: Sparse matrix chain multiplication, sparse matrix, sparsity estimator

ACM Reference Format:
Chunxu Lin, Wensheng Luo, Yixiang Fang, Chenhao Ma, Xilin Liu, and Yuchi Ma. 2024. On Efficient Large

Sparse Matrix Chain Multiplication. Proc. ACM Manag. Data 2, N3 (SIGMOD), Article 156 (June 2024), 27 pages.

https://doi.org/10.1145/3654959

∗
Both authors contributed equally to this research.

†
Corresponding authors.

Authors’ addresses: Chunxu Lin, chunxulin1@link.cuhk.edu.cn, The Chinese University of Hong Kong, Shenzhen, Guang-

dong, China; Wensheng Luo, luowensheng@cuhk.edu.cn, The Chinese University of Hong Kong, Shenzhen, Guangdong,

China; Yixiang Fang, The Chinese University of Hong Kong, Shenzhen, Guangdong, China, fangyixiang@cuhk.edu.cn;

Chenhao Ma, The Chinese University of Hong Kong, Shenzhen, Guangdong, China, machenhao@cuhk.edu.cn; Xilin

Liu, HUAWEI CLOUD, Guangdong, China, liuxilin3@huawei.com; Yuchi Ma, HUAWEI CLOUD, Guangdong, China,

mayuchi1@huawei.com.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee

provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the

full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be honored.

Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires

prior specific permission and/or a fee. Request permissions from permissions@acm.org.

© 2024 Copyright held by the owner/author(s). Publication rights licensed to ACM.

ACM 2836-6573/2024/6-ART156

https://doi.org/10.1145/3654959

Proc. ACM Manag. Data, Vol. 2, No. N3 (SIGMOD), Article 156. Publication date: June 2024.

HTTPS://ORCID.ORG/1234-5678-9012
HTTPS://ORCID.ORG/0000-0002-1463-814X
https://doi.org/10.1145/3654959
https://orcid.org/1234-5678-9012
https://orcid.org/0000-0002-1463-814X
https://doi.org/10.1145/3654959

156:2 Chunxu Lin et al.

Fig. 1. An example for illustrating SMCM.

1 INTRODUCTION
A sparse matrix is a matrix in which most of the elements are zero. In many real-world areas

including e-commerce, social networks, and biology, the interactions among different objects are

often represented by sparse matrices. For example, in an e-commerce platform (e.g., Amazon), the

shopping records of users buying items are often modeled as a large sparse matrix [13]. That is,

if the 𝑖-th user purchases the 𝑗-th item, then the element in the 𝑖-th row and 𝑗-th column of the

matrix will be 1. Figure 1 presents three sparse matrices, i.e., A1, A2, and A3, where zero elements

are omitted.

In this paper, we study the sparse matrix chain multiplication (SMCM) problem [12, 32], which

aims to efficiently multiply a chain of sparse matrices. For example, in Figure 1, we aim to multiply

A1, A2, and A3, and the result is the matrix O. SMCM has served as a fundamental computational

kernel in various real-world applications such as network analysis, data mining, and machine

learning. For example, its versatility has been demonstrated in numerous network analysis tasks,

such as clustering [51, 57], community searching [18, 63, 68], triangle counting [62], shortest path

enumeration [7], subgraph matching [58], NoSQL database operations [13, 21, 30, 33], and neural

networks [20, 29, 37, 60, 65]. In the following, we present three concrete applications:

• Similarity search. As a popular similarity metric in heterogeneous information networks

(HINs), PathSim [55] uses a symmetric meta-path P to measure the similarity between two

vertices𝑥 and𝑦 as 𝑠𝑖𝑚(𝑥,𝑦) = 2𝑝 (𝑥,𝑦)
𝑝 (𝑥,𝑥)+𝑝 (𝑦,𝑦) , where 𝑝 (𝑥,𝑦) counts the instances ofP between𝑥

and𝑦, and P captures the semantic relationship, e.g., the meta-path𝐴𝑢𝑡ℎ𝑜𝑟→𝑃𝑎𝑝𝑒𝑟→𝐴𝑢𝑡ℎ𝑜𝑟

shows the co-authorship in DBLP network. PathSim [55] computes the values of 𝑝 (𝑥,𝑦)
between all the vertex pairs by M(𝑇𝑥𝑇𝑥+1) ×M(𝑇𝑥+1𝑇𝑥+2) × · · · ×M(𝑇𝑥+1𝑇𝑥), where M(𝑇𝑥𝑇𝑥+1)
is the sparse adjacency matrix between nodes of types 𝑇𝑥 and 𝑇𝑥+1.
• Node embedding. HIN node embedding methods [17, 19, 48, 52, 66] often utilize meta-path-

guided random walks to learn the relationships among nodes. These algorithms encompass

two key steps: guided randomwalks employingmeta-paths and using node2vec algorithm [25]

for node embeddings. The first step can be calculated by P(𝑇𝑖𝑇𝑖+1) = Di
−1 ×M(𝑇𝑖𝑇𝑖+1), where

P(𝑇𝑖𝑇𝑖+1) is the probability transition matrix, M(𝑇𝑖𝑇𝑖+1) is the adjacency matrix between nodes

with types 𝑇𝑖 and 𝑇𝑖+1, and Di is the degree matrix.

• Multi-source breadth-first search (BFS). Given a graph 𝐺 and a set of source vertices 𝑆 ,

the multi-source BFS aims to find the reachable vertices from vertices in 𝑆 [31, 56]. It can be

formulated as an SMCM problem: Bk = A𝑘 ×X, where A denotes the adjacent matrix of𝐺 , X
denotes the source vertices (we first initialize X = 0, and then let X[𝑖, 𝑖] = 1 if vertex 𝑣𝑖 ∈ 𝑆),
and Bk denotes the vertices that are reachable from vertices in 𝑆 within 𝑘 hops (if Bk [𝑖, 𝑗] =
1, then 𝑣𝑖 is reachable to 𝑣 𝑗 within 𝑘 hops). Clearly, A and X are sparse, so computing Bk is

an SMCM problem.

Despite its popularity and usage, SMCM is computationally costly, especially when the sparse

matrices are large. In the literature, SMCM has received plenty of research attention and several al-

gorithms have been developed [2, 24, 43]. Generally, all these algorithms follow the same framework,

Proc. ACM Manag. Data, Vol. 2, No. N3 (SIGMOD), Article 156. Publication date: June 2024.

On Efficient Large Sparse Matrix Chain Multiplication 156:3

Fig. 2. The workflow of SMCM.

as depicted in Figure 2, involving three phases: (1) sparsity estimation, (2) matrix chain ordering,
and (3) matrix chain multiplication. The sparsity estimation phase first evaluates the sparsity of the

intermediate matrices which are the result matrices of multiplying two matrices. Subsequently,

based on sparsity estimation, the matrix chain ordering phase derives a good execution order of

SMCM to reduce the overall time cost. Finally, the matrices are multiplied by following the order in

the matrix chain multiplication phase, which ultimately produces the final output matrix.

(1) Sparsity estimation.Given two sparsematricesA andB, to estimate the sparsity ofO = A×B,
a few estimators [4, 12, 32, 53, 64] have been developed, where the sparsity is the ratio of non-zero

elements in O, as shown in Table 1. Boehm et al. [4] introduced an estimator MetaAC, which assumes

the matrices are uniformly distributed matrices and estimates output matrix sparsity by calculating

the probability of each element being non-zero. Cohen [12] introduced a graph-based method

named Layered-graph, which estimates the number of non-zero elements by transforming a matrix

chain multiplication into a layered graph. The sparsity is then estimated by determining the size of

the transitive closure with the length of the chain for vertices in the graph [11]. Kernert et al. [32]

introduced the Density-map method, which involves decomposing input matrices into individual

𝑏×𝑏 blocks. Subsequently, they applied MetaAC to estimate the sparsity of themultiplication between

two blocks. Yu et al. [64] presented a sampling-based approach that calculates the maximum inner

product value of columns and rows from samples to determine the sparsity of the output matrix.

Sommer et al. [53] designed a novel estimator MNC using matrix non-zero count sketches. However,

both MetaAC and Density-map rely on the assumption of uniformity and independence across

the entire matrix structure, which may not hold in practice, and the sampling-based approach

only focuses on the multiplication of two matrices, so it is not suitable for SMCM. Layered-graph
assigns a vector of length 𝑟 to each leaf node in the graph and computes their transitive closures.

Consequently, its computational cost is significant, as indicated in Table 1. Regarding MNC, its
precision is notably influenced by the matrix chain’s length, wherein precision tends to decrease

as the matrix chain length increases due to a reduction in the number of non-zero elements in

the output matrix. Furthermore, all these estimators provide weak or no theoretical guarantees

regarding the error between estimation and exact values.

(2) Matrix chain ordering. To multiply a chain of matrices, there are many different ways to

parenthesize the matrices, which are often referred to as the orders of SMCM. Although different

orders result in the same output matrix, they have a significant effect on efficiency. For example, in

Figure 1, consider two different orders: (1) (A1 × A2) × A3 and (2) A1 × (A2 × A3). Assume that

the matrices are multiplied by following the order from left to right. Then, for order (1), we only

need to perform 3 numerical multiplication calculations, while for order (2), we have to perform

6 numerical multiplication calculations, so order (1) is better. Note that the calculations for zero

elements are skipped in SMCM.

To determine the optimal order of matrix chain multiplication, there is a classic dynamic pro-

gramming algorithm [14, 24]. The algorithm inherently assumes that the input matrices are dense

or full matrices, implying that when multiplying two matrices with sizes 𝑚 × 𝑛 and 𝑛 × 𝑙 , we
need𝑚 · 𝑛 · 𝑙 numerical multiplication calculations. This assumption, however, no longer holds

for sparse matrices, as we only need to multiply non-zero elements, whose number of numerical

Proc. ACM Manag. Data, Vol. 2, No. N3 (SIGMOD), Article 156. Publication date: June 2024.

156:4 Chunxu Lin et al.

Table 1. Sparsity estimators for multiplying two matrices A and B, whose sizes are𝑚×𝑛 and 𝑛×𝑙 , respectively.

Estimator Time complexity SupportSMCM Lowerbound Upperbound
MetaAC [4] O(1) ✓ × ×

Density-map [32] O(𝑚𝑛𝑙/𝑏3) ✓ × ×
Layered-graph [12] O(𝑟 (𝑑 + 𝑛𝑛𝑧 (A,B))) ✓ × ×

Sampling [64] O(|I|(𝑚 + 𝑙)) × ✓ ×
MNC [53] O(𝑛𝑛𝑧 (A,B)) ✓ ✓ ✓

RS-estimator O(𝑛𝑛𝑧 (A)) ✓ ✓ ✓
★ I is the set of sampled instances; 𝑛𝑛𝑧 (A) is the number of non-zero elements in A; 𝑑 is the maximum value

in {𝑚,𝑛, 𝑙}; 𝑏 is the block size.

multiplication calculations is much less than𝑚 · 𝑛 · 𝑙 . Thus, existing works [4, 12, 32, 53, 64] often

use a sparsity estimator to predict the cost of multiplying two matrices and then determine the

order of SMCM by using dynamic programming.

(3) Matrix chain multiplication. After obtaining a good order of SMCM, we then perform a

sequence of matrix-matrix multiplications, each of which multiplies two matrices. Although the

input matrices of the chain are sparse, the intermediate matrices, which are the result matrices of

multiplying two or more matrices, may be very dense. Therefore, matrix-matrix multiplication is

also costly, especially when the matrix sizes are large and the intermediate matrices are dense.

To efficiently multiply two matrices, Gustavson et al. [26] introduced a sequential method based

on the widely used compressed sparse row (CSR) data structure. However, it faces challenges in

fully leveraging the computational capabilities of multi-core processors. To address this limitation,

Patway et al. [47] extended the approach to multi-core processors by exploring partitioning schemes.

Nonetheless, this extension comes with its own set of limitations. Specifically, the partition schemes

for the two input matrices are different, as one uses row partitions and the other uses column

partitions, so it necessitates the different storage formats of the matrices, which causes format

transformation when dealing with a chain of matrices. When writing the output matrix, a thread

responsible for writing the 𝑖-th row to memory must wait for all other threads handling rows up to

the (𝑖-1)-th row to complete their operations, leading to synchronization issues. Thus, it is desirable

to develop faster matrix-matrix multiplication algorithms.

Our technical contributions. To enable efficient SMCM, we aim to develop efficient algorithms

by optimizing matrix sparsity estimation, matrix chain ordering, and matrix chain multiplication.

We first propose a novel matrix sparsity estimation method, called row-wise sparsity estimator
(RS-estimator), for estimating the result matrix sparsity of two input matrices, by leveraging

the structural information of the matrices. Different from existing estimators that analyze entire

matrices, RS-estimator focuses on individual matrix rows, specifically targeting the row-based

structural characteristics within the left matrix of the two input matrices. Contrastingly, both

MetaAC and Density-map neglect row-wise sparsity. MetaAC relies on the sparsity of input matrices,

while Density-map partitions input matrices into smaller blocks, using their sparsity to estimate

corresponding block sparsity in the output matrix. Besides, Layered-graph assigns 𝑟 -length vectors,
randomly drawn from an exponential distribution with 𝜆 = 1, to all leaf nodes and propagates

them upward through the layered graph to estimate the sparsity. On the one hand, MNC employs

the numbers of non-zero elements in each row and column to estimate the number of non-zero

elements in the output matrix, subsequently calculating the overall sparsity directly. However, it

does not explicitly compute the row-wise sparsity (i.e., the ratio of non-zero elements in each row).

