
A Counting-based Approach for Efficient 𝑘-Clique Densest
Subgraph Discovery

YINGLI ZHOU, The Chinese University of Hong Kong, Shenzhen, China

QINGSHUO GUO, The Chinese University of Hong Kong, Shenzhen, China

YIXIANG FANG∗, The Chinese University of Hong Kong, Shenzhen, China

CHENHAO MA, The Chinese University of Hong Kong, Shenzhen, China

Densest subgraph discovery (DSD) is a fundamental topic in graph mining. It has been extensively studied in

the literature and has found many real applications in a wide range of fields, such as biology, finance, and

social networks. As a typical problem of DSD, the 𝑘-clique densest subgraph (CDS) problem aims to detect

a subgraph from a graph, such that the ratio of the number of 𝑘-cliques over the number of its vertices is

maximized. This problem has received plenty of attention in the literature, and is widely used in identifying

larger “near-cliques”. Existing CDS solutions, either 𝑘-core or convex programming based solutions, often

need to enumerate almost all the 𝑘-cliques, which is very inefficient because real-world graphs usually have a

vast number of 𝑘-cliques. To improve the efficiency, in this paper, we propose a novel framework based on

the Frank-Wolfe algorithm, which only needs 𝑘-clique counting, rather than 𝑘-clique enumeration, where

the former one is often much faster than the latter one. Based on the framework, we develop an efficient

approximation algorithm, by employing the state-of-the-art 𝑘-clique counting algorithm and proposing some

optimization techniques. We have performed extensive experimental evaluation on 14 real-world large graphs

and the results demonstrate the high efficiency of our algorithms. Particularly, our algorithm is up to seven

orders of magnitude faster than the state-of-the-art algorithm with the same accuracy guarantee.

CCS Concepts: • Theory of computation→ Algorithm design techniques.

Additional Key Words and Phrases: Clique densest subgraph, convex programming, graph density

ACM Reference Format:
Yingli Zhou, Qingshuo Guo, Yixiang Fang, and Chenhao Ma. 2024. A Counting-based Approach for Efficient

𝑘-Clique Densest Subgraph Discovery. Proc. ACMManag. Data 2, 3 (SIGMOD), Article 119 (June 2024), 27 pages.

https://doi.org/10.1145/3654922

1 INTRODUCTION
Densest subgraph discovery (DSD) is a fundamental topic in graph mining that has been extensively

studied in recent years [3, 6, 11, 23, 44, 46, 49, 56, 58, 61]. It has found various applications in a

wide range of fields, including biology [16, 25, 32, 52], finance [13, 20], and social network analysis

[4, 15, 27, 28, 36, 67, 68]. The classic DSD problem [29] aims to find the subgraph with maximum

edge-density, or the number of edges over the number of vertices within the subgraph, which

∗
Corresponding author.

Authors’ addresses: Yingli Zhou, yinglizhou@link.cuhk.edu.cn, The Chinese University of Hong Kong, Shenzhen, Guangdong,

China; Qingshuo Guo, qingshuoguo@link.cuhk.edu.cn, The Chinese University of Hong Kong, Shenzhen, Guangdong,

China; Yixiang Fang, fangyixiang@cuhk.edu.cn, The Chinese University of Hong Kong, Shenzhen, Guangdong, China;

Chenhao Ma, machenhao@cuhk.edu.cn, The Chinese University of Hong Kong, Shenzhen, Guangdong, China.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee

provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the

full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be honored.

Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires

prior specific permission and/or a fee. Request permissions from permissions@acm.org.

© 2024 Copyright held by the owner/author(s). Publication rights licensed to ACM.

ACM 2836-6573/2024/6-ART119

https://doi.org/10.1145/3654922

Proc. ACM Manag. Data, Vol. 2, No. 3 (SIGMOD), Article 119. Publication date: June 2024.

https://doi.org/10.1145/3654922
https://doi.org/10.1145/3654922

119:2 Yingli Zhou, Qingshuo Guo, Yixiang Fang, and Chenhao Ma

𝑣1

𝑣7

𝑣8𝑣9

𝑣10

𝐻𝑣2

𝑣3

𝑣4𝑣5

𝑣6

Fig. 1. An example of the 𝑘-clique densest subgraph.

is often called the edge-density-based densest subgraph (EDS). Recently, this problem has been

generalized as the 𝑘-clique densest subgraph (CDS) problem [22, 23, 31, 38, 42, 47, 53, 56, 60], aiming

to find the subgraph with the highest 𝑘-clique-density, which is the ratio of the number of 𝑘-cliques

over the number of vertices in it. Note that since an edge can be considered as a 2-clique, the EDS

problem is a special case of the CDS problem with 𝑘=2. For example, in Figure 1, the 3-clique density

of the subgraph induced by {𝑣2, · · · , 𝑣6} (in shaded region) is
7

5
, since there are seven 3-cliques

and five vertices in it, and it is actually the 3-clique densest subgraph because there is no other

subgraph with 3-clique-density larger than
7

5
.

The CDS problem has found various real-world applications [22, 23, 31, 38, 42, 47, 56, 60]. For

example, as shown in [22, 38, 42, 47, 60], the CDS can be used to detect “near-cliques”, and when 𝑘

gets large, it is more likely to capture useful “near-cliques”, which can help discover biologically

relevant functional groups [16, 35, 60, 61], find social communities [4, 12, 61], and detect anomalies

[26, 57, 66]. In many of these applications, finding a “near-clique” is very important since a “near-

clique” can be considered a clique in the forming stage or one with missing edges due to data

corruption. For example, in protein-protein and gene-gene interaction graphs, proteins within

each functional group interact with most of the rest, possibly forming a near-clique [61]; In large

social networks (e.g., Facebook), large near-cliques are useful for detecting fake news [66]. Besides,

finding CDS is very useful in many graph data mining applications. Specifically, it can help identify

research communities in the DBLP network [23, 60, 61], detect subnetworks with a specific function

in the biology network [23] and clusters in senators’ networks on US bill voting [23, 60], and

discover compact dense subgraphs from e-commerce and social networks [53] when 𝑘 is relatively

small.

Prior works. While the CDS is very useful in practice, it is computationally costly, in both time

and space, especially for large graphs. In the literature, various exact and approximation algorithms

have been developed to solve the CDS problem. The exact algorithms are often based on maximum

flow [29, 47, 60], 𝑘-core [23], and convex programming [19, 31, 56]. The approximation algorithms

include peeling based [9, 11, 60], 𝑘-core based [23, 43], and convex programming based algorithms

[19, 31, 56]. The state-of-the-art algorithms are KClist++ [56] and SCTL [31], both of which are

based on convex programming.