In comparison, our RS-estimator directly utilizes input matrix row-wise sparsity to estimate the

corresponding row-wise sparsity in the output matrix, eliminating the need for counting non-zero

Proc. ACM Manag. Data, Vol. 2, No. N3 (SIGMOD), Article 156. Publication date: June 2024.

On Efficient Large Sparse Matrix Chain Multiplication 156:5

elements in each column. This not only facilitates extracting valuable structural insights but also

enhances parallelization by allowing independent processing of each row. We further analyze the

accuracy of RS-estimator and theoretically quantify the absolute error gap between the estimated

sparsity and the exact sparsity.

Based on the RS-estimator, we develop a method for estimating the sparsity of the result

matrix by multiplying a chain of matrices and also propose a dynamic programming algorithm to

determine a good order for SMCM. To accelerate matrix chain multiplication with a given order,

we propose a novel parallel matrix multiplication algorithm, which uses the sparse adjacent list

data structure to represent the sparse matrix. Since the sparse adjacent list independently stores

rows of the matrix, we can easily perform computation in parallel, by using individual threads’

independent cache management to efficiently reduce contention during multi-threaded memory

allocation and synchronization costs.

We have conducted experiments by multiplying various large sparse matrices extracted from

five real-world large graph datasets, and the results demonstrate the effectiveness and efficiency

of our proposed methods. In particular, the accuracy of our RS-estimator is much higher than

those of existing sparsity estimators, and our SMCM algorithm is up to three orders of magnitude

faster than the state-of-the-art approaches. Furthermore, we have demonstrated the utility of our

algorithms in real applications.

Outline.We review related work in Section 2, formally introduce the SMCM problem in Section

3, and present our proposed RS-estimator along with theoretical analysis in Section 4. Our parallel

SMCM algorithm is described in Section 5. Experimental results are reported in Section 6, and we

conclude in Section 7.

2 RELATEDWORK
In this section, we review the related work of sparsity estimators for multiplying two matrices and

sparse matrix multiplication.

• Sparsity estimator of multiplying two matrices. To accurately estimate the sparsity of

multiplying two matrices, a few estimators have been proposed [4, 12, 32, 53, 64]. Boehm et al. [4]

introduced MetaAC. It operates under the assumption of uniformly distributedmatrices and estimates

output sparsity by calculating the probability of an element being non-zero. Leveraging similar

propagation techniques as MetaAC, Sparso et al. [50] identified structural properties exploitable by

subsequent data-dependent operations, including considerations related to symmetric, triangular,

and diagonal matrices. Cohen [12] introduced Layered-graph, a graph-based method estimating

the number of non-zero elements by transforming a matrix chain multiplication into a layered

graph. Kernert et al. [32] introduced the Density-map method, which involves decomposing input

matrices into individual blocks to estimate the sparsity. Yu et al. [64] presented a sampling-based

approach that calculates the maximum inner product value of columns and rows from samples to

determine the sparsity of the output matrix. Sommer et al. [53] introduced MNC, a novel estimator

for matrix product chains using matrix non-zero count sketch, providing valuable insights into the

matrix data structure.

Nevertheless, the estimators above have severe limitations. MetaAC relies on the assumption of

uniformity and independence across the entire matrix structure, which is often not met in practice.

The sampling-based method is suitable only for multiplying two matrices, so it is not suitable for

the SMCM problem. When dealing with SMCM, MNC faces challenges in accurately estimating the

exact number of non-zero elements, particularly when the largest elements in MNC sketch exceed

one. Moreover, MetaAC does not provide any theoretical guarantee on the accuracy, while the

sampling-based estimator only offers lower bounds of accuracy. Hence, they do not offer a strong

theoretical guarantee.

Proc. ACM Manag. Data, Vol. 2, No. N3 (SIGMOD), Article 156. Publication date: June 2024.

156:6 Chunxu Lin et al.

• Sparse matrix multiplication. We review the works of sparse matrix-matrix multiplication

and SMCM respectively. The former one is to multiply two sparse matrices A and B. Gustavson
[26] introduced an algorithm with time complexity proportional to two key factors: the number of

non-zero elements in matrix A and matrix B. When attempting parallelization, this algorithm faces

a significant challenge due to the synchronization bottleneck associated with CSR matrices [26, 40].

Patwary et al. [47] expanded upon Gustavson’s algorithm to facilitate parallelization on CPUs by

partitioning matrix B based on its columns. However, this approach introduces format conversion

overhead since the two input matrices are stored in different formats, further exacerbating the

synchronization bottleneck. A similar approach is employed by MATLAB, which processes one

column of the result matrix at a time. MATLAB utilizes a dense vector containing values, indices,

and valid flags for accumulating sparse partial results [23]. Buluc and Gilbert tackled the scenario of

hyperspace matrices, where the number of non-zero elements is less than the number of columns or

rows [6]. Besides, the problem has been studied on various hardware architectures, encompassing

GPUs [15, 35, 44, 61], FPGAs [39], ASICs [28, 46, 54], heterogeneous setups [41], and distributed

platforms [1, 16, 38].

Although these approaches have demonstrated effectiveness in some applications, they do not

specifically target the SMCM which involves a chain of matrices. Recently, people have developed

some SMCM algorithms, which often involve two phases of matrix chain ordering and matrix

chain multiplication. Chikalov et al. [10] introduced a method for sequential order optimization of

matrix chain multiplication by considering various cost functions. Myung et al. [42] implemented

SMCM on the MapReduce platform, which represents matrices as (row, column, value) records

and translates multiplication into database-style joins. Biswas et al. [3] proposed a GPU-based

approach for SMCM, focusing on optimizing memory coalescing within the device. Nevertheless,

as mentioned before, there are still many issues in both matrix chain ordering and matrix chain

multiplication, calling for faster SMCM algorithms.

3 PRELIMINARIES
In this section, we first formally introduce the SMCM problem and then introduce the basic

knowledge of matrix-matrix multiplication.

3.1 Problem definition
In this paper, we use bold uppercase letters (e.g., A) to represent matrices. The size of a matrix is

the number of rows by the number of columns. Given a matrix A, the 𝑖-th row of A is denoted by

A[𝑖, ∗], the 𝑗-th column is denoted by A[∗, 𝑗], and the element in the 𝑖-th row and 𝑗-th column is

denoted by A[𝑖, 𝑗]. The numbers of non-zero elements in a matrix A and one row of A are denoted

by 𝑛𝑛𝑧 (A) and 𝑛𝑛𝑧 (A[𝑖, ∗]) respectively. The frequently used notations are summarized in Table 2.

A matrix is generally called a sparse matrix if most of the elements are zero. Note that there is

no standard definition of sparse matrix in the literature. The number of non-zero elements in the

matrix reflects its sparsity, and the sparsity of A is often defined as 𝜌 (A) = 𝑛𝑛𝑧 (A)
𝑚 ·𝑛 , where the size

of A is𝑚 × 𝑛.

Problem 1 (SMCM [12, 32]). Given a chain of sparse matrices A1, A2, · · · , Ap, where Ai’s size is
𝑛 (𝑖−1) × 𝑛𝑖 and 𝑝 ≥ 3 (1 ≤ 𝑖 ≤ 𝑝), compute the output matrix O = A1 × A2 × · · · × Ap.

For example, in Figure 1, the goal is to multiply three sparse matrices A1, A2, and A3, and the

output matrix is O.

Proc. ACM Manag. Data, Vol. 2, No. N3 (SIGMOD), Article 156. Publication date: June 2024.

On Efficient Large Sparse Matrix Chain Multiplication 156:7

Table 2. Notations and meaning.

Notation Meaning
A[𝑖, ∗] The 𝑖-th row in matrix A
A[∗, 𝑗] The 𝑗-th column in matrix A
A[𝑖, 𝑗] The element with index (𝑖, 𝑗) in matrix A
𝑛𝑛𝑧 (A) The number of non-zero elements in matrix A

𝑛𝑛𝑧 (A[𝑖, ∗]) The number of non-zero elements in a row A[𝑖, ∗]
𝜌 (A) The sparsity of matrix A, i.e., 𝜌 (A) = 𝑛𝑛𝑧 (A)

𝑚 ·𝑛
Ai,j The result matrix of Ai × Ai+1 · · · × Aj

𝜂 (A, 𝑖) The row-wise sparsity of a row A[𝑖, ∗] in matrix A
r(A) The row-wise sparsity vector of matrix A

3.2 Matrix-matrix multiplication
To multiply two matrices A and B, there are four methods to access the matrices [22]: row-by-

column (inner product), column-by-row (outer product), row-by-row (row-wise product), and

column-by-column (column-wise product), as shown in Table 3.

Table 3. Four methods of computing O = A × B.

Method Calculation formula
Inner product O[𝑖, 𝑗] = ∑𝑛

𝑘=1
A[𝑖, 𝑘] · B[𝑘, 𝑗]

Outer product O =
∑𝑛
𝑘=1

A[∗, 𝑘] · B[𝑘, ∗]
Row-wise product O[𝑖, ∗] = ∑𝑛

𝑘=1
A[𝑖, 𝑘] · B[𝑘, ∗]

Column-wise product O[∗, 𝑗] = ∑𝑛
𝑘=1

A[∗, 𝑘] · B[𝑘, 𝑗]

Although the inner product is frequently used in textbooks, the row- and column-wise products

[26] are more efficient for parallel computing since the computations for rows and columns are

independent of each other. Besides, in contrast to inner and outer products, the row- and column-

wise products allow us to use the same format for the input matrices and output matrix since

SMCM requires a consistent format of the inputs and outputs [54]. Thus, in this work, we use the

row-wise product.

In the row-wise product, each element A[𝑖, 𝑘] of A is multiplied with each element B[𝑘, 𝑗] in the

𝑘-th row of B, and the result A[𝑖, 𝑘] · B[𝑘, 𝑗] will be accumulated into the element O[𝑖, 𝑗] of output
matrix O.

Example 1. Figure 3 shows the process of running row-wise product for A × B, where A has four
elements A[1, 1], A[1, 2], A[2, 1], and A[2, 2]. For A[1, 1] and A[2, 1], they need to multiply with
the 1-st row of B, respectively. For A[1, 2] and A[2, 2], it needs to multiply with the 2-nd row of B,
respectively. Finally, we accumulate the results and get the output matrix O.

A seminal feature of the row-wise product is that each row O[𝑖, ∗] of the output matrix O depends

only on the 𝑖-th row A[𝑖, ∗] of A, and is independent of any other row of A. In other words, it

accesses both input matrices and the output matrix in row-major order, thereby enabling fast

concurrent processing of different rows across distinct CPU threads without the need for locking

operations. In Example 1, we can schedule two CPU threads such that each thread processes the

multiplication of all the elements in one row of A.

Proc. ACM Manag. Data, Vol. 2, No. N3 (SIGMOD), Article 156. Publication date: June 2024.

156:8 Chunxu Lin et al.

Fig. 3. Illustrating the row-wise product for A × B.

4 SPARSITY ESTIMATION
As aforementioned, the order of executing the matrix multiplication has a significant effect on the

SMCM efficiency. Determining the optimal order is non-trivial since the number of possible orders

is exponentially large [36]. Fortunately, there is a classic dynamic programming algorithm [14, 24]

for computing the optimal order. Specifically, denote by Ai,j the result matrix of Ai ×Ai+1 × · · · ×Aj,

where 1 ≤ 𝑖 ≤ 𝑗 . Then, the minimum cost of computing Ai,j is

𝑐𝑜𝑠𝑡 (Ai,j) = min

𝑖≤𝑘< 𝑗

{
𝑐𝑜𝑠𝑡 (Ai,k) + 𝑐𝑜𝑠𝑡 (Ak+1,j) + 𝑐𝑜𝑠𝑡 (Ai,k × Ak+1,j)

}
, (1)

where 𝑐𝑜𝑠𝑡 (Ai,k × Ak+1,j) represents the cost of multiplying two intermediate matrices Ai,k and

Ak+1,j. Note that 𝑐𝑜𝑠𝑡 (Ai,i) = 0.

When the input matrices are full or dense, we can simply let 𝑐𝑜𝑠𝑡 (Ai,k × Ak+1,j) = 𝑛 (𝑖−1) · 𝑛𝑘 · 𝑛 𝑗 .

However, for sparse matrices, since most of the elements are zero and their multiplications can

be skipped, 𝑐𝑜𝑠𝑡 (Ai,k × Ak+1,j) may be much smaller than 𝑛 (𝑖−1) · 𝑛𝑘 · 𝑛 𝑗 . As a result, we cannot

directly let 𝑐𝑜𝑠𝑡 (Ai,k ×Ak+1,j) be 𝑛 (𝑖−1) · 𝑛𝑘 · 𝑛 𝑗 . In the literature, existing algorithms often estimate

the value of 𝑐𝑜𝑠𝑡 (Ai,k × Ak+1,j) by designing matrix sparsity estimators.