The core idea of KClist++ is that the vertices present in a larger number of 𝑘-cliques are more

likely to be included in the CDS. In KClist++, it first assigns a weight 𝑟 (𝑣) to every vertex 𝑣 in the

graph, where 𝑟 (𝑣) = 0 initially. Then, it enumerates all the 𝑘-cliques in the graph for 𝑇 iterations,

and for each 𝑘-clique, it increases the minimum vertex weight in it by one. After that, KClist++
uses the vertex weights to derive a (1 + 𝜖)-approximation solution (𝜖 > 0), or extracts an optimal

solution from them by verifying optimality using max-flow. Here, the approximation ratio is defined

as the density of CDS over that of the returned subgraph. However, KClist++ is not scalable for
large 𝑘 values and large-scale graphs, because, in each iteration, it needs to repeatedly enumerate

all the 𝑘-cliques from the graph, which is a well-known NP-hard problem [14, 18, 34].

Proc. ACM Manag. Data, Vol. 2, No. 3 (SIGMOD), Article 119. Publication date: June 2024.

A Counting-based Approach for Efficient 𝑘-Clique Densest Subgraph Discovery 119:3

0 15 30 45 60 75 90 105 120

10
0

10
10

10
20

10
30

10
40

10
50

Clique size

N
um

be
r
of

cl
iq
ue

s

bio-SC-GT DBLP web-Stanford

web-Google as-skitter Wikipedia-link

ew-2013 Orkut Friendster

Fig. 2. Trends of clique counts on nine real graphs.

To alleviate the above issues, SCTL builds an index structure to speed up the 𝑘-clique enumeration

process, by borrowing the succinct clique tree (SCT) from PIVOTER [34], which is the state-of-the-art
algorithm for counting all 𝑘-cliques in a graph. To enumerate 𝑘-cliques, SCTL constructs an SCT to

maintain a unique representation of all 𝑘-cliques, whose size is much less than the space of storing

all 𝑘-cliques, allowing the SCT to be kept in the memory. By using the SCT and some optimization

techniques, SCTL achieves higher efficiency than KClist++. Nonetheless, in each iteration, SCTL
still needs to enumerate all the 𝑘-cliques in the worst-case to update vertex weights, making its

running time proportional to the number of 𝑘-cliques in a graph.

As shown in Figure 2, the numbers of 𝑘-cliques in real-world graphs increase dramatically even

for relatively small values of 𝑘 . For instance, on the DBLP co-authorship network, which consists of

0.31 million of vertices and 1.04 million of edges, there are over 10
18
15-cliques and 10

30
36-cliques.

Hence, enumerating almost all 𝑘-cliques is extremely costly. On the other hand, an interesting fact is

that counting all the 𝑘-cliques is remarkably fast by PIVOTER [34]. For example, on the above DBLP

co-authorship network, PIVOTER only requires 100ms to count all the 𝑘-cliques where 𝑘 ranges from

1 to the maximum value 113, while the state-of-the-art 𝑘-clique enumeration algorithm KClist
[18] needs at least two weeks to list all the 𝑘-cliques with a single 𝑘 = 9. Hence, this motivates us

to think about one natural question: Can we find a near-optimal CDS efficiently based on 𝑘-clique
counting, rather than 𝑘-clique enumeration? In this paper, we show that it is possible to achieve this.

Our technical contributions.We propose a simple yet effective Frank-Wolfe-based framework

by using 𝑘-clique counting, rather than 𝑘-clique enumeration, which is often used by existing CDS

algorithms [23, 31, 56]. The Frank-Wolfe algorithm works in an iterative manner. It first assigns a

weight 𝑟 (𝑣) to every vertex 𝑣 in the graph, which is initialized to the number of 𝑘-cliques containing

𝑣 divided by 𝑘 . Then, in each iteration, for each 𝑘-clique, it finds the vertex 𝑣 with the minimum

weight, and then updates its weight 𝑟 (𝑣). By deeply analyzing the Frank-Wolfe algorithm, we

find that in each iteration, the change of 𝑟 (𝑣), where 𝑣 is the vertex with minimum weight, can be

calculated by using the number of 𝑘-cliques containing 𝑣 . Based on the observation, we develop

a novel framework by using a 𝑘-clique counting algorithm. The framework not only produces

a near-optimal solution but also theoretically achieves a faster convergence rate than existing

approaches.

Following the framework above, we employ the state-of-the-art 𝑘-clique counting algorithm

PIVOTER. Besides, we propose a simultaneous weight update strategy to speed up the convergence,

which assigns a more balanced distribution of weights among all vertices, allowing the algorithm

to obtain the optimal solution quickly. We also design two ordering strategies to further boost

Proc. ACM Manag. Data, Vol. 2, No. 3 (SIGMOD), Article 119. Publication date: June 2024.

119:4 Yingli Zhou, Qingshuo Guo, Yixiang Fang, and Chenhao Ma

Table 1. Complexities of representative CDS algorithms.

Algorithm Space complexity Time complexity

KClist++ [56] O(𝑚) O(𝑇𝑘𝑚 · (𝛿
2
)𝑘−2)

SCTL [31] O(𝑛 · 3𝛿/3) O(𝑛 · 3𝛿/3 +𝑇𝑘 · |Ψ𝑘 (𝐺) |)
KCCA (ours) O(𝑛 · 3𝛿/3) O(𝑇𝑛 · 3𝛿/3 · 𝛿 log𝛿)

* Note: 𝑛 and𝑚 are the numbers of vertices and edges in the graph 𝐺

respectively, and 𝛿 denotes the degeneracy of 𝐺 .

* 𝑇 is the number of iterations, and |Ψ𝑘 (𝐺) | denotes the number of

𝑘-cliques in 𝐺 .

efficiency. By combining the techniques above, we develop an efficient (1+𝜖) 𝑘-clique counting-

based approximation (KCCA) algorithm, where 𝜖 > 0. As shown in Table 1, a notable feature of KCCA
is that its time complexity is independent of both the number of 𝑘-cliques in the graph and the

value of 𝑘 , so it is able to efficiently find the CDS for an arbitrary 𝑘-clique on large graphs.

Extensive experimental evaluations on 14 real-world large graphs show that KCCA achieves higher
efficiency and scalability than the state-of-the-art algorithm on all datasets. Particularly, it is up to

seven orders of magnitude faster than the state-of-the-art algorithm on the DBLP co-authorship

network. Besides, it produces a near-optimal solution on all graphs. For instance, after 10 iterations

on the Friendster graph—a social network with billions of edges—KCCA achieves an approximation

ratio of 1.01. We have released the source codes and datasets of our work
1
.

In summary, our main contributions are as follows.

• We propose a simple yet effective framework to break the bottleneck of existing CDS algo-

rithms, by using 𝑘-clique counting, rather than 𝑘-clique enumeration. Our framework not

only achieves a near-optimal solution, but also theoretically offers a faster convergence rate.

• Based on the framework above, we develop an efficient CDS algorithm by employing the state-

of-the-art 𝑘-clique counting algorithm. We further propose some non-trivial optimization

techniques to boost the efficiency.

• We conduct experiments on 14 real-world large graphs to demonstrate the efficiency and

scalability of our algorithm.