In the following, we propose a novel sparsity estimator in Section 4.1, and further theoretically

analyze its accuracy in Section 4.2.

4.1 A row-wise sparsity estimator
To estimate the computational cost of sparse matrix-matrix multiplication, Kernert et al. [32]

designed an effective cost model for multiplying two sparse matrices, which we will also use:

Definition 1 (Cost model [32]). Let A and B be two sparse matrices with sizes 𝑚 × 𝑛 and 𝑛 × 𝑙
respectively. The cost of computing O = A × B can be modeled by

𝑐𝑜𝑠𝑡 (A × B) ≈ 𝛼

(
𝑚 · 𝑛 · 𝜌 (A)

)
︸ ︷︷ ︸

𝑛𝑛𝑧 (A)

+𝛽
(
𝑚 · 𝑛 · 𝜌 (A) · 𝑙 · 𝜌 (B)

)
︸ ︷︷ ︸

𝑁𝑜𝑝

+𝛾
(
𝑚 · 𝑙 · 𝜌 (O)

)
︸ ︷︷ ︸

𝑛𝑛𝑧 (O)

,

(2)

where the coefficients𝛼 , 𝛽 , and𝛾 are constant values associated with hardware read and write operations
during matrix multiplication, and 𝜌 (O) indicates the estimated sparsity of O.𝑁𝑜𝑝 denotes the estimated
number of numerical multiplication calculations, and 𝑛𝑛𝑧 (O) denotes the estimated count of non-zero
elements in O.

From Equation (2), we see that accurately estimating the sparsity of the result matrix O, 𝜌 (O),
plays a pivotal role in estimating the cost of sparse matrix-matrix multiplication.

Proc. ACM Manag. Data, Vol. 2, No. N3 (SIGMOD), Article 156. Publication date: June 2024.

On Efficient Large Sparse Matrix Chain Multiplication 156:9

In the following, we propose a row-wise sparsity estimator, also called RS-estimator, for
estimating 𝜌 (O), where O is the output matrix of multiplying two sparse matrices A and B. We

first introduce a widely used assumption in sparse matrix multiplication [12]. Given the potential

presence of negative values within the matrix, certain computations may yield zero as a result

of the cancellation of positive and negative values. In the context of matrix multiplication, these

elements are considered non-zero, as they still entail a computational overhead in their acquisition.

Assumption 1. In sparse matrix multiplication, zero elements do not arise during the element
aggregation process [12].

Then we put forth a novel assumption for sparsity estimation.

Assumption 2. All the matrices satisfy the following properties:
(1) The locations of non-zero elements are randomly and independently distributed across the rows

and columns;
(2) Within any given row, all non-zero elements exhibit a uniform and independent distribution;
(3) The probability of an element being a non-zero element is directly proportional to the sparsity of

the row in which it is situated.

Our RS-estimator is mainly grounded in these two key assumptions, which have been substan-

tiated through subsequent experiments. To leverage the structural information within matrices, we

introduce the concept of row-wise sparsity.

Definition 2 (Row-wise sparsity). Given an 𝑚 × 𝑛 matrix A, the row-wise sparsity of the 𝑖-th
(1 ≤ 𝑖 ≤ 𝑚) row is defined as

𝜂 (A, 𝑖) = 𝑛𝑛𝑧 (A[𝑖, ∗])
𝑛

. (3)

By considering the row-wise sparsity of all the rows in A, we then obtain a row-wise sparsity
vector of A

r(A) = (𝜂 (A, 1), 𝜂 (A, 2), · · · , 𝜂 (A,𝑚)) . (4)

Table 4. Illustrating sparsity and row-wise sparsity.

A1 A2 A3 O
Matrix sparsity 0.25 0.5 0.5 0.5

Row-wise sparsity vector (0, 0.5) (0.5, 0.5) (0, 1) (0, 1)

Example 2. Table 4 reports the sparsity and row-wise sparsity vectors of the four matrices in Figure 1.
For instance, the row-wise sparsity vector of A1 is (0, 0.5), and the sparsity of A1 is (0 + 0.5)/2 = 0.25.
Clearly, the overall matrix sparsity is actually the mean value of the row-wise sparsity of all rows.

Given a matrix-matrix multiplication O = A × B where the sizes of A and B are 𝑚 × 𝑛 and

𝑛 × 𝑙 respectively, we extend the sparsity analysis from the entire matrix to row-wise sparsity.

Leveraging Lemma 4.1 in [32], our RS-estimator estimates the row-wise sparsity of O by Lemma

1.

Lemma 1. The row-wise sparsity of the 𝑖-th row of matrix O = A × B, 𝜂 (O, 𝑖), can be estimated as
follows:

𝜂 (O, 𝑖) =
{
0, if 𝜂 (A, 𝑖) = 0;

1 −∏A[𝑖,𝑘]≠0

(
1 − 𝜂 (B, 𝑘)

)
, otherwise,

(5)

where 𝑖 ∈ [1,𝑚] and 𝑘 ∈ [1, 𝑛].

Proc. ACM Manag. Data, Vol. 2, No. N3 (SIGMOD), Article 156. Publication date: June 2024.

156:10 Chunxu Lin et al.

The proof of Lemma 1 aligns with Lemma 4.1 in [32]; therefore, we omit it.

Example 3. In Figure 1, let A1,2 = A1 × A2. Then, we know that 𝜂 (A1,2, 1) = 0 and 𝜂 (A1,2, 2) = 0.5.
We can use Lemma 1 to estimate their values, i.e., 𝜂 (A1,2, 1) = 0, and 𝜂 (A1,2, 2) = 1 - (1 - 0.5) = 0.5.

Algorithm 1 summarizes the steps of our RS-estimator. Given input matrices A and B, we
first compute the row-wise sparsity vector of B (line 1). Then, we initialize 𝑟̂ (O) (line 2). Next, for
each row in O, we compute its row-wise sparsity using Lemma 1. Specifically, 𝜂 (O, 𝑖) relies on the

non-zero elements in row A[𝑖, ∗], and the variable 𝑡𝑒𝑚𝑝 is used to compute 𝜂 (O, 𝑖) (lines 3-7). This
process can be efficiently parallelized as each 𝜂 (O, 𝑖) is independent.

Algorithm 1: RS-estimator
Input: two sparse matrices A and B
Output: the estimated row-wise sparsity vector of O=A×B

1 compute r(B) ← (𝜂 (B, 1), 𝜂 (B, 2), · · · , 𝜂 (B, 𝑛));
2 initialize a vector r̂(O) ← 0;
3 for each row A[𝑖, ∗] ∈ A in parallel do
4 𝑡𝑒𝑚𝑝 ← 1;

5 for each non-zero element A[𝑖, 𝑘] ∈ A[𝑖, ∗] do
6 𝑡𝑒𝑚𝑝 ← 𝑡𝑒𝑚𝑝 · (1 − 𝜂 (B, 𝑘));
7 𝜂 (O, 𝑖) ← 1 − 𝑡𝑒𝑚𝑝 ;

8 return r̂(O) = (𝜂 (O, 1), 𝜂 (O, 2), · · · , 𝜂 (O,𝑚));

Time complexity. The time cost of Algorithm 1 is O(𝑛𝑛𝑧 (A)), as it processes the non-zero
elements in matrix A and matches them with the respective row-wise sparsity in r(B).

4.2 Theoretical analysis for RS-estimator
We now theoretically analyze the accuracy of RS-estimator by considering the gap between

𝜂 (O, 𝑖) and 𝜂 (O, 𝑖). When 𝜂 (A, 𝑖) = 0, then 𝜂 (O, 𝑖) = 𝜂 (O, 𝑖) = 0. For the case that 𝜂 (A, 𝑖) ≠ 0, we

can derive the lower and upper bounds of 𝜂 (O, 𝑖) and 𝜂 (O, 𝑖) as follows.
Lemma 2. Given O = A × B, if 𝜂 (A, 𝑖) ≠ 0, then the lower and upper bounds of 𝜂 (O, 𝑖) can be stated
by

max

A[𝑖,𝑘]≠0

{
𝜂 (B, 𝑘)

}
≤ 𝜂 (O, 𝑖) ≤ min

{
1,

∑︁
A[𝑖,𝑘]≠0

𝜂 (B, 𝑘)
}
, (6)

where 𝑖 ∈ [1,𝑚] and 𝑘 ∈ [1, 𝑛].
Proof. According to the definition of row-wise product, 𝜂 (O, 𝑖) = 1

𝑙
·𝑛𝑛𝑧 (O[𝑖, ∗]). We can further

derive

𝜂 (O, 𝑖) ≥ 1

𝑙
· max

A[𝑖,𝑘]≠0

{
𝑛𝑛𝑧 (B[𝑘, ∗])

}
= max

A[𝑖,𝑘]≠0

{
𝜂 (B, 𝑘)

}
,

𝜂 (O, 𝑖) ≤ 1

𝑙
·min

{
𝑙,

∑︁
A[𝑖,𝑘]≠0

𝑛𝑛𝑧 (B[𝑘, ∗])
}

= min

{
1,

∑︁
A[𝑖,𝑘]≠0

𝜂 (B, 𝑘)
}
.

(7)

Proc. ACM Manag. Data, Vol. 2, No. N3 (SIGMOD), Article 156. Publication date: June 2024.

On Efficient Large Sparse Matrix Chain Multiplication 156:11

Therefore, the lemma holds. □

Before showing the upper and lower bounds of 𝜂 (O, 𝑖), we introduce an auxiliary function as

follows.

Lemma 3. Let 𝑓 (𝑥1, 𝑥2, · · · , 𝑥𝑛) =
𝑛∑︁
𝑖=1

𝑥𝑖 +
𝑛∏
𝑖=1

(
1 − 𝑥𝑖

)
− 1. (8)

Then, 𝑓 (𝑥1, 𝑥2, · · · , 𝑥𝑛) is a non-decreasing function if 0 ≤ 𝑥𝑖 ≤ 1 for all 𝑖 ∈ [1, 𝑛].

Proof. The partial derivative of 𝑓 with respect to each 𝑥𝑘 is computed as follows:

𝜕𝑓

𝜕𝑥𝑘
= 1 −

∏
𝑖≠𝑘

(
1 − 𝑥𝑖

)
≥ 0. (9)

Hence, 𝑓 (𝑥1, 𝑥2, · · · , 𝑥𝑛) is a non-decreasing function. □

Since 𝑓 (𝑥1, 𝑥2, · · · , 𝑥𝑛) is a non-decreasing function, it achieves the minimum value 0 when 𝑥𝑖 =

0 for all 𝑖 ∈ [1, 𝑛].

Lemma 4. The lower and upper bounds of 𝜂 (O, 𝑖) in Lemma 2 can also be applied for 𝜂 (O, 𝑖), i.e.,
they can share identical bounds.

Proof. We sequentially prove that the lower and upper bounds of 𝜂 (O, 𝑖) can be applied to

𝜂 (O, 𝑖).
Lower bound: From Equation (5), we can easily see that with the increase of 𝜂 (A, 𝑖), the value of

𝜂 (O, 𝑖) = 1−∏A[𝑖,𝑘]≠0 (1 − 𝜂 (B, 𝑘)) never decreases. Hence, 𝜂 (O, 𝑖) ≥ maxA[𝑖,𝑘]≠0 {𝜂 (B, 𝑘)}, which
is the same as the lower bound of 𝜂 (O, 𝑖) stated by Lemma 2.

Upper bound: Obviously, 𝜂 (O, 𝑖) ≤ 1, since the value of row-wise sparsity is always at most 1.

Besides, in Lemma 3, if let 𝑥𝑘 = 𝜂 (B, 𝑘), then we have:∑︁
A[𝑖,𝑘]≠0

𝜂 (B, 𝑘) +
∏

A[𝑖,𝑘]≠0

(
1 − 𝜂 (B, 𝑘)

)
− 1 ≥ 0. (10)

By Equation (5), we have ∑︁
A[𝑖,𝑘]≠0

𝜂 (B, 𝑘) − 𝜂 (O, 𝑖) ≥ 0. (11)

Therefore, we conclude 𝜂 (O, 𝑖) ≤ min

{
1,
∑

A[𝑖,𝑘]≠0 𝜂 (B, 𝑘)
}
, which is the same as the upper

bound of 𝜂 (O, 𝑖) stated by Lemma 2. Hence, Lemma 4 holds. □

Next, we delve into the error analysis concerning the estimated row-wise sparsity of the output

matrix compared to its exact value. For each estimated row-wise sparsity 𝜂 (O, 𝑖) of 𝑖-th row in the

output matrix O, its absolute error 𝜖 (O, 𝑖) = |𝜂 (O, 𝑖) − 𝜂 (O, 𝑖) | can be determined using the follow

theorem.

Theorem 1. Given O = A × B, we have

𝜖 (O, 𝑖) <
{
𝑒−1, if 𝜂 (O, 𝑖) > 𝜂 (O, 𝑖);
1, otherwise.

(12)

Proc. ACM Manag. Data, Vol. 2, No. N3 (SIGMOD), Article 156. Publication date: June 2024.

156:12 Chunxu Lin et al.

Proof. We prove the two cases sequentially.