Outline. We introduce the preliminaries in Section 2. Section 3 analyzes the limitations of state-

of-the-art algorithms. We introduce our framework in Section 4, and present our KCCA algorithm
in Section 5. The experimental results are reported in Section 6. We review the related works in

Section 7 and conclude in Section 8.

2 PRELIMINARIES
In this section, we first present the formal definition of the CDS problem and then introduce its LP

formulations.

2.1 Problem definition
In this paper, we consider an unweighted and undirected graph 𝐺=(𝑉 , 𝐸), where 𝑉 and 𝐸 are the

sets of vertices and edges in the graph, respectively. Denote by 𝑛 = |𝑉 | and𝑚 = |𝐸 | (𝑚 > 𝑛) the

numbers of vertices and edges in𝐺 respectively. Given a vertex set 𝑆 , we use𝐺 [𝑆] = (𝑆, 𝐸 (𝑆)) to
denote the subgraph of𝐺 induced by 𝑆 , where 𝐸 (𝑆)= {(𝑢, 𝑣) ∈ 𝐸 | 𝑢, 𝑣 ∈ 𝑆} denotes the set of edges
in𝐺 contained in 𝑆 . For a given graph 𝐻 , we also denote its sets of vertices and edges by𝑉 (𝐻) and
𝐸 (𝐻), respectively.
1
https://github.com/forxenn/KCCA

Proc. ACM Manag. Data, Vol. 2, No. 3 (SIGMOD), Article 119. Publication date: June 2024.

https://github.com/forxenn/KCCA

A Counting-based Approach for Efficient 𝑘-Clique Densest Subgraph Discovery 119:5

Table 2. Notations and meanings.

Notation Meaning
𝐺 = (𝑉 , 𝐸) a graph with vertex set 𝑉 and edge set 𝐸

𝐺 [𝑆] the subgraph of 𝐺 induced by vertices in 𝑆

Ψ𝑘 (𝐺) the set of 𝑘-cliques in 𝐺

Ψ𝑘 (𝑣,𝐺) the set of 𝑘-cliques containing 𝑣 in 𝐺

D𝑘 (𝐺) the 𝑘-clique densest subgraph of 𝐺

𝜌𝑘 (𝐻) the 𝑘-clique density of subgraph 𝐻

𝑟 (𝑣) the weight of vertex 𝑣

𝛼𝐶𝑣 the weight assigned to 𝑣 from clique 𝐶

S𝑘 (𝐺) an approximate 𝑘-clique densest subgraph of 𝐺

Γ a root-to-leaf path in SCT

P(Γ) the set of pivot vertices under the root-to-leaf path Γ
H(Γ) the set of hold vertices under the root-to-leaf path Γ

A 𝑘-clique is a complete graph with a set 𝐶 of 𝑘 vertices where there is an edge between every

pair of vertices. In the case without ambiguity, we simply refer to a 𝑘-clique by its set of vertices.

We use Ψ𝑘 (𝐺) to represent the set of 𝑘-cliques in𝐺 . Denote by Ψ𝑘 (𝐺) = {𝐶 ⊆ 𝑉 | 𝐶 is a 𝑘-clique of

𝐺}. For each vertex 𝑣 ∈ 𝐺 , we use Ψ𝑘 (𝑣,𝐺) to denote the set of 𝑘-cliques containing 𝑣 in the graph

𝐺 (𝑘 ≥ 3). We summarize the frequently used notations in Table 2.

We now formally present the definition of 𝑘-clique density.

Definition 1 (𝑘-cliqe density [23, 31, 47, 56, 60]). Given a subgraph 𝐻 of a graph 𝐺 and a
positive integer 𝑘 , the 𝑘-clique density of 𝐻 , denoted by 𝜌𝑘 (𝐻), is the average number of 𝑘-cliques per
vertex in 𝐻 , i.e.,

𝜌𝑘 (𝐻) =
|Ψ𝑘 (𝐻) |
|𝑉 (𝐻) | . (1)

Definition 2 (𝑘-cliqe densest subgraph [23, 31, 47, 56, 60]). Given a graph 𝐺 and a positive
integer 𝑘 , a subgraph 𝐻 of 𝐺 is the 𝑘-clique densest subgraph, denoted by D𝑘 (𝐺), if 𝐻 has the
maximum k-clique density among all subgraphs of 𝐺 .

When 𝑘=2, D2 (𝐺) is the classic densest subgraph [29] that maximizes the edge-density, i.e., the

average number of edges per vertex within the subgraph. In this work, we mainly focus on the

cases when 𝑘 ≥ 3, and study the (1 + 𝜖)-approximation solution (𝜖 > 0). Here, the approximation

ratio is defined as the 𝑘-clique density of CDS over that of the returned subgraph. Next, we formally

present the definition of CDS problem [22, 23, 31, 38, 42, 47, 53, 56, 60].

Problem 1 (CDS problem [22, 23, 31, 38, 42, 47, 53, 56, 60]). Given a graph 𝐺 and an integer
𝑘 ≥ 3, the 𝑘-clique densest subgraph (CDS) problem aims to find the 𝑘-clique densest subgraphD𝑘 (𝐺)
in 𝐺 .

Example 1. In the graph𝐺 of Figure 1, there are ten 3-cliques, i.e.,𝐶1 = {𝑣1, 𝑣5, 𝑣6},𝐶2 = {𝑣2, 𝑣4, 𝑣5},
· · · , 𝐶10 = {𝑣7, 𝑣8, 𝑣10}. The subgraph 𝐻 of {𝑣2, 𝑣3, 𝑣4, 𝑣5, 𝑣6} contains seven 3-cliques, so its 3-clique
density is 7

5
. Clearly, 𝐻 is the 3-clique densest subgraph since no other subgraph has a higher 3-clique

density.

Proc. ACM Manag. Data, Vol. 2, No. 3 (SIGMOD), Article 119. Publication date: June 2024.

119:6 Yingli Zhou, Qingshuo Guo, Yixiang Fang, and Chenhao Ma

2.2 The CP formulations of CDS problem
We first present the LP formulation of CDS problem [63]:

LP(𝐺,𝑘) max

∑︁
𝐶∈Ψ𝑘 (𝐺)

𝑦𝐶

s.t. ∀𝑣 ∈ 𝐶,𝑦𝐶 ≤ 𝑥𝑣, ∀𝐶 ∈ Ψ𝑘 (𝐺)∑︁
𝑣∈𝑉

𝑥𝑣 ≤ 1,

𝑦𝐶 ≥ 0, 𝑥𝑣 ≥ 0, ∀𝐶 ∈ Ψ𝑘 (𝐺),∀𝑣 ∈ 𝑉
The Lagrangian dual DP(𝐺,𝑘) of the LP(𝐺,𝑘) is as follows [56]:

DP(𝐺,𝑘) minmax

𝑣∈𝑉
𝑟 (𝑣)

s.t. 𝑟 (𝑣) =
∑︁

𝐶∈Ψ𝑘 (𝑣, 𝐺)
𝛼𝐶𝑣 , ∀𝑣 ∈ 𝑉∑︁

𝑣∈𝐶
𝛼𝐶𝑣 = 1, ∀𝐶 ∈ Ψ𝑘 (𝐺)