Case I: 𝜂 (O, 𝑖) > 𝜂 (O, 𝑖). The absolute error 𝜖 (O, 𝑖) of row O[𝑖, ∗] is less than the function 𝑔 as

follows:

𝑔 = min

{
1,

∑︁
A[𝑖,𝑘]≠0

𝜂 (B, 𝑘)
}
− 1 +

∏
A[𝑖,𝑘]≠0

(
1 − 𝜂 (B, 𝑘)

)
.

(13)

Then, the partial derivative of 𝑔 with respect to each 𝜂 (B, 𝑥) is

𝜕𝑔

𝜕𝜂 (B, 𝑥) =

1 −∏A[𝑖,𝑘]≠0∧𝑘≠𝑥

(
1 − 𝜂 (B, 𝑘)

)
, if

∑
A[𝑖,𝑘]≠0 𝜂 (B, 𝑘) ≤ 1;

−∏A[𝑖,𝑘]≠0∧𝑘≠𝑥

(
1 − 𝜂 (B, 𝑘)

)
, otherwise.

(14)

Thus, to maximize 𝑔, it necessitates
∑

A[𝑖,𝑘]≠0 𝜂 (B, 𝑘) ≥ 1. Utilizing the Lagrange multipliers

method, we obtain that 𝑔 attains its maximum, when 𝜂 (B, 𝑘) = 1

𝑛𝑛𝑧 (A[𝑖,∗]) , where 𝑛𝑛𝑧 (A[𝑖, ∗]) ≠ 0.

Consequently, 𝑔 satisfies the following equation:

𝑔 < lim

𝑛𝑛𝑧 (A[𝑖,∗])→∞

(
1 − 1

𝑛𝑛𝑧 (A[𝑖, ∗])

)𝑛𝑛𝑧 (A[𝑖,∗])
= 𝑒−1 . (15)

Case II: 𝜂 (O, 𝑖) ≤ 𝜂 (O, 𝑖).We consider the densest row of matrix B corresponding to non-zero

elements in row A[𝑖, ∗] of A, and denote it as the 𝑘 ′-th row, where 𝑘 ′ = argmaxA[𝑖,𝑘]≠0 {𝜂 (B, 𝑘)}.
According to Lemma 4, the absolute error 𝜖 (O, 𝑖) is less than the functionℎwhich can be described

as:

ℎ = 1 −
∏

A[𝑖,𝑘]≠0

(
1 − 𝜂 (B, 𝑘)

)
− 𝜂 (B, 𝑘 ′). (16)

The partial derivative of ℎ for each 𝜂 (B, 𝑥) is computing as follows:

𝜕ℎ

𝜕𝜂 (B, 𝑥) =
{∏

A[𝑖,𝑘]≠0∧𝑘≠𝑥 (1 − 𝜂 (B, 𝑘)), if 𝑥 ≠ 𝑘 ′;∏
A[𝑖,𝑘]≠0∧𝑘≠𝑥 (1 − 𝜂 (B, 𝑘)) − 1, otherwise.

(17)

The function ℎ exhibits monotonic growth as 𝜂 (B, 𝑘 ′) decreases or 𝜂 (B, 𝑥) increases since 0 <∏
A[𝑖,𝑘]≠0∧𝑘≠𝑥 (1 − 𝜂 (B, 𝑘)) < 1. Besides, ℎ monotonically increases as 𝜂 (A, 𝑖) increases. Therefore,

the maximum of ℎ occurs when 𝜂 (A, 𝑖) = 1 and 𝜂 (B, 𝑘 ′) = 𝜂 (B, 𝑘) for 𝑘 = 1, · · · , 𝑛. Applying the

Lagrange multipliers method, ℎ attains its maximum when 𝜂 (B, 𝑘) = 1 − 𝑛 1

1−𝑛 . Conclusively, we

have

ℎ < lim

𝑛→∞

(
𝑛

1

1−𝑛 − 𝑛 𝑛
1−𝑛

)
= 1. (18)

Therefore, the theorem holds. □

In addition, RS-estimator is able to estimate the exact row-wise sparsity of the output matrix

O when the input matrices A and B satisfy some conditions, as stated by Lemma 5.

Lemma 5. Given O=A×B, if any of the following conditions is met,
(1) there is at most one non-zero element in the 𝑖-th row of matrix A, i.e., 𝜂 (A, 𝑖) ≤ 1

𝑚
[53],

(2) there is one non-zero element A[𝑖, 𝑘] of the 𝑖-th row of matrix A and its corresponding 𝑘-th row
of B having 𝜂 (B, 𝑘) = 1,

then we can claim 𝜂 (O, 𝑖) = 𝜂 (O, 𝑖).

Proof. The proof of condition (1) is presented in Theorem 3.1 in [53]. For condition (2), if there

is one non-zero element A[𝑖, 𝑘] in A[𝑖, ∗] whose corresponding row in B is full, then the row O[𝑖, ∗]
is full, i.e., 𝜂 (O, 𝑖) = 1. By applying Equation (5) again, we can claim 𝜂 (O, 𝑖) = 1 − 0 = 1 = 𝜂 (O, 𝑖).
Conclusively, the lemma holds. □

Proc. ACM Manag. Data, Vol. 2, No. N3 (SIGMOD), Article 156. Publication date: June 2024.

On Efficient Large Sparse Matrix Chain Multiplication 156:13

Fig. 4. An attempt to use RS-estimator to estimate the row-wise sparsity vector of A1,3 = (A1 × A2) × A3
in Figure 1.

Fig. 5. Estimating the row-wise sparsity vector of A1,3 = A1 × (A2 × A3).

Unlike existing estimators [4, 32, 53, 64] which often estimate the sparsity of the whole matrix,

RS-estimator focuses on estimating the row-wise sparsity. In other words, existing estimators

produce coarse-grained estimated results, while our RS-estimator offers a more fine-grained

sparsity, so our estimated results tend to be more accurate. Moreover, we provide a vigorous

theoretical analysis of the accuracy, by proving both the lower and upper bounds of the gap

between ground-truth sparsity and estimated sparsity. In addition, as shown in Algorithm 1, the

estimation process of RS-estimator is efficient, since it can be easily parallelized.

5 OUR SMCM ALGORITHM
In this section, we first present the ordering algorithm for performing SMCM, then propose a

parallel algorithm for matrix-matrix multiplication, and finally present our overall SMCM algorithm.

5.1 Matrix chain ordering
Recall that RS-estimator only estimates the sparsity of the output matrix by multiplying two

sparse matrices. We now extend it to the case of multiplying a chain of matrices. Given a chain of

𝑝 matrices, there are 𝑝 · (𝑝 + 1)/2 non-empty sub-chains in total. To derive a good order, we need

to estimate the sparsity of each sub-chain.

In existing SMCM methods, they estimate the sparsity of a sub-chain following an arbitrary

order. However, our approach necessitates estimating the sparsity of the result matrices following a

right-to-left order in the sub-chain, since RS-estimator needs the positions of non-zero elements

in the left matrix. If we attempt to use a left-to-right order to estimate the sparsity of intermediate

result matrices, we will not be able to obtain the positions of non-zero elements in the intermediate

result matrices, which serve as the left matrices later, since we do not compute the intermediate

result matrices during the estimation. Example 4 illustrates this.

Example 4. Reconsider multiplying A1 × A2 × A3 in Figure 1. Suppose we estimate the row-wise
sparsity of the output matrix of A1 ×A2 ×A3 by following the order (A1 ×A2) ×A3. Then, we can first
estimate r̂(A1,2) by RS-estimator. Afterwards, we cannot estimate the sparsity of A1,3 = A1,2 × A3,
because the positions of non-zero elements in A1,2 are unknown. Thus, the estimation cannot be done
by following a left-to-right order, as depicted in Figure 4.

Proc. ACM Manag. Data, Vol. 2, No. N3 (SIGMOD), Article 156. Publication date: June 2024.

156:14 Chunxu Lin et al.

However, by using a right-to-left order A1 × (A2 × A3), we can obtain r̂(A1,3). First, we estimate
r̂(A2,3) by RS-estimator. Next, we can estimate r̂(A1,3) by using matrix A1 and r̂(A2,3), since the
positions of non-zero elements in A1 are known. Thus, the estimation can be done by using a right-to-left
order, as depicted in Figure 5.

Based on the discussions above, we propose an algorithm to estimate the sparsity of all sub-chains

generated within the SMCM process, as illustrated in Algorithm 2. Given an input matrix chain

A1, · · · ,Ap, we initialize a 3D array 𝑅 for tracking the row-wise sparsity of each sub-chain, and

a matrix Ŝ to keep the sparsity of each sub-chain (line 1). Next, we use two nested for-loops to

compute the row-wise sparsity of each sub-chain following a reverse order (lines 2-7). Specifically,

we set 𝑅 [𝑖, 𝑖] by the exact row-wise sparsity vector r(Ai) of Ai (line 3), and store the sparsity of Ai

in Ŝ[𝑖, 𝑖] (line 4). Afterwards, in the inner for-loop, we invoke Algorithm 1 to estimate the row-wise

sparsity vector r̂(Ai,j) of the sub-chain Ai,j, where the input r(Ai+1,j) is replaced by its estimated

vector 𝑅 [𝑖 + 1, 𝑗] (line 6). The sparsity of Ai,j is also derived by the mean of its estimated row-wise

sparsity vector (line 7). Finally, we return the sparsity of all sub-chains (line 8).

Algorithm 2: Sub-chain sparsity estimation

Input: a matrix chain A1, · · · ,Ap

Output: a matrix Ŝ
1 initialize a 3D array 𝑅 ← ∅, and a 𝑝 × 𝑝 matrix Ŝ← ∅;
2 for 𝑖 = 𝑝 to 1 do
3 𝑅 [𝑖, 𝑖] ← r(Ai);
4 Ŝ[𝑖, 𝑖] ← the mean of values in 𝑅 [𝑖, 𝑖];
5 for 𝑗 = 𝑝 to 𝑖 + 1 do
6 𝑅 [𝑖, 𝑗] ← RS-estimator(Ai, 𝑅 [𝑖 + 1, 𝑗]);
7 Ŝ[𝑖, 𝑗] ← the mean of values in 𝑅 [𝑖, 𝑗];

8 return Ŝ;

Example 5. Consider the SMCM of A1 × A2 × A3 in Figure 1. Following Algorithm 2, when 𝑖 = 3, we
simply initialize 𝑅 [3, 3] as r(A3) = (0, 1). When 𝑖 = 2, we first initialize 𝑅 [2, 2] as r(A2) = (0.5, 0.5), and
then estimate r̂(A2,3) = (1, 1). When 𝑖 = 1, we first initialize 𝑅 [1, 1] as r(A1) = (0, 0.5), then estimate
r̂(A1,3) = (0, 1), and finally estimate r̂(A1,2) = (0, 0.5). Similarly, we can compute the estimated sparsity
of the output matrix of each sub-chain by using 𝑅.

Based on the above discussions, we can derive a good execution order for SMCM using dynamic

programming, as outlined in Algorithm 3. The high-level idea is that to derive a good order for

multiplying a chain of input matrices, we compute the estimated multiplication cost of all the

possible sub-chains, and then parenthesize the sub-chains such that the overall cost is minimized.

Recall that Ŝ is a 𝑝 × 𝑝 matrix, where Ŝ[𝑖, 𝑗] denotes the estimated sparsity of the matrix Ai,j.

We use two auxiliary matrices, Ĉ and T, to facilitate the computation of a good order. Specifically,

Ĉ[𝑖, 𝑗] stores the minimal cost of the sub-chain matrix multiplication Ai,j = Ai,k × Ak+1,j, and
T[𝑖, 𝑗] records the dividing index 𝑘 . According to Equation (2), the cost 𝑐𝑜𝑠𝑡 (Ai,k × Ak+1,j) can be

calculated via the sparsity Ŝ[𝑖, 𝑘], Ŝ[𝑘 + 1, 𝑗] and Ŝ[𝑖, 𝑗] (lines 7). Subsequently, the current cost
𝑡𝑘 with dividing index 𝑘 is computed with the optimal time of corresponding sub-chain matrix

multiplication (lines 8). The estimated minimal cost for multiplying each matrix sub-chain is kept

Proc. ACM Manag. Data, Vol. 2, No. N3 (SIGMOD), Article 156. Publication date: June 2024.

On Efficient Large Sparse Matrix Chain Multiplication 156:15

Algorithm 3: SMCM ordering

Input: a matrix chain A1, · · · ,Ap and a 𝑝 × 𝑝 matrix Ŝ
Output: an order Ψ to execute A1 × A2 × · · ·Ap

1 initialize two matrices, Ĉ and T, whose sizes are 𝑝 × 𝑝;
2 for 𝑙 = 1 to 𝑝 − 1 do
3 for 𝑖 = 1 to 𝑝 − 𝑙 do
4 𝑗 ← 𝑖 + 𝑙 ;
5 Ĉ[𝑖, 𝑗] ← +∞;
6 for 𝑘 = 𝑖 to 𝑗 − 1 do
7 compute 𝑐𝑜𝑠𝑡 (Ai,k × Ak+1,j) using Ŝ with Eq. (2);

8 𝑡𝑘 ← Ĉ[𝑖, 𝑘] + Ĉ[𝑘 + 1, 𝑗] + 𝑐𝑜𝑠𝑡 (Ai,k × Ak+1,j);
9 if 𝑡𝑘 < Ĉ[𝑖, 𝑗] then
10 Ĉ[𝑘 + 1, 𝑗] ← 𝑡𝑘 ;

11 T[𝑖, 𝑗] ← 𝑘 ;

12 compute the order Ψ through T ;

13 return Ψ;

in Ĉ while the corresponding dividing index is recorded in T (lines 10-11). Finally, the order Ψ is

derived from T (line 12).

Time complexity. Algorithm 2 takes O(∑𝑖 ((𝑝 − 𝑖) · 𝑛𝑛𝑧 (Ai)
+𝑛𝑖−1)) time to compute the sparsity of the output matrix of each sub-chain. Algorithm 3 completes

in O(𝑝3) time, since it uses three nested for-loop in the dynamic programming process.

5.2 Parallel sparse matrix-matrix multiplication
We first discuss the data structure for sparse matrices and then present a parallel algorithm for

sparse matrix-matrix multiplication.

• Data structures for the sparse matrix. The Compressed Sparse Row (CSR) format is widely

used employed in both sequential [26] and parallel [5, 9, 15, 35, 67] sparse matrix multiplication to

reduce the space cost. CSR comprises a list 𝑒𝑙 storing non-zero elements as (𝑐𝑜𝑙, 𝑣𝑎𝑙) pairs row by

row and an array 𝑟𝑜𝑤 indicating the index in 𝑒𝑙 of the first non-zero element of each row. Figures

6(a) and (b) show a sparse matrix and its CSR representation, respectively.

Fig. 6. CSR and sparse adjacent list for a matrix.

While the CSR format saves much space, it is not friendly for parallel multiplication, because

during the parallel computation, when a thread is writing the 𝑖-th row of the output matrix to

memory, it has to wait until all the other threads that are writing rows with indices less than 𝑖 are

Proc. ACM Manag. Data, Vol. 2, No. N3 (SIGMOD), Article 156. Publication date: June 2024.

156:16 Chunxu Lin et al.

done [26, 40]. This issue is even prominent in the SMCM since it generates many intermediate

matrices. To address synchronization issues, we utilize the sparse adjacent list [49]. For an𝑚 × 𝑛
sparse matrix A, the sparse adjacent list, denoted as 𝑙𝑖𝑠𝑡 , consists of𝑚 entries. Each 𝑙𝑖𝑠𝑡 [𝑖] points to
an array 𝑎𝑟𝑟 [𝑖] storing non-zero elements in the 𝑖-th row of A, where each element is represented as

a (𝑐𝑜𝑙, 𝑣𝑎𝑙) pair. Figure 6(c) depicts the sparse adjacent list for the matrix in Figure 6(a). This efficient

representation allows parallel processing on multiple CPU cores, with each thread independently

handling a row without synchronization.

• A parallel algorithm for sparse matrix-matrix multiplication. Algorithm 4 presents

our proposed algorithm, where the input two sparse matrices are represented by sparse adjacent

lists. Specifically, to gather all the rows of the output matrix O = A × B, we use three arrays: 𝐹 , 𝐶 ,
and 𝑉 , each of size 𝑙 (line 3). Particularly, 𝐹 tracks whether non-zero columns have been visited

or not, where the initial values are false denoting not visited, 𝐶 records the indices of columns

with non-zero elements, and 𝑉 stores the result values of multiplying non-zero elements (line 4).

We also use a variable 𝑐𝑜𝑢𝑛𝑡 to keep track of the number of non-zero elements (line 5). We then

complete the multiplication by two nested for-loops and parallize the outer for-loop using multiple

threads (lines 6-13). During the multiplication process, if the 𝑗-th column has not been visited, we

update 𝐹 [𝑗] to be 𝑡𝑟𝑢𝑒 , insert 𝑗 into 𝐶 [𝑐𝑜𝑢𝑛𝑡], increase the value of 𝑐𝑜𝑢𝑛𝑡 by one, and compute

A[𝑖, 𝑘] · B[𝑘, 𝑗], whose result is kept in 𝑉 [𝑗] (lines 8-11). Otherwise, we just add A[𝑖, 𝑘] · B[𝑘, 𝑗] to
𝑉 [𝑗] (lines 12-13).

In the last step within each thread, we aggregate the non-zero elements from𝐶 into O[𝑖, ∗] (lines
14-15). That is, for each column index 𝑗 , if the value stored in 𝑉 [𝐶 [𝑗]] is non-zero, we insert a pair
consisting of the column index and value into O[𝑖, ∗].

Algorithm 4: Parallel sparse matrix-matrix multiplication

Input: two sparse matrices A and B, whose sizes are𝑚 × 𝑛 and 𝑛 × 𝑙 respectively
Output: the output matrix O

1 initialize matrix O← ∅;
2 foreach 𝑖 = 1 to𝑚 in parallel do
3 initialize three arrays, 𝐹 , 𝐶 , and 𝑉 , whose sizes are 𝑙 ;

4 initialize all elements in 𝐹 to be false;
5 initialize 𝑐𝑜𝑢𝑛𝑡 ← 1 ;

6 foreach 𝑘 ∈ {𝑘 |A[𝑖, 𝑘] ≠ 0} do
7 foreach 𝑗 ∈ { 𝑗 |B[𝑘, 𝑗] ≠ 0} do
8 if 𝐹 [𝑗] = 𝑓 𝑎𝑙𝑠𝑒 then
9 𝐹 [𝑗] ← 𝑡𝑟𝑢𝑒 , 𝐶 [𝑐𝑜𝑢𝑛𝑡] ← 𝑗 ;

10 𝑐𝑜𝑢𝑛𝑡 ← 𝑐𝑜𝑢𝑛𝑡 + 1;
11 𝑉 [𝑗] ← A[𝑖, 𝑘] · B[𝑘, 𝑗];
12 else
13 𝑉 [𝑗] ← 𝑉 [𝑗] + A[𝑖, 𝑘] · B[𝑘, 𝑗];

14 for 𝑗 = 1 to 𝑐𝑜𝑢𝑛𝑡 − 1 do
15 if 𝑉 [𝐶 [𝑗]] ≠ 0 then append (𝐶 [𝑗],𝑉 [𝐶 [𝑗]]) to O[𝑖, ∗] ;

16 return O;

Proc. ACM Manag. Data, Vol. 2, No. N3 (SIGMOD), Article 156. Publication date: June 2024.

On Efficient Large Sparse Matrix Chain Multiplication 156:17

Example 6. In Figure 7, to compute O = A × B, we run Algorithm 4 with two threads. Taking the
second thread as an example, we use three arrays 𝐹2, 𝑉2, and 𝐶2 to compute the 2-nd row of O. All
elements in 𝐹2 are initialized to false. First, to compute A[2, 1] · B[1, ∗] = (0, 12), we run the following
three steps: (1) update 𝐹2 [2] to 𝑡𝑟𝑢𝑒 , (2) append the column index 2 to𝐶2, and (3) set𝑉2 [2] = 3 · 4 = 12.
To calculate A[2, 2] · B[2, ∗] = (0, 5), we just add 1 · 5 = 5 to 𝑉2 [2], as 𝐹2 [2] = 𝑡𝑟𝑢𝑒 . Finally, we build
a sparse adjacent list O[2, ∗] with an element (2, 17) using 𝐶2 and 𝑉2. The same process is applied to
the first thread.

Fig. 7. An example of computing A × B using Algorithm 4.

Time complexity. Algorithm 4 has a time complexity of O(𝑙 + 𝛿
𝑡
). Here, 𝛿 denotes the number

of numerical multiplications of A × B, and 𝑡 is the number of threads. Initialization of 𝐹 , 𝐶 and 𝑉

takes O(𝑙) time, while parallel multiplication takes O(𝛿
𝑡
) time.

5.3 The overall SMCM algorithm
To solve the SMCM problem, we follow the SMCM order derived by our ordering algorithm and

each time we multiply two sparse matrices. Algorithm 5 presents the overall algorithm RS-estimator

based sparse Matrix chain Multiplication (RoseMM). We first estimate the sparsity of sub-chains

Ŝ by Algorithm 2 (line 1). Then, we derive a good order using Algorithm 3 (line 2). Finally, by

following the order, we apply our parallel sparse matrix-matrix multiplication algorithm to get the

final output matrix O (line 3).

Algorithm 5: RoseMM
Input: a matrix chain A1, · · · ,Ap
Output: the output matrix O = A1,p = A1 × A2 × · · · × Ap

1 compute Ŝ using Algorithm 2;

2 compute the order Ψ of SMCM using Algorithm 3 with Ŝ;
3 compute A1,p in parallel using Algorithm 4 and the order Ψ;

4 return O;

Proc. ACM Manag. Data, Vol. 2, No. N3 (SIGMOD), Article 156. Publication date: June 2024.

156:18 Chunxu Lin et al.

Table 5. Datasets used in our experiments.

Dataset Vertex count Edge count Vertex types Number of SMCMs (3, 4, 5, 6, 7)
FourSquare 43.2K 405.5K 5 (32, 80, 100, 100, 100)

IMDB 471.8K 521.0K 4 (18, 36, 54, 100, 100)

DBLP 490.7K 1.1M 4 (18, 36, 54, 100, 100)

DBpedia 9.0M 31.2M 414 (100, 100, 100, 100, 100)

FreeBase 29.1M 105.6M 984 (100, 100, 100, 100, 100)

Time complexity. By considering the time cost of Algorithms 2, 3, and 4, we can conclude

that Algorithm 5 completes in O
(
1

𝑡
·
(∑

𝑖 ((𝑝 − 𝑖)·𝑛𝑛𝑧 (Ai) + 𝑛𝑖−1) + Δ
)
+ 𝑝3 + 𝑑

)
time, where 𝑡 is

the number of threads used, 𝑑 = max{𝑛2, · · · , 𝑛𝑝 }, and Δ denotes the total number of numerical

multiplication calculations.

6 EXPERIMENTS
We now present the experimental results. We describe the setup in Section 6.1. We assess the

accuracy of sparsity estimators in Section 6.2, and evaluate the efficiency of SMCM algorithms in

Section 6.3. Section 6.4 discusses the results of some application studies.

6.1 Setup
Datasets. To simulate the SMCM process, we extract various chains of sparse matrices from five

real-world heterogeneous information networks (HINs): FourSquare
1
, IMDB

2
, DBLP

3
, DBpedia

4
,

and FreeBase
5
. Table 5 shows the statistics of each HIN. The choice of using HINs is motivated by

the inherent diversity of HINs, encompassing various types of vertices and relationships, which

contribute to the richness of matrices and, in turn, enhance the comprehensive evaluation of SMCM

algorithm generalization capabilities.

Naturally, the link relationships between two groups of vertices with different types in the

HIN form a bipartite graph or a sparse matrix. For example, DBLP includes publication records in

computer science areas, and the vertex types are authors (𝐴), papers (𝑃), venues (𝑉), and topics (𝑇).

The link relationships between authors and papers form a bipartite graph, which can be represented

by an adjacent matrix M(𝐴𝑃) or its transposed matrix M(𝑃𝐴). As a result, by considering a chain of

such link relationships, which corresponds to a meta-path, we can obtain the semantic relationships

between vertices by multiplying a chain of matrices. For instance, the meta-path “𝐴→𝑃→𝑇→𝑃→𝐴”

means two authors having papers sharing the same topics, and we can find all such author pairs by

M(𝐴𝑃) ×M(𝑃𝑇) ×M(𝑇𝑃) ×M(𝑃𝐴), where M(𝑃𝑇) and M(𝑇𝑃) are the adjacency matrices between

paper and topic vertices.

Sparse matrix chains. To assess the efficiency of SMCM algorithms, we generate five sets of

meta-paths, whose lengths are 3, 4, 5, 6, and 7 respectively, and each meta-path corresponds to a

matrix chain. Note that if the HIN has over 100 meta-paths with a specific length, we select the

100 meta-paths whose result matrices have the highest sparsity. Table 5 shows the numbers of

meta-paths (chains of matrices) in these five sets.

Sparsity estimators. We assess the following estimators:

1
https://sites.google.com/site/yangdingqi/home/foursquare-dataset

2
https://www.imdb.com/interfaces/

3
http://dblp.uni-trier.de/xml/

4
https://wiki.dbpedia.org/Datasets

5
http://freebase-easy.cs.uni-freiburg.de/dump/

Proc. ACM Manag. Data, Vol. 2, No. N3 (SIGMOD), Article 156. Publication date: June 2024.

On Efficient Large Sparse Matrix Chain Multiplication 156:19

• MNC [53]: the state-of-the-art matrix sparsity estimator;

• MetaAC [32]: a statistically unbiased sparsity estimator;

• DMap [32]: a statistically unbiased sparsity estimator with block cells;

• LGraph [12]: a graph-based sparsity estimator with 𝑟=32 [53];

• RS-estimator: our proposed sparsity estimator.

All estimators utilize the same DP algorithm as depicted in Algorithm 3 and runtime kernels [32].