∀𝑣 ∈ 𝐶, 𝛼𝐶𝑣 ≥ 0, ∀𝐶 ∈ Ψ𝑘 (𝐺)

where 𝛼𝐶𝑣 indicates the weight assigned to 𝑣 from a clique𝐶 containing it, and 𝑟 (𝑣) is the weight
sum received by 𝑣 from all the 𝑘-cliques containing 𝑣 . Here, we introduce a new vector r:

r =
[
𝑟 (𝑣1) 𝑟 (𝑣2) · · · 𝑟 (𝑣𝑛)

]
We observe that ∥r∥∞ = max𝑣∈𝑉 𝑟 (𝑣), which means that the objective function of DP(𝐺,𝑘) is:

min ∥r∥∞. The intuition of DP(𝐺,𝑘) is that each 𝑘-clique tries to distribute its weight, i.e., 1, to all

its 𝑘 vertices such that the received weights by all the vertices are as even as possible. Notice that in

the CDSD𝑘 (𝐺), it is possible to distribute all cliques weights such that the weight sum received by

each vertex is exactly 𝜌𝑘 (D𝑘 (𝐺)), meaning that each vertex 𝑣 ∈ 𝑉 (D𝑘 (𝐺)) has 𝑟 (𝑣) = 𝜌𝑘 (D𝑘 (𝐺)).

3 TWO STATE-OF-THE-ART ALGORITHMS
In this section, we review the two state-of-the-art CDS algorithms KClist++ [56] and SCTL [31]
and further analyze their limitations.

3.1 The KClist++ algorithm
The well-known Frank-Wolfe algorithm [19, 33] can be used to solve the CP(𝐺,𝑘) formulation in

Section 2.2, by considering a hyper-graph with the same vertices and the 𝑘-cliques as the hyperedges

[56]. A naive algorithm based on the Frank-Wolfe algorithm is presented in Algorithm 1 [56].

Specifically, for each 𝑘-clique 𝐶 = {𝑣1, 𝑣2, · · · , 𝑣𝑘 }, it maintains 𝑘 weight variables 𝛼𝐶𝑣1 , 𝛼
𝐶
𝑣2
, · · · ,

𝛼𝐶𝑣𝑘 . For each vertex 𝑣 , it assigns a variable 𝑟 (𝑣) for storing the weight sum over all the 𝑘-cliques

containing it. First, it initializes 𝛼𝐶
(0)

𝑣 =
1

𝑘
for each vertex 𝑣 in each 𝑘-clique𝐶 and 𝑟 (𝑣) = |Ψ𝑘 (𝑣,𝐺) |/𝑘

for each vertex 𝑣 (lines 1 - 2). Then, update the weights using a for-loop (lines 3-11). In each iteration,

for each 𝑘-clique 𝐶 = {𝑣1, 𝑣2, · · · , 𝑣𝑘 } in 𝐺 , it first finds the vertex 𝑥 with the smallest 𝑟 values in 𝐶 ,

and then updates each vertex 𝑣 ’s 𝛼 𝐶𝑣 , i.e., 𝛼
𝐶
𝑣 is 1 if 𝑣 = 𝑥 , or 0 if 𝑣 ≠ 𝑥 (lines 4-7). Then, the 𝛼 (𝑡)

values of all vertices are computed as a convex combination by 𝛼 (𝑡−1) and 𝛼 (lines 8-10). Next, for

each vertex 𝑣 , 𝑟 (𝑣) is updated as the weight sum over all the 𝑘-cliques containing it (line 11).

Intuitively, the vertices with higher weights are more likely to appear in D𝑘 (𝐺), since they are

contained by more 𝑘-cliques. Thus, the subgraph induced by the first 𝑠∗ vertices with the largest

Proc. ACM Manag. Data, Vol. 2, No. 3 (SIGMOD), Article 119. Publication date: June 2024.

A Counting-based Approach for Efficient 𝑘-Clique Densest Subgraph Discovery 119:7

Algorithm 1: A naive Frank-Wolfe based CDS algorithm

input :A graph 𝐺 and two positive integers 𝑘 and 𝑇

output :An approximate CDS S𝑘 (𝐺)
1 foreach 𝑘-clique 𝐶 ∈ Ψ𝑘 (𝐺) do 𝛼𝐶

(0)
𝑣 ← 1

𝑘
, ∀𝑣 ∈ 𝐶 ;

2 foreach 𝑣 ∈ 𝑉 (𝐺) do 𝑟 (0) (𝑣) ← |Ψ𝑘 (𝑣,𝐺) |/𝑘 ;

3 foreach 𝑡 ← 1, 2, 3, · · · ,𝑇 do
4 foreach 𝑘-clique 𝐶 ∈ Ψ𝑘 (𝐺) do
5 𝑥 ← argmin𝑣∈𝐶 𝑟 (𝑡−1) (𝑣) ;
6 foreach 𝑣 ∈ 𝐶 do
7 𝛼

𝐶
𝑣 ← 1 if 𝑣 = 𝑥 and 0 otherwise;

8 foreach 𝑘-clique 𝐶 ∈ Ψ𝑘 (𝐺) do
9 foreach 𝑣 ∈ 𝐶 do
10 𝛼𝐶

(𝑡)
𝑣 ← (1 − 𝛾𝑡) · 𝛼𝐶

(𝑡−1)
𝑣 + 𝛾𝑡 · 𝛼 𝐶𝑣 , with 𝛾𝑡 =

2

𝑡+2 ;

11 foreach 𝑣 ∈ 𝑉 (𝐺) do 𝑟 (𝑡) (𝑣) ← ∑
𝐶∈Ψ𝑘 (𝐺) :𝑣∈𝐶 𝛼

𝐶 (𝑡)
𝑣 ;

12 // Extract the 𝑘-clique densest subgraph

13 foreach 1 ≤ 𝑖 ≤ |𝑉 (𝐺) | do
14 𝑣𝑖 ← the vertex with the 𝑖-th highest weight in 𝑉 (𝐺);
15 𝐺𝑖 ← the induced subgraph of top-𝑖 highest weight vertices;

16 𝑦𝑖 ← |Ψ𝑘 (𝑣𝑖 ,𝐺𝑖) |;
17 𝑠∗ ← argmax1≤𝑠≤𝑛 1

𝑠

∑𝑠
𝑖=1 𝑦𝑖 ;

18 return S𝑘 (𝐺) ← the subgraph induced by the first 𝑠∗ vertices;

weights is returned as an approximate solution on 𝐺 (lines 12-18). It is proved [19] that if the

number of iterations𝑇 is “large enough”, then the vertices with the largest 𝑟 values induce an exact

CDS.

The above algorithm needs to track the weight distribution to vertices of all 𝑘-cliques, requiring

O(𝑘 · |Ψ𝑘 (𝐺) |) space cost. As shown in Figure 2, |Ψ𝑘 (𝐺) | may be very large, so it is space costly. To

reduce the space cost, Sun et al. [56] proposed the KClist++ algorithm by only keeping track of

𝑟 (𝑣), whose space cost is O(𝑛).
Algorithm 2 presents KClist++. First, for each vertex 𝑣 ∈ 𝑉 (𝐺), it initializes 𝑟 (𝑣) = 0 (line 1).

Then, in each iteration, it enumerates all 𝑘-cliques in 𝐺 by using KClist algorithm [18] (line 3),

and for each 𝑘-clique, it increases 𝑟 (𝑣) by one, where 𝑣 with the smallest weight in it (lines 4-6). It is

noted that KClist++will converge to the optimal solution after enumerating the 𝑘-cliques for “large

enough” iterations. Even within limited iterations, it is able to yield near-optimal approximation

results [56].

Limitation of KClist++. Although the space issue of directly using Frank-Wolfe algorithm

has been overcome, KClist++ is still very inefficient, since it needs to enumerate all the 𝑘-cliques

from scratch in each iteration, which is very time-consuming.

3.2 The SCTL algorithm
SCTL [31] follows the same framework of KClist++, but improves it from the following three

aspects:

(1) Index-based 𝑘-clique enumeration. To avoid enumerating the 𝑘-cliques in each iteration from

scratch, SCTL designs an index by utilizing the succinct clique tree (SCT) structure from

PIVOTER [34], which is a state-of-the-art algorithm for 𝑘-clique counting. Since SCT ensures

a unique representation of all 𝑘-cliques, SCTL archives all 𝑘-cliques, where each root-to-leaf

Proc. ACM Manag. Data, Vol. 2, No. 3 (SIGMOD), Article 119. Publication date: June 2024.

119:8 Yingli Zhou, Qingshuo Guo, Yixiang Fang, and Chenhao Ma

Algorithm 2: KClist++ [56]
input :A graph 𝐺 and two positive integers 𝑘 and 𝑇

output :An approximate CDS S𝑘 (𝐺)
1 foreach 𝑣 ∈ 𝑉 (𝐺) do 𝑟 (𝑣) ← 0;

2 foreach 𝑡 ← 1, 2, 3, · · · ,𝑇 do
3 Ψ𝑘 (𝐺) ← enumerate all the 𝑘-cliques in 𝐺 by KClist [18];

4 foreach 𝑘-clique 𝐶 in Ψ𝑘 (𝐺) do
5 𝑣 ← argmin𝑢∈𝑉 (𝐺) 𝑟 (𝑢);
6 𝑟 (𝑣) ← 𝑟 (𝑣) + 1;

7 𝑟 (𝑣) ← 𝑟 (𝑣)/𝑇 , for each 𝑣 ∈ 𝑉 (𝐺) ;
8 S𝑘 (𝐺) ← run lines 13-18 of Algorithm 1;

9 return S𝑘 (𝐺) ;

path represents a clique, with the path depth indicating the clique size. When enumerating

𝑘-cliques, SCTL traverses the index via the tree paths.

(2) Reduction of the search space. It is proved that D𝑘 (𝐺) must be located in a specific graph

partition, so SCTL can process each partition individually, thereby reducing the time cost.

(3) Batch enumeration of 𝑘-cliques. SCTL designs an optimization technique to handle some

𝑘-cliques under the same root-to-leaf paths in a batch manner, which avoids enumerating all

the 𝑘-cliques one by one.

Limitation of SCTL. A major limitation of SCTL is that in each iteration, it has to enumerate

almost all the 𝑘-cliques, which is very costly. Although the enumeration process can be sped up by

the index, and some 𝑘-cliques may be skipped in the batch enumeration, it is still very inefficient

due to the overwhelming number of 𝑘-cliques in real-world large graphs. For instance, as shown in

Figure 2, the DBLP co-authorship network has around 6 × 1011 7-cliques and SCTL needs over 2
hours to finish a single iteration. However, when 𝑘 = 36, there are around 10

30
36-cliques, which is

10
19
times larger than that of 7-cliques, making it impossible to find the corresponding CDS within

a reasonable time cost.

4 A COUNTING-BASED CDS FRAMEWORK
As reviewed in Section 3, both the state-of-the-art algorithms SCTL and KClist++ need to enumerate

almost all the 𝑘-cliques to update the vertex weights in each iteration. On the other hand, real-world

graphs typically contain an exceedingly large number of 𝑘-cliques, so these algorithms require a

huge amount of time to find the CDS. To break this bottleneck, in this section we propose a simple

yet effective framework by using 𝑘-clique counting, rather than 𝑘-clique enumeration, to achieve a

near-optimal solution. In the following, we introduce the details of our framework.

Our framework is established based on a key observation on the naive Frank-Wolfe based CDS

algorithm in Section 3.1. Recall that in each iteration of Algorithm 1, for each 𝑘-clique 𝐶 ∈ Ψ𝑘 (𝐺),
the weight of 1 unit for𝐶 is distributed to a vertex 𝑣 ∈ 𝐶 , where 𝑣 has the minimum 𝑟 (𝑣) among all

vertices in 𝐶 . Once all 𝑘-cliques in 𝐺 have been processed in this fashion, one iteration is complete.

Particularly, in the 𝑡-th iteration, 𝛼 𝐶𝑣 is defined as:

𝛼
𝐶
𝑣 =

{
1 if 𝑣 = argmin𝑢∈𝐶 𝑟 (𝑡−1) (𝑢)
0 otherwise

Proc. ACM Manag. Data, Vol. 2, No. 3 (SIGMOD), Article 119. Publication date: June 2024.

A Counting-based Approach for Efficient 𝑘-Clique Densest Subgraph Discovery 119:9

In this way, the updating of 𝑟 (𝑣) is formulated as:

𝑟 (𝑡) (𝑣) =
∑︁

𝐶∈Ψ𝑘 (𝑣, 𝐺)
𝛼𝐶

(𝑡)
𝑣

Based on the updating strategies above, we propose a new perspective to update 𝑟 (𝑣) as follows:

𝑟 (𝑡) (𝑣) =
∑︁

𝐶∈Ψ𝑘 (𝑣, 𝐺)
𝛼𝐶

(𝑡)
𝑣

=
∑︁

𝐶∈Ψ𝑘 (𝑣, 𝐺)
(1 − 𝛾𝑡) · 𝛼 𝐶

(𝑡−1)
𝑣 + 𝛾𝑡 · 𝛼 𝐶𝑣

= (1 − 𝛾𝑡) ·
∑︁

𝐶∈Ψ𝑘 (𝑣, 𝐺)
𝛼 𝐶

(𝑡−1)
𝑣 + 𝛾𝑡 ·

∑︁
𝐶∈Ψ𝑘 (𝑣, 𝐺)

𝛼
𝐶
𝑣

= (1 − 𝛾𝑡) · 𝑟 (𝑡−1) (𝑣) + 𝛾𝑡 ·
∑︁

𝐶∈Ψ𝑘 (𝑣, 𝐺)
𝛼
𝐶
𝑣

In the context without ambiguity, we simply use �̂� (𝑣) to denote the right-most term in the above

equation:

�̂� (𝑣) =
∑︁

𝐶∈Ψ𝑘 (𝑣, 𝐺)
𝛼
𝐶
𝑣 (2)

As a result, the above perspective of updating 𝑟 (𝑣) in the 𝑡-th iteration can be simplified as:

𝑟 (𝑡) (𝑣) = (1 − 𝛾𝑡) · 𝑟 (𝑡−1) (𝑣) + 𝛾𝑡 · �̂� (𝑣) (3)

Clearly, if we know how to obtain �̂� (𝑣), then we can directly update 𝑟 (𝑡) (𝑣). With a careful

investigation, we find that in fact, �̂� (𝑣) is exactly equal to the number of 𝑘-cliques in𝐺 that contain

𝑣 , where 𝑟 (𝑡−1) (𝑣) is the smallest value among all vertices in each 𝑘-clique, i.e.,

�̂� (𝑣) =
∑︁

𝐶∈Ψ𝑘 (𝑣, 𝐺)

{
1 if 𝑣 = argmin𝑢∈𝐶 𝑟 (𝑡−1) (𝑢)
0 if otherwise

(4)

Consequently, in the 𝑡-th iteration, �̂� (𝑣) can be easily derived by the following two steps: (1)

identifying all vertices whose 𝑟 values are less than 𝑟 (𝑡−1) (𝑣) and remove them from the graph; and

(2) counting all the 𝑘-cliques containing 𝑣 in the reduced graph. Clearly, any arbitrary algorithm

designed for counting the 𝑘-cliques containing a specific vertex, also known as local 𝑘-clique

counting, can be applied to step (2). Based on the discussions above, we propose a general clique-

Algorithm 3: Our proposed framework

input :A graph 𝐺 and two positive integers 𝑘 and 𝑇

output :An approximate CDS S𝑘 (𝐺)
1 foreach 𝑣 ∈ 𝑉 (𝐺) do 𝑟 (0) (𝑣) ← |Ψ𝑘 (𝑣,𝐺) |/𝑘 ;

2 foreach 𝑡 ← 1, 2, 3, · · · ,𝑇 do
3 sort the vertices in 𝑉 (𝐺) by ascending 𝑟 values ;

4 𝛾𝑡 ← 2

𝑡+2 ; 𝐺
′ ← 𝐺 ;

5 foreach 𝑣 ∈ 𝑉 (𝐺) do
6 �̂� (𝑣) ← the number of 𝑘-cliques containing 𝑣 in 𝐺 ′;
7 𝑟 (𝑡) (𝑣) ← (1 − 𝛾𝑡) · 𝑟 (𝑡−1) (𝑣) + 𝛾𝑡 · �̂� (𝑣) ;
8 remove 𝑣 and its connected edges from 𝐺 ′ ;

9 S𝑘 (𝐺) ← run lines 13-18 of Algorithm 1;

10 return S𝑘 (𝐺)

Proc. ACM Manag. Data, Vol. 2, No. 3 (SIGMOD), Article 119. Publication date: June 2024.

119:10 Yingli Zhou, Qingshuo Guo, Yixiang Fang, and Chenhao Ma

counting-based framework for CDS discovery, as shown in Algorithm 3, which simply replaces the

shadowed codes of Algorithm 1 by the steps above. Specifically, for each vertex 𝑣 , we first initialize

𝑟 (𝑣) as the number of 𝑘-cliques containing 𝑣 divided by 𝑘 , similar to that of Algorithm 1 (line 1).

Then, in each iteration, we first sort all the vertices in ascending order of their 𝑟 values, set 𝛾𝑡
to

2

𝑡+2 , and create a copy of 𝐺 as 𝐺 ′ (lines 3-4). Next, for each vertex 𝑣 , we compute the number

of 𝑘-cliques containing 𝑣 in 𝐺 ′, and then update 𝑟 (𝑣) (lines 6-7). After that, we remove 𝑣 and its

connected edges from 𝐺 ′ (line 8). Once all vertices in 𝑉 (𝐺) have been processed this way, one

iteration is finished. Finally, the approximate CDS can be derived using similar steps of Algorithm

1 (lines 9).

Clearly, both the time and space issues of the naive Frank-Wolfe algorithm have been addressed

because we do not need O(𝑘 · |Ψ𝑘 (𝐺) |) space to keep track of the weight distribution to vertices

of all 𝑘-cliques, and we also do not need to enumerate all the 𝑘-cliques. Besides, our framework

follows the convergence of the Frank-Wolfe Algorithm, which is given by the following theorem:

Theorem 4.1. Suppose Δ denotes the maximum number of 𝑘-cliques that share a vertex in 𝐺 . In
Algorithm 3, for 𝑡 > Ω(Δ |Ψ𝑘 (𝐺) |

𝜖2
), we have ∥r∥∞ − 𝜌𝑘 (D𝑘 (𝐺)) ≤ 𝜖 .

Proof. The detailed proof is in Section A of our technical report [50]. □

Hence, Algorithm 3 is guaranteed to find a (1 + 𝜖)-approximation solution after Ω(Δ |Ψ𝑘 (𝐺) |
𝜖2
)

iterations.

Notice that the theoretical iteration number of our framework is less than Ω(log(1+1/𝜖)Δ |Ψ𝑘 (𝐺) |
√
𝑘

𝜖2
)

given by KClist++ [56] and SCTL [31]. In addition, an upper bound of the optimal 𝑘-clique density

can be derived in our framework based on the vertexweights similar to KClist++ in [56]. Specifically,
the ∥r∥∞ is a decent upper bound, and tighter bounds can be derived via Lemma 13 in [56]. This is

useful in estimating the approximation ratio in practice when the exact solution is unavailable.

𝑣2

𝑣3𝑣4

𝑣1 𝒗𝟏 𝒗𝟐 𝒗𝟑 𝒗𝟒

0 0 0 −

− 0 0 0

0 0 0 0

1/3 2/3 2/3 1/3

InitializeGraph 𝐺 Iteration 1

𝒗𝟏 𝒗𝟐 𝒗𝟑 𝒗𝟒

1 0 0 −

− 0 0 1

1 0 0 1

7/9 2/9 2/9 7/9

ො𝛼𝑐1

ො𝛼𝑐2

Ƹ𝑟(·)

𝑟(·)

𝐶1 = {𝑣1, 𝑣2, 𝑣3}

𝐶2 = {𝑣2, 𝑣3, 𝑣4}

Fig. 3. An example for illustrating our framework.