SMCM algorithms.We compare the following algorithms:

• L2R: it adopts the left-to-right chain order and uses Algorithm 4 for sparse matrix multiplica-

tion;

• Naive: it regards all the input matrices as dense matrices, then uses the classic dynamic

programming to determine an optimal order, and finishes SMCM using Algorithm 4;

• MNC-SAL [53]: it adopts MNC estimator in chain ordering and uses Algorithm 4 for sparse

matrix multiplication;

• DMap-SAL [32]: it employs DMap estimator in chain ordering and uses Algorithm 4 for sparse

matrix multiplication;

• LGraph-SAL [12]: it uses LGraph estimator in chain ordering and uses Algorithm 4 for sparse

matrix multiplication;

• MetaAC-SAL [32]: it adopts MetaAC estimator in chain ordering and uses Algorithm 4 for

sparse matrix multiplication;

• RSE-CSR: it adopts RS-estimator in chain ordering and the state-of-the-art parallel matrix

chain multiplication algorithm using CSR format [40];

• RoseMM: Our proposed parallel SMCM algorithm.

We have also tried to use existing sparse matrix-matrix multiplication algorithms, including

GPU implementations such as cuSPARSE [45], bhSPARSE [40], and TileSpGEMM [44], in SMCM,

but all of them encountered the out-of-memory issues, so we omit their results.

All the algorithms mentioned above are implemented in C++ and compiled with the gcc 9.4.0

compiler using the -O3 optimization level. The experiments are run on a Linux machine running

Ubuntu Linux 20.04.5 LTS. This machine is equipped with dual Intel Xeon(R) Gold 6338 2.0GHz

processors (64 cores) and 496GB of RAM. The number of threads 𝑡 varies from 8 to 64, and we set

𝑡=64 by default. For the coefficients of the cost model in Equation (2), we set 𝛼 = −130, 𝛽 = −16,
and 𝛾 = 83 through multi-linear regression with the least squares fitting method [8, 32], based on a

random selection of ten thousand matrix products from the five datasets.

Fig. 8. Relative error of all estimators for sparse
matrix-matrix multiplication on all datasets.

DBLP IMDB FourSquare DBpedia FreeBase

10
0

10
1

10
2

10
3

10
4

10
5

10
6

10
7

R
un

ni
ng

ti
m
e
(𝑚

𝑠)

RS-estimator MetaAC MNC
DMap LGraph

O
O
M

Fig. 9. Runtime of all sparsity estimators for SMCM
on all datasets.

Proc. ACM Manag. Data, Vol. 2, No. N3 (SIGMOD), Article 156. Publication date: June 2024.

156:20 Chunxu Lin et al.

Fig. 10. Relative error of all estimators for SMCM on all datasets.

L2R Naive MNC-SAL MetaAC-SAL DMap-SAL LGraph-SAL RSE-CSR RoseMM

3 4 5 6 7
10

1

10
2

10
3

10
4

10
5

length

R
un

ni
ng

ti
m
e
(𝑚

𝑠)

(a) DBLP

3 4 5 6 7
10

1

10
2

10
3

10
4

10
5

length

(b) IMDB

3 4 5 6 7
10

1

10
2

10
3

10
4

10
5

length

(c) FourSquare

3 4 5 6 7

10
2

10
4

10
6

10
8

length

(d) DBpedia

3 4 5 6 7

10
2

10
4

10
6

10
8

length

(e) FreeBase

Fig. 11. Effect of the length of matrix chain.

DBLP IMDB FourSquare DBpedia FreeBase

10
1

10
3

10
5

10
7

R
un

ni
ng

ti
m
e
(𝑚

𝑠)

L2R Naive
MNC-SAL MetaAC-SAL
DMap-SAL LGraph-SAL
RSE-CSR RoseMM

O
O
M

Fig. 12. Efficiency of all SMCM algorithms on all
datasets.

L2R Naive MNC-SAL MetaAC-SAL

DMap-SAL LGraph-SAL RSE-CSR RoseMM

20% 40% 60% 80% 100%

10
3

10
4

10
5

10
6

R
un

ni
ng

ti
m
e
(𝑚

𝑠)

(a) DBpedia

20% 40% 60% 80% 100%
10

3

10
4

10
5

10
6

10
7

(b) FreeBase

Fig. 13. Scalability test.

L2R Naive MNC-SAL MetaAC-SAL DMap-SAL LGraph-SAL RSE-CSR RoseMM

8 16 32 64
10

3

10
4

10
5

number of threads

R
un

ni
ng

ti
m
e
(𝑚

𝑠)

(a) DBLP

8 16 32 64
10

1

10
3

10
5

number of threads

(b) IMDB

8 16 32 64
10

1

10
3

10
5

number of threads

(c) FourSquare

8 16 32 64
10

3

10
5

10
7

number of threads

(d) DBpedia

8 16 32 64

10
3

10
5

10
7

number of threads

(e) FreeBase

Fig. 14. Effect of the number of threads.

6.2 Efficiency and accuracy evaluation of sparsity estimators
In this section, we evaluate the sparsity estimation accuracy of MetaAC, MNC, DMap, LGraph, and
RS-estimator on all datasets. To establish a ground truth for sparsity, we first perform exact

matrix chain multiplications for all datasets, allowing us to derive the exact sparsity of the output

matrices. Subsequently, we employ the concept of relative error, introduced by Sommer et al. [53],

as a benchmark metric for sparsity estimation accuracy evaluation. Assuming that O is the output

Proc. ACM Manag. Data, Vol. 2, No. N3 (SIGMOD), Article 156. Publication date: June 2024.

On Efficient Large Sparse Matrix Chain Multiplication 156:21

Estimation DP Matrix multiplication

R
o
s
e
M
M

M
e
a
t
A
C

M
N
C

D
M
a
p

L
G
r
a
p
h

0

20

40

60

80

100

T
im

e
pr

op
or
ti
on

(%
)

(a) DBLP

R
o
s
e
M
M

M
e
a
t
A
C

M
N
C

D
M
a
p

L
G
r
a
p
h

0

20

40

60

80

100

(b) IMDB

R
o
s
e
M
M

M
e
a
t
A
C

M
N
C

D
M
a
p

L
G
r
a
p
h

0

20

40

60

80

100

(c) FourSquare

R
o
s
e
M
M

M
e
a
t
A
C

M
N
C

D
M
a
p

L
G
r
a
p
h

0

20

40

60

80

100

(d) DBpedia

R
o
s
e
M
M

M
e
a
t
A
C

M
N
C

D
M
a
p

L
G
r
a
p
h

0

20

40

60

80

100
O
O
M

(e) FreeBase

Fig. 15. Proportion of time cost of each component for SMCM algorithms on all datasets.

10
0 · 𝑎𝑣𝑔 10

1 · 𝑎𝑣𝑔 10
2 · 𝑎𝑣𝑔

10
2

10
3

10
4

10
5

variance

R
un

ni
ng

ti
m
e
(𝑚

𝑠)

L2R MNC-SAL
MetaAC-SAL DMap-SAL
LGraph-SAL RoseMM

Fig. 16. Runtime of all SMCM algorithms with the
mix of dense and sparse operations (length = 5).

DBLP IMDB FourSquare DBpedia FreeBase

10
1

10
2

10
3

10
4

10
5

dataset

R
un

ni
ng

ti
m
e
(𝑚

𝑠)

RoseMM RSE-CSR MKL-CSR
MKL-CSC MKL-BSR

Fig. 17. Runtime of SMCM with different sparse ma-
trix multiplication on all datasets (length = 5).

DBLP IMDB FourSquare DBpedia FreeBase

10
0

10
1

10
2

10
3

10
4

10
5

10
6

10
7

R
un

ni
ng

ti
m
e
(𝑚

𝑠)

Baseline MetaAC-SAL
MNC-SAL RSE-CSR
RoseMM

(a) PathSim computation

DBLP IMDB FourSquare DBpedia FreeBase

10
2

10
3

10
4

10
5

10
6

10
7

Baseline MetaAC-SAL
MNC-SAL RSE-CSR
RoseMM

(b) HIN node embedding

Fig. 18. Efficiency in application studies (length = 4).

matrix, the relative error is defined as:

𝜀 (O, Ô) =
max

{
𝜌 (O), 𝜌 (O)

}
min

{
𝜌 (O), 𝜌 (O)

} . (19)

Here, the relative error value falls within the range of [1,∞), with values closer to 1 signifying amore

precise estimation, indicating proximity to the exact sparsity. For the figures reporting the relative

errors below, we use box plots to depict the relative errors of MNC, MetaAC, and RS-estimator,
where each box plot displays the corresponding median, lower quartile, upper quartile, minimum,

and maximum values.

• Sparse matrix-matrix multiplication. In this experiment, we randomly select 100 matrix

pairs for each HIN, then measure the relative error of multiplying them, and finally report the

relative error of all the estimators in Figure 8. Clearly, RS-estimator achieves the lowest relative

error compared to DMap, MetaAC, and MNC. Particularly, it exhibits a relative error close to 1 on

Proc. ACM Manag. Data, Vol. 2, No. N3 (SIGMOD), Article 156. Publication date: June 2024.

156:22 Chunxu Lin et al.

the DBLP and IMDB datasets, indicating that the estimated value closely aligns with the exact

value. It’s important to note that both MNC and MetaAC can yield zero estimated values, leading

to significant relative errors, as observed in datasets like DBpedia and FreeBase. This is because

MetaAC’s estimated value decreases exponentially as the number of columns in the first matrix

increases. For MNC, its estimated value relies on the product of the number of non-zero elements

in the 𝑖-th column of the first matrix and the number of non-zero elements in the 𝑖-th row of the

second matrix, so its estimation can reach zero when both input matrices are sufficiently large and

sparse. As the dataset size increases, the accuracy of DMap decreases, and it fails to produce results

on Freebase due to out-of-memory (OOM) issues. While LGraph achieves superior accuracy among

all estimators, it does so at the expense of efficiency, a trade-off to be discussed later.

• SMCM. Figure 10 depicts the relative error of all the estimators for SMCM.We also evaluate the

runtime of all estimators for SMCM on all datasets, as depicted in Figure 9. Again, RS-estimator
achieves the lowest relative error compared to DMap, MetaAC, and MNC. The main reason is that

RS-estimator focuses on estimating the row-wise sparsity, which offers a more fine-grained

sparsity, enhancing its robustness throughout the SMCM process. On smaller datasets such as

DBLP, the accuracy of DMap outperforms MetaAC and MNC, however, the relative error significantly
increases as the dataset size increases, reaching its lowest accuracy on DBpedia. Furthermore, DMap
exhibits the longest runtime among all estimators, surpassing other methods’ runtime by up to four

orders of magnitude. For the largest dataset, Freebase, DMap fails to produce results due to OOM.

As for LGraph, it achieves the highest estimation accuracy, and its accuracy is less influenced by

the length of the SMCM. However, this comes at the expense of a trade-off, as the runtime of our

proposed RS-estimator is up to two orders of magnitude faster than LGraph.
As the chain length increases, the accuracy of all methods decreases because SMCM tends to

increase the number of non-zero elements. For instance, on the first three datasets, MetaAC achieves
initially excellent accuracy with only marginal increases in errors, but it exhibits an upward trend

in errors as the chain length grows. On the last two datasets, the performance of MNC, MetaAC and

MDap is notably poor. In particular, the relative error of MNC, MetaAC and MDap reaches up to ∞,
signifying a failure of the estimator due to most predicted elements being zero.

6.3 Efficiency evaluation of SMCM
• Overall efficiency results.We evaluate the runtime of all SMCM algorithms on all HINs, and

report the results in Figure 12. Clearly, our RoseMM algorithm achieves the best efficiency on most

datasets, especially on DBpedia and FreeBase datasets. It is up to three orders of magnitude faster

than the state-of-the-art algorithms MNC-SAL and MetaAC-SAL, and up to two orders of magnitude

faster than LGraph-SAL. The runtime of L2R and Naive is comparable to MNC-SAL and MetaAC-SAL
due to the subpar accuracy of the two estimators in these datasets. Note that on IMDB, our algorithm

is slightly slower than L2R and Naive. This is primarily due to the dataset’s relatively low number

of non-zero elements, which results in fast matrix multiplication and reduces sensitivity to the

execution order. Note that the runtime of SMCM does not purely rely on the sparsity; instead,

factors such as matrix size and structure should also be considered. These factors significantly

influence overall efficiency. Moreover, both L2R and Naive bypass the need for sparsity estimation,

saving extra time. Besides, RoseMM is up to 10× faster than RSE-CSR. The performance difference

can be attributed to the improved parallelism offered by the utilization of the sparse adjacency list,

which effectively minimizes thread synchronization overhead.

• Effect of the length of matrix chain. Figure 11 shows the effect of matrix chain length

𝑙 ∈ {3, 4, 5, 6, 7} on processing time. It’s noteworthy that the runtime of L2R, Naive, DMap-SAL,
MNC-SAL, and MetaAC-SAL exhibits a notable increase as 𝑙 becomes larger. This phenomenon

primarily stems from a reduction in estimation precision as 𝑙 increases. In contrast, our method

Proc. ACM Manag. Data, Vol. 2, No. N3 (SIGMOD), Article 156. Publication date: June 2024.

On Efficient Large Sparse Matrix Chain Multiplication 156:23

shows a relatively modest increase in time consumption. This is because RS-estimator can achieve

higher accuracy and reduce calculation time, particularly for lengthy matrix chain multiplications.

While LGraph achieves high accuracy, its inefficient estimation significantly prolongs the entire

SMCM process.

• Effect of the number of threads. Figure 14 presents the efficiency by varying the number of

threads 𝑡 from 8 to 64 across all datasets. As 𝑡 increases, the runtime of L2R, Naive, and RoseMM
shows linear reduction, indicating strong parallel scalability. Besides, RoseMM outperforms RSE-CSR
by up to 20×. This performance discrepancy is primarily attributed to the additional synchronization

overhead introduced by CSR. In addition, DMap-SAL, MetaAC-SAL, and MNC-SAL incur significant
time costs, mainly attributed to the substantial overhead resulting from the order obtained by their

estimators. Although LGraph-SAL demonstrates high accuracy, the estimator’s time consumption

renders it inefficient.

• Scalability test. To test the scalability, we randomly select 20%, 40%, 60%, 80%, and 100% of

edges from each HIN, and then obtain five sub-HINs induced by these edges respectively. For lack

of space, we only show the results on DBpedia and FreeBase in Figure 13 since the trends are

similar on other datasets. It’s evident that as the dataset size grows, the time cost of all algorithms

increases, but on all datasets, the curves of our algorithm have lower slopes, so it achieves better

scalability than L2R, Naive, LGraph-SAL, DMap-SAL, MetaAC-SAL, and MNC-SAL.
• Proportion of time cost of each component for SMCM algorithms. In this experiment,

we evaluate the proportion of time cost for each component of the SMCM algorithms on all datasets,

including the sparsity estimation phase, dynamic programming phase, and execution of matrix

multiplication phase. Note that the runtime of the sparsity estimation phase consists of the time

cost of sketch construction and sparsity estimation. The results are depicted in Figure 15. It’s

essential to highlight that, in our RoseMM approach, sparsity estimation contributes minimally to

the overall time cost, especially in datasets like FourSquare, where matrix multiplication dominates

the execution time. The dynamic programming phase proves highly efficient across all datasets,

benefiting from obtaining non-zero elements during the estimation phase, resulting in a mere few

milliseconds of processing time. Conversely, DMap and LGraph face challenges due to the time cost

of estimation exceeding that of matrix multiplication, making them less suitable for large-scale

datasets. DMap, in particular, encounters out-of-memory issues. While MetaAC and MNC demonstrate

high efficiency, their effectiveness is compromised by lower estimation accuracy, notably affecting

the efficiency of multiplication execution. This is particularly evident in datasets such as DBpedia

and Freebase, where matrix multiplication time prevails.

• Efficiency on the mix of dense and sparse operations. In this experiment, we evaluate the

mix of dense and sparse operations following the experiment setting of MetaAC [32]. Specifically,

we randomly generate five matrix chains, each consisting of five 100𝑘 × 100𝑘 input matrices, to

perform mixed operations. The sparsity of the matrices follows a normal distribution. The bounding

<𝑚𝑖𝑛,𝑚𝑎𝑥, 𝑎𝑣𝑔> distributions for data skew are <10−10, 100, 10−5>with variances {𝑎𝑣𝑔, 10·𝑎𝑣𝑔, 100·
𝑎𝑣𝑔}. The results are presented in Figure 16, at a variance of 10

0 · 𝑎𝑣𝑔, our method demonstrates

optimal efficiency, surpassing DMap by up to 24×. As the variance increases, the execution times for

each method become comparable. This is attributed to the diminishing impact of the order on the

overall runtime of SMCM with the growing sparsity.

• Effect of different matrix multiplication algorithms. In this experiment, we evaluate a

variety of algorithms with different storage formats for SMCM. Specifically, we have compared the

sparse matrix multiplication algorithms within the Intel oneAPI Math Kernel Library (MKL) [59],

and the algorithms employing various matrix storage formats, including CSR (MKL-CSR), CSC
(MKL-CSC), and BSR (MKL-BSR). All methods are implemented with our proposed RS-estimator for

Proc. ACM Manag. Data, Vol. 2, No. N3 (SIGMOD), Article 156. Publication date: June 2024.

156:24 Chunxu Lin et al.

SMCM. The experimental results are presented in Figure 17. RoseMM outperforms RSE-CSR by up

to 2.24× and is 4.6×, 9.27×, and 7.23× faster than MKL-CSR, MKL-CSC, and MKL-BSR, respectively.

6.4 Application studies
In this section, we apply our proposed SMCM algorithm to two real applications and analyze its

empirical results.

• PathSim [55]. Given an HIN, PathSim measures the similarity between two vertices of the

same type using a symmetric meta-path P, which consists of a sequence of vertex types and edge

types. The PathSim formula employing SMCM is expounded in Section 1. To solve the SMCM, for

each HIN we first randomly select 10 meta-paths whose lengths are four, which is a widely adopted

parameter in PathSim evaluation [55]. Then, for each meta-path, we compute the PathSim values

between all the vertex pairs whose PathSim values are larger than zero. We report the average

runtime of all SMCM algorithms in Figure 18(a), where Baseline is the PathSim computation

algorithm proposed in [55]. Comparatively, RoseMM exhibits remarkable performance advantages:

it is up to 48× faster than the baseline, up to 5.6× faster than RSE-CSR, up to 249× faster than

MetaAC-SAL, and up to 361× faster than MNC-SAL.
• Node embedding [27, 34]. HIN node embedding algorithms [17, 19, 48, 52, 66] often leverage

meta-path-guided random walks to capture semantically meaningful information from the various

entity types and their relationships. The formulation of meta-path-guided random walks is detailed

in Section 1. To evaluate the efficiency of SMCM algorithms for node embedding, we first randomly

select 20 meta-paths, each with a length of 4, and then run all the SMCM algorithms. We display

their average runtime in Figure 18(b), where Baseline denotes the state-of-the-art meta-path

guided random walk approach in [52, 65]. The results illustrate that our RoseMM algorithm achieves

up to 11× faster performance than the baseline, and is as much as 7.6× faster than RSE-CSR. Besides,
RoseMM outperforms MetaAC-SAL and MNC-SAL by a factor of up to 170× and 161× respectively.

7 CONCLUSIONS
In this paper, we study the problem of sparse matrix chain multiplication (SMCM) and develop an

efficient algorithm. We first introduce a simple yet effective estimator, called row-wise sparsity

estimator (RS-estimator), which exploits the structural properties of matrices for better estimation,

and then we provide an extensive theoretical analysis of its accuracy. Based on RS-estimator,
we further develop an algorithm to determine a good order of SMCM and propose an efficient

parallel SMCM algorithm, called RoseMM, by employing a sparse adjacent list data structure to

reduce the synchronization costs with multiple CPU threads. Extensive experiments with large

sparse matrices extracted from five real-world graphs show that RS-estimator achieves higher
accuracy than state-of-the-art sparsity estimators, and RoseMM is up to three orders of magnitude

faster than state-of-the-art SMCM algorithms. In the future, we will implement our algorithm on a

distributed platform and test its performance.

Acknowledgements. This work was supported in part by NSFC under Grants 62202412,

62102341, and 62302421, Guangdong Talent Program under Grant 2021QN02X826, and Basic and

Applied Basic Research Fund in Guangdong Province under Grant 2023A1515011280. This paper was

also supported by Shenzhen Stability Science Program and Guangdong Key Lab of Mathematical

Foundations for Artificial Intelligence.

Proc. ACM Manag. Data, Vol. 2, No. N3 (SIGMOD), Article 156. Publication date: June 2024.

On Efficient Large Sparse Matrix Chain Multiplication 156:25

REFERENCES
[1] Grey Ballard, Aydin Buluc, James Demmel, Laura Grigori, Benjamin Lipshitz, Oded Schwartz, and Sivan Toledo. 2013.

Communication optimal parallel multiplication of sparse random matrices. In Proceedings of the twenty-fifth annual
ACM symposium on Parallelism in algorithms and architectures. 222–231.

[2] Henrik Barthels, Marcin Copik, and Paolo Bientinesi. 2018. The generalized matrix chain algorithm. In Proceedings of
the 2018 International Symposium on Code Generation and Optimization. 138–148.

[3] Girish Biswas and Nandini Mukherjee. 2021. Memory Optimized Dynamic Matrix Chain Multiplication Using Shared

Memory in GPU. In International Conference on Distributed Computing and Internet Technology. 160–172.
[4] Matthias Boehm, Douglas R Burdick, Alexandre V Evfimievski, Berthold Reinwald, Frederick R Reiss, Prithviraj Sen,

Shirish Tatikonda, and Yuanyuan Tian. 2014. SystemML’s Optimizer: Plan Generation for Large-Scale Machine

Learning Programs. IEEE Data Eng. Bull. 37, 3 (2014), 52–62.
[5] Aydin Buluc and John R Gilbert. 2008. Challenges and advances in parallel sparse matrix-matrix multiplication. In

2008 37th International Conference on Parallel Processing. IEEE, 503–510.
[6] Aydin Buluc and John R Gilbert. 2008. On the representation and multiplication of hypersparse matrices. In 2008 IEEE

International Symposium on Parallel and Distributed Processing. IEEE, 1–11.
[7] Timothy M Chan. 2007. More algorithms for all-pairs shortest paths in weighted graphs. In Proceedings of the

thirty-ninth annual ACM symposium on Theory of computing. 590–598.
[8] Serafeim Chatzopoulos, Thanasis Vergoulis, Dimitrios Skoutas, Theodore Dalamagas, Christos Tryfonopoulos, and

Panagiotis Karras. 2022. arXiv preprint arXiv:2201.04058 (2022).
[9] Yuedan Chen, Kenli Li, Wangdong Yang, Guoqing Xiao, Xianghui Xie, and Tao Li. 2018. Performance-aware model

for sparse matrix-matrix multiplication on the sunway taihulight supercomputer. IEEE transactions on parallel and
distributed systems 30, 4 (2018), 923–938.

[10] Igor Chikalov, Shahid Hussain, and Mikhail Moshkov. 2011. Sequential optimization of matrix chain multiplication

relative to different cost functions. In SOFSEM 2011: Theory and Practice of Computer Science: 37th Conference on
Current Trends in Theory and Practice of Computer Science, Novỳ Smokovec, Slovakia, January 22-28, 2011. Proceedings
37. Springer, 157–165.

[11] Edith Cohen. 1994. Estimating the size of the transitive closure in linear time. In Proceedings 35th Annual Symposium
on Foundations of Computer Science. IEEE, 190–200.

[12] Edith Cohen. 1998. Structure prediction and computation of sparse matrix products. Journal of Combinatorial
Optimization 2 (1998), 307–332.

[13] Jeffrey Cohen, Brian Dolan, Mark Dunlap, Joseph M Hellerstein, and Caleb Welton. 2009. MAD skills: new analysis

practices for big data. Proceedings of the VLDB Endowment 2, 2 (2009), 1481–1492.
[14] Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clifford Stein. 2009. Introduction to Algorithms. MIT

Press.

[15] Steven Dalton, Luke Olson, and Nathan Bell. 2015. Optimizing sparse matrix—matrix multiplication for the gpu. ACM
Transactions on Mathematical Software (TOMS) 41, 4 (2015), 1–20.

[16] Gunduz Vehbi Demirci and Cevdet Aykanat. 2020. Scaling sparse matrix-matrix multiplication in the accumulo

database. Distributed and Parallel Databases 38 (2020), 31–62.
[17] Yuxiao Dong, Nitesh V Chawla, and Ananthram Swami. 2017. metapath2vec: Scalable representation learning for

heterogeneous networks. In Proceedings of the 23rd ACM SIGKDD international conference on knowledge discovery and
data mining. 135–144.

[18] Yixiang Fang, Yixing Yang, Wenjie Zhang, Xuemin Lin, and Xin Cao. 2020. Effective and efficient community search

over large heterogeneous information networks. Proceedings of the VLDB Endowment 13, 6 (2020), 854–867.
[19] Tao-yang Fu, Wang-Chien Lee, and Zhen Lei. 2017. Hin2vec: Explore meta-paths in heterogeneous information

networks for representation learning. In Proceedings of the 2017 ACM on Conference on Information and Knowledge
Management. 1797–1806.

[20] Xinyu Fu, Jiani Zhang, Ziqiao Meng, and Irwin King. 2020. Magnn: Metapath aggregated graph neural network for

heterogeneous graph embedding. In Proceedings of The Web Conference 2020. 2331–2341.
[21] Vijay Gadepally, Jake Bolewski, Dan Hook, Dylan Hutchison, Ben Miller, and Jeremy Kepner. 2015. Graphulo: Linear

algebra graph kernels for nosql databases. In 2015 IEEE International Parallel and Distributed Processing Symposium
Workshop. IEEE, 822–830.

[22] Jianhua Gao, Weixing Ji, Fangli Chang, Shiyu Han, Bingxin Wei, Zeming Liu, and Yizhuo Wang. 2023. A systematic

survey of general sparse matrix-matrix multiplication. Comput. Surveys 55, 12 (2023), 1–36.
[23] John R Gilbert, Cleve Moler, and Robert Schreiber. 1992. Sparse matrices in MATLAB: Design and implementation.