Example 2. In the graph 𝐺 of Figure 3, there are two 3-cliques, i.e., 𝐶1 = {𝑣1, 𝑣2, 𝑣3} and 𝐶2 =
{𝑣2, 𝑣3, 𝑣4}. We first initialize 𝑟 (𝑣1) = 1/3, 𝑟 (𝑣2) = 2/3, 𝑟 (𝑣3) = 2/3, and 𝑟 (𝑣4) = 1/3. After running
one iteration of Algorithm 3, 𝛼𝐶1

𝑣1 , 𝛼
𝐶1

𝑣2 , 𝛼
𝐶1

𝑣3 , 𝛼
𝐶2

𝑣2 , 𝛼
𝐶2

𝑣3 , and 𝛼
𝐶2

𝑣4 can be calculated. Afterwards, for each
𝑣 ∈ 𝑉 (𝐺), we can compute �̂� (𝑣), and update 𝑟 (1) (𝑣) by using �̂� (𝑣) and 𝑟 (0) (𝑣). For example, 𝑟 (1) (𝑣1)
= (1 − 𝛾1) · 𝑟 (0) (𝑣1) + 𝛾1 · �̂� (𝑣1) = 1

3
· 1
3
+ 1

3
· 1 = 7

9
.

5 OUR KCCA ALGORITHM
In this section, we first present a basic algorithm by employing the state-of-the-art local 𝑘-clique

counting algorithm PIVOTER [34] in our framework and then develop a faster optimized CDS

algorithm.

5.1 A basic algorithm based on PIVOTER

The key idea of PIVOTER is that it implicitly constructs a succinct clique tree (SCT) to maintain a

unique representation of all 𝑘-cliques. The SCT adapts the recursion tree of the Bron-Kerbosch

Proc. ACM Manag. Data, Vol. 2, No. 3 (SIGMOD), Article 119. Publication date: June 2024.

A Counting-based Approach for Efficient 𝑘-Clique Densest Subgraph Discovery 119:11

algorithm for maximal clique enumeration (MCE) [59]. The Bron-Kerbosch algorithm maintains

three disjoint sets 𝑅, 𝐶 , and 𝑋 in the recursive enumeration procedure, where 𝑅 is a clique, 𝐶 is a

set of candidates that can be added to 𝑅 to form a larger clique, and 𝑋 is a set of vertices that have

already been explored from 𝐶 . To compress the recursion tree, a “pivot” vertex 𝑝 is selected from

𝐶 ∪ 𝑋 in each recursive call. In this way, any maximal clique containing 𝑅 must either include 𝑝 or

a non-neighbor of 𝑝 . Thus, the recursive calls on the neighbors of 𝑝 can be skipped.

The SCT is built based on this recursion tree, where the non-neighbors of the pivot are called

the “hold” vertices. By assigning each vertex a unique label, either “pivot” or “hold”, each 𝑘-clique

can be uniquely represented. Such a tree-shaped index has a virtual root node
2
connecting all

second-level sub-trees. Each tree node stores the following information:

(1) Vertex id: The vertex stored in this tree node.

(2) Vertex label: The label of the stored vertex (“pivot” or “hold”), where the root node does not

have a label.

(3) Children: The pointers to the child tree nodes.

Each root-to-leaf path Γ is uniquely encoded by the pivot vertices (denoted by P(Γ)) and hold

vertices (denoted byH(Γ)) along the path [34]. In addition, we use 𝑉 (Γ) denotes all vertices in Γ,
i.e.,𝑉 (Γ) = P(Γ) ∪H (Γ). The following lemma demonstrates how to count the number of 𝑘-cliques

in each root-to-leaf path.

Lemma 5.1 ([34]). Given a root-to-leaf path Γ, each 𝑘-clique must contain all vertices inH(Γ) and
contain 𝑘 − |H (Γ) | vertices in P(Γ). Each vertex in P(Γ) on this path is contained by

(| P (Γ) |−1
𝑘−|H(Γ) |−1

)
𝑘-cliques and each vertex inH(Γ) is contained by

(| P (Γ) |
𝑘−|H(Γ) |

)
𝑘-cliques.

Example 3 illustrates how to use SCT for local 𝑘-clique counting.

𝑣2

𝑣5

𝑣6

𝑣4𝑣3

𝑣1

𝑣5

𝑣6

𝑣8

𝑣9 𝑣10

𝑣7𝑣3

𝑣5

𝑣6

𝑣4

𝑣5

𝑣6

Γ1
Γ2

hold

pivot

Fig. 4. The SCT for the graph in Figure 1.

Example 3. Figure 4 shows the SCT of the graph in Figure 1, where each node shows the id of the
vertex it stores. For instance, to count the 3-cliques containing 𝑣3, we need to traverse two root-to-leaf
paths Γ1 = ⟨𝑟𝑜𝑜𝑡, 𝑣2, 𝑣5, 𝑣6, 𝑣3⟩ and Γ2 = ⟨𝑟𝑜𝑜𝑡, 𝑣3, 𝑣5, 𝑣6⟩. For Γ1, since it has one hold vertex and three
pivot vertices, there are

(| P (Γ) |−1
𝑘−|H(Γ) |−1

)
=
(
2

1

)
= two 3-cliques containing 𝑣3 in Γ1. Similarly, there is

(
2

2

)
=

one 3-clique containing 𝑣3 in Γ2. In total, there are three 3-cliques containing 𝑣3.

Based on the discussions above, we can adapt the SCT for the local 𝑘-clique counting in our

framework. However, as stated in [31, 34], directly employing SCT for 𝑘-clique counting for a

specific 𝑘 would result in numerous unnecessary searches, i.e., traversing the branches that are not

containing 𝑘-clique. In the wake of this, we propose three pruning criteria to avoid unnecessary

searches:

2
To avoid ambiguity, we use “node” to represent “vertex” on the SCT, and use “vertex” to represent “vertex” in the graph.

Proc. ACM Manag. Data, Vol. 2, No. 3 (SIGMOD), Article 119. Publication date: June 2024.

119:12 Yingli Zhou, Qingshuo Guo, Yixiang Fang, and Chenhao Ma

(1) For a vertex 𝑣 , if 𝑐𝑛(𝑣) + 1 < 𝑘 , where 𝑐𝑛(𝑣) is the core number
3
of 𝑣 , then 𝑣 is not contained

in any k-cliques.

(2) If a branch of SCT during its construction process has |𝐶 ∪𝑅 | < 𝑘 , then it does not contribute

to any 𝑘-cliques.

(3) For a root-to-leaf path Γ, if it has more than 𝑘 hold vertices, then it can be skipped.

Here, we briefly discuss the above pruning criteria’s correctness. The first criterion holds because

𝑣 must reside in the (𝑘 − 1)-core to be contained in any 𝑘-clique. The second pruning criteria is very

straightforward. For the last one, since any clique that can be counted from a path Γ must contain

all its hold vertices, we can skip the path if it has more than 𝑘 hold vertices when counting the

𝑘-cliques. By incorporating these three criteria, we develop a basic CDS algorithm by employing

PIVOTER, denoted by KCCA-Basic, as shown in Algorithm 4.