SIAM journal on matrix analysis and applications 13, 1 (1992), 333–356.
[24] Sadashiva S Godbole. 1973. On efficient computation of matrix chain products. IEEE Trans. Comput. 100, 9 (1973),

864–866.

Proc. ACM Manag. Data, Vol. 2, No. N3 (SIGMOD), Article 156. Publication date: June 2024.

156:26 Chunxu Lin et al.

[25] Aditya Grover and Jure Leskovec. 2016. node2vec: Scalable feature learning for networks. In Proceedings of the 22nd
ACM SIGKDD international conference on Knowledge discovery and data mining. 855–864.

[26] Fred G Gustavson. 1978. Two fast algorithms for sparse matrices: Multiplication and permuted transposition. ACM
Transactions on Mathematical Software (TOMS) 4, 3 (1978), 250–269.

[27] Yu He, Yangqiu Song, Jianxin Li, Cheng Ji, Jian Peng, and Hao Peng. 2019. Hetespaceywalk: A heterogeneous

spacey random walk for heterogeneous information network embedding. In Proceedings of the 28th ACM International
Conference on Information and Knowledge Management. 639–648.

[28] Kartik Hegde, Hadi Asghari-Moghaddam, Michael Pellauer, Neal Crago, Aamer Jaleel, Edgar Solomonik, Joel Emer, and

Christopher W Fletcher. 2019. Extensor: An accelerator for sparse tensor algebra. In Proceedings of the 52nd Annual
IEEE/ACM International Symposium on Microarchitecture. 319–333.

[29] Guyue Huang, Guohao Dai, Yu Wang, and Huazhong Yang. 2020. Ge-spmm: General-purpose sparse matrix-matrix

multiplication on gpus for graph neural networks. In SC20: International Conference for High Performance Computing,
Networking, Storage and Analysis. IEEE, 1–12.

[30] Dylan Hutchison, Bill Howe, and Dan Suciu. 2017. LaraDB: A minimalist kernel for linear and relational algebra

computation. In Proceedings of the 4th ACM SIGMOD Workshop on Algorithms and Systems for MapReduce and Beyond.
1–10.

[31] Moritz Kaufmann, Manuel Then, Alfons Kemper, and Thomas Neumann. 2017. Parallel Array-Based Single-and

Multi-Source Breadth First Searches on Large Dense Graphs.. In EDBT. 1–12.
[32] David Kernert, Frank Köhler, and Wolfgang Lehner. 2015. SpMacho-Optimizing Sparse Linear Algebra Expressions

with Probabilistic Density Estimation. In EDBT. 289–300.
[33] Bogyeong Kim, Kyoseung Koo, Undraa Enkhbat, Sohyun Kim, Juhun Kim, and Bongki Moon. 2022. M2Bench: A

Database Benchmark for Multi-Model Analytic Workloads. Proceedings of the VLDB Endowment 16, 4 (2022), 747–759.
[34] Ni Lao and William W Cohen. 2010. Relational retrieval using a combination of path-constrained random walks.

Machine learning 81 (2010), 53–67.

[35] Jeongmyung Lee, Seokwon Kang, Yongseung Yu, Yong-Yeon Jo, Sang-Wook Kim, and Yongjun Park. 2020. Optimization

of GPU-based sparse matrix multiplication for large sparse networks. In 2020 IEEE 36th International Conference on
Data Engineering (ICDE). IEEE, 925–936.

[36] Charles Eric Leiserson, Ronald L Rivest, Thomas H Cormen, and Clifford Stein. 1994. Introduction to algorithms. Vol. 3.
MIT press Cambridge, MA, USA.

[37] Jiajun Li, Ahmed Louri, Avinash Karanth, and Razvan Bunescu. 2021. GCNAX: A flexible and energy-efficient

accelerator for graph convolutional neural networks. In 2021 IEEE International Symposium on High-Performance
Computer Architecture (HPCA). IEEE, 775–788.

[38] Keqin Li. 2007. Analysis of parallel algorithms for matrix chain product and matrix powers on distributed memory

systems. IEEE Transactions on Parallel and Distributed Systems 18, 7 (2007), 865–878.
[39] Colin Yu Lin, Ngai Wong, and Hayden Kwok-Hay So. 2013. Design space exploration for sparse matrix-matrix

multiplication on FPGAs. International Journal of Circuit Theory and Applications 41, 2 (2013), 205–219.
[40] Weifeng Liu and Brian Vinter. 2014. An efficient GPU general sparse matrix-matrix multiplication for irregular data.

In 2014 IEEE 28th International Parallel and Distributed Processing Symposium. IEEE, 370–381.

[41] Weifeng Liu and Brian Vinter. 2015. A framework for general sparse matrix–matrix multiplication on GPUs and

heterogeneous processors. J. Parallel and Distrib. Comput. 85 (2015), 47–61.
[42] Jaeseok Myung and Sang-goo Lee. 2012. Matrix chain multiplication via multi-way join algorithms in MapReduce. In

Proceedings of the 6th International Conference on Ubiquitous Information Management and Communication. 1–5.
[43] Kazufumi Nishida, Yasuaki Ito, and Koji Nakano. 2011. Accelerating the dynamic programming for the matrix chain

product on the GPU. In 2011 Second International Conference on Networking and Computing. IEEE, 320–326.
[44] Yuyao Niu, Zhengyang Lu, Haonan Ji, Shuhui Song, Zhou Jin, and Weifeng Liu. 2022. TileSpGEMM: A tiled algorithm

for parallel sparse general matrix-matrix multiplication on GPUs. In Proceedings of the 27th ACM SIGPLAN Symposium
on Principles and Practice of Parallel Programming. 90–106.

[45] NVIDIA. 2020. Nvidia cuSPARSE library. Retrieved from https://developer.nvidia.com/cusparse.

[46] Subhankar Pal, Jonathan Beaumont, Dong-Hyeon Park, Aporva Amarnath, Siying Feng, Chaitali Chakrabarti, Hun-

Seok Kim, David Blaauw, Trevor Mudge, and Ronald Dreslinski. 2018. Outerspace: An outer product based sparse

matrix multiplication accelerator. In 2018 IEEE International Symposium on High Performance Computer Architecture
(HPCA). IEEE, 724–736.

[47] Md Mostofa Ali Patwary, Nadathur Rajagopalan Satish, Narayanan Sundaram, Jongsoo Park, Michael J Anderson,

Satya Gautam Vadlamudi, Dipankar Das, Sergey G Pudov, Vadim O Pirogov, and Pradeep Dubey. 2015. Parallel

efficient sparse matrix-matrix multiplication on multicore platforms. In International Conference on High Performance
Computing. Springer, 48–57.

Proc. ACM Manag. Data, Vol. 2, No. N3 (SIGMOD), Article 156. Publication date: June 2024.

https://developer.nvidia.com/cusparse

On Efficient Large Sparse Matrix Chain Multiplication 156:27

[48] Hao Peng, Ruitong Zhang, Yingtong Dou, Renyu Yang, Jingyi Zhang, and Philip S Yu. 2021. Reinforced neighborhood

selection guided multi-relational graph neural networks. ACM Transactions on Information Systems (TOIS) 40, 4 (2021),
1–46.

[49] Berthold Reinwald, Shirish Tatikonda, and Yuanyuan Tian. 2016. Sparsity-driven matrix representation to optimize

operational and storage efficiency. US Patent 9,396,164.

[50] Hongbo Rong, Jongsoo Park, Lingxiang Xiang, Todd A Anderson, and Mikhail Smelyanskiy. 2016. Sparso: Context-

driven optimizations of sparse linear algebra. In Proceedings of the 2016 International Conference on Parallel Architectures
and Compilation. 247–259.

[51] Oguz Selvitopi, Md Taufique Hussain, Ariful Azad, and Aydın Buluç. 2020. Optimizing high performance Markov

clustering for pre-exascale architectures. In 2020 IEEE International Parallel and Distributed Processing Symposium
(IPDPS). IEEE, 116–126.

[52] Chuan Shi, Binbin Hu, Wayne Xin Zhao, and S Yu Philip. 2018. Heterogeneous information network embedding for

recommendation. IEEE Transactions on Knowledge and Data Engineering 31, 2 (2018), 357–370.

[53] Johanna Sommer, Matthias Boehm, Alexandre V Evfimievski, Berthold Reinwald, and Peter J Haas. 2019. Mnc:

Structure-exploiting sparsity estimation for matrix expressions. In Proceedings of the 2019 International Conference on
Management of Data. 1607–1623.

[54] Nitish Srivastava, Hanchen Jin, Jie Liu, David Albonesi, and Zhiru Zhang. 2020. Matraptor: A sparse-sparse matrix

multiplication accelerator based on row-wise product. In 2020 53rd Annual IEEE/ACM International Symposium on
Microarchitecture (MICRO). IEEE, 766–780.

[55] Yizhou Sun, Jiawei Han, Xifeng Yan, Philip S Yu, and Tianyi Wu. 2011. Pathsim: Meta path-based top-k similarity

search in heterogeneous information networks. Proceedings of the VLDB Endowment 4, 11 (2011), 992–1003.
[56] Manuel Then, Moritz Kaufmann, Fernando Chirigati, Tuan-Anh Hoang-Vu, Kien Pham, Alfons Kemper, Thomas

Neumann, and Huy T Vo. 2014. The more the merrier: Efficient multi-source graph traversal. Proceedings of the VLDB
Endowment 8, 4 (2014), 449–460.

[57] Stijn Marinus Van Dongen. 2000. Graph clustering by flow simulation. Ph.D. Dissertation.
[58] Virginia Vassilevska, Ryan Williams, and Raphael Yuster. 2010. Finding heaviest H-subgraphs in real weighted graphs,

with applications. ACM Transactions on Algorithms (TALG) 6, 3 (2010), 1–23.
[59] Endong Wang, Qing Zhang, Bo Shen, Guangyong Zhang, Xiaowei Lu, Qing Wu, and Yajuan Wang. 2014. Intel Math

Kernel Library. Springer International Publishing, 167–188.
[60] Xiao Wang, Houye Ji, Chuan Shi, Bai Wang, Yanfang Ye, Peng Cui, and Philip S Yu. 2019. Heterogeneous graph

attention network. In The world wide web conference. 2022–2032.
[61] Martin Winter, Daniel Mlakar, Rhaleb Zayer, Hans-Peter Seidel, and Markus Steinberger. 2019. Adaptive sparse

matrix-matrix multiplication on the GPU. In Proceedings of the 24th symposium on principles and practice of parallel
programming. 68–81.

[62] Michael M Wolf, Mehmet Deveci, Jonathan W Berry, Simon D Hammond, and Sivasankaran Rajamanickam. 2017.

Fast linear algebra-based triangle counting with kokkoskernels. In 2017 IEEE High Performance Extreme Computing
Conference (HPEC). IEEE, 1–7.

[63] Yixing Yang, Yixiang Fang, Xuemin Lin, and Wenjie Zhang. 2020. Effective and efficient truss computation over large

heterogeneous information networks. In 2020 IEEE 36th international conference on data engineering (ICDE). IEEE,
901–912.

[64] Yongyang Yu, Mingjie Tang, Walid G Aref, Qutaibah M Malluhi, Mostafa M Abbas, and Mourad Ouzzani. 2017. In-

memory distributed matrix computation processing and optimization. In 2017 IEEE 33rd International conference on
data engineering (ICDE). IEEE, 1047–1058.

[65] Seongjun Yun, Minbyul Jeong, Raehyun Kim, Jaewoo Kang, and Hyunwoo J Kim. 2019. Graph transformer networks.

Advances in neural information processing systems 32 (2019).
[66] Daokun Zhang, Jie Yin, Xingquan Zhu, and Chengqi Zhang. 2018. Metagraph2vec: Complex semantic path augmented

heterogeneous network embedding. In Advances in Knowledge Discovery and Data Mining: 22nd Pacific-Asia Conference,
PAKDD 2018, Melbourne, VIC, Australia, June 3-6, 2018, Proceedings, Part II 22. Springer, 196–208.

[67] Zhekai Zhang, Hanrui Wang, Song Han, and William J Dally. 2020. Sparch: Efficient architecture for sparse matrix

multiplication. In 2020 IEEE International Symposium on High Performance Computer Architecture (HPCA). IEEE,
261–274.

[68] Yingli Zhou, Yixiang Fang, Wensheng Luo, and Yunming Ye. 2023. Influential community search over large heteroge-

neous information networks. Proceedings of the VLDB Endowment 16, 8 (2023), 2047–2060.

Received October 2023; revised January 2024; accepted March 2024

Proc. ACM Manag. Data, Vol. 2, No. N3 (SIGMOD), Article 156. Publication date: June 2024.

	Abstract
	1 Introduction
	2 Related Work
	3 Preliminaries
	3.1 Problem definition
	3.2 Matrix-matrix multiplication

	4 Sparsity estimation
	4.1 A row-wise sparsity estimator
	4.2 Theoretical analysis for RS-estimator

	5 Our SMCM Algorithm
	5.1 Matrix chain ordering
	5.2 Parallel sparse matrix-matrix multiplication
	5.3 The overall SMCM algorithm

	6 Experiments
	6.1 Setup
	6.2 Efficiency and accuracy evaluation of sparsity estimators
	6.3 Efficiency evaluation of SMCM
	6.4 Application studies

	7 Conclusions
	References