Algorithm 4: KCCA-Basic
input :A graph 𝐺 and two positive integers 𝑘 and 𝑇

output :An approximate CDS S𝑘 (𝐺)
1 foreach 𝑣 ∈ 𝑉 (𝐺) do 𝑟 (0) (𝑣) ← |Ψ𝑘 (𝑣,𝐺) |/𝑘 ;

2 𝐺 ← locate 𝐺 into a (𝑘 − 1)-core // obtain a small graph;

3 SCT← build_SCT(𝐺) // build the SCT for 𝐺;

4 foreach 𝑡 ← 1, 2, 3, · · · ,𝑇 do
5 𝛾𝑡 ← 2

𝑡+2 ; �̂� (𝑣) ← 0 for each 𝑣 ∈ 𝑉 (𝐺) ;
6 foreach root-to-leaf path Γ ∈ SCT do
7 while P(Γ) ≠ ∅ do
8 𝑣 ← argmin𝑢∈𝑉 (Γ) 𝑟

(𝑡−1) (𝑢) ;
9 if 𝑣 ∈ H (Γ) then
10 �̂� (𝑣) ← �̂� (𝑣) +

(| P (Γ) |
𝑘−|H(Γ) |

)
;

11 break;

12 �̂� (𝑣) ← �̂� (𝑣) +
(| P (Γ) |−1
𝑘−|H(Γ) |−1

)
;

13 P(Γ) ← P(Γ)\{𝑣} ;

14 foreach 𝑣 ∈ 𝑉 (𝐺) do
15 𝑟 (𝑡) (𝑣) ← (1 − 𝛾𝑡) · 𝑟 (𝑡−1) (𝑣) + 𝛾𝑡 · �̂� (𝑣)

16 S𝑘 (𝐺) ← run lines 13-18 of Algorithm 1;

17 return S𝑘 (𝐺)

Similar to Algorithm 1, KCCA-Basic first initializes 𝑟 (0) (𝑣) for each vertex 𝑣 (line 1). Then, it

locates the (𝑘 − 1)-core since the CDS must be contained by it, and builds the SCT for it (lines 2-3).

Next, it uses SCT to update the weight of each vertex. Specifically, in each iteration, it first sets 𝛾𝑡 to
2

𝑡+2 , and �̂� (𝑣) to 0, which is used to record the number of 𝑘-cliques in 𝐺 containing 𝑣 , where 𝑣 with

the smallest 𝑟 value among all vertices in each clique (line 5). In the 𝑡-th iteration, we traverse all

the root-to-leaf paths in SCT to calculate the number of 𝑘-cliques containing each vertex 𝑣 in𝑉 (𝐺),
where 𝑟 (𝑡−1) (𝑣) is the smallest value among all vertices in each 𝑘-clique. For each such path Γ, the
number of 𝑘-cliques that include each vertex in 𝑉 (Γ) is calculated by lemma 5.1. Then, it computes

�̂� (𝑣) for each vertex 𝑣 (lines 6-13). Once all paths in SCT are processed, it updates 𝑟 (𝑡) (𝑣) for each
vertex 𝑣 ∈ 𝑉 (𝐺) (lines 14-15). Finally, the CDS is extracted following similar steps of Algorithm 1.

3
The core number of 𝑣 is the largest 𝑘 such that there exists a 𝑘-core containing 𝑣. Here, 𝑘-core is a subgraph where each

vertex has at least 𝑘 neighbors in the subgraph.

Proc. ACM Manag. Data, Vol. 2, No. 3 (SIGMOD), Article 119. Publication date: June 2024.

A Counting-based Approach for Efficient 𝑘-Clique Densest Subgraph Discovery 119:13

Example 4. Continue Example 3 where 𝑘 = 3. Figure 5 shows the vertex weight update process in
KCCA-Basic. The first row shows the initialized vertex weights 𝑟 (0) (𝑣). The second row shows the
weights of �̂� (𝑣) before processing the root-to-leaf path Γ1 = ⟨𝑟𝑜𝑜𝑡, 𝑣2, 𝑣5, 𝑣6, 𝑣3⟩. The following rows
show �̂� (𝑣) when processing the path Γ1. The seven shaded boxes contain the weights of vertices on
this path, and the red boxes contain the weights of vertices that have just been increased. Since 𝑣3 has
the minimum weight among {𝑣2, 𝑣5, 𝑣6, 𝑣3} in the first row and 𝑣3 ∈ P(Γ1), 𝑣3’s weight is updated by
the number of cliques containing it in this path, i.e.,

(
3−1

3−1−1
)
= 2. Afterwards, 𝑣3 is removed from the

above set. Since 𝑣2 has the minimum weight among vertices {𝑣2, 𝑣5, 𝑣6} and 𝑣2 ∈ H (Γ1), 𝑣2’s weight is
updated as

(
2

3−1
)
= 1.

𝒗𝟏 𝒗𝟐 𝒗𝟑 𝒗𝟒 𝒗𝟓 𝒗𝟔 𝒗𝟕 𝒗𝟖 𝒗𝟗 𝒗𝟏𝟎

1/3 5/3 1 1 2 2 2/3 2/3 1/3 1/3

1 0 0 0 0 0 0 0 0 0

1 0 2 0 0 0 0 0 0 0

1 1 2 0 0 0 0 0 0 0

weights of 𝑟 0 (·)

process {𝑣2, 𝑣5, 𝑣6, 𝑣3}

process {𝑣2, 𝑣5, 𝑣6}

weights of Ƹ𝑟(·)

Fig. 5. Illustrating the weight update of KCCA-Basic.

In the following, we prove the correctness of the Algorithm 4. Denote by E𝑘 (Γ) the set of cliques
on a root-to-leaf path Γ:

E𝑘 (Γ) =
⋃

X⊆P(Γ)
{H (Γ) ∪ X}, (5)

where |H (Γ) | + |X| = 𝑘 .
We present a key lemma from [34] and use it to show the correctness.

Lemma 5.2 ([34]). For each 𝑘-clique 𝐶 ∈ Ψ𝑘 (𝐺), there exist one and only one path Γ ∈ 𝑆𝐶𝑇 such
that 𝐶 ∈ E𝑘 (Γ) .

Theorem 5.3. Given a graph 𝐺 , in 𝑡-th iteration (𝑡 ≥ 1), Algorithm 4 correctly computes the �̂� (𝑣)
for each vertex 𝑣 ∈ 𝑉 (𝐺).

Proof. W.l.o.g., suppose both Algorithms 1 and 4 break ties for vertices with the same 𝑟 (𝑣)
values using vertex id. Recall that �̂� (𝑣) is defined in Equation (2). Based on the Lemma 5.2, �̂� (𝑣) can
be computed by the equation below:

�̂� (𝑣) =
∑︁

Γ∈𝑆𝐶𝑇 :𝐶∈E𝑘 (Γ) :𝑣∈𝐶
𝛼
𝐶
𝑣

=
∑︁

Γ∈𝑆𝐶𝑇 :𝐶∈E𝑘 (Γ) :𝑣∈𝐶

{
1 if 𝑣 = argmin𝑢∈𝐶 𝑟 (𝑡−1) (𝑢)
0 if otherwise

Thus, we only need to enumerate all the root-to-leaf paths containing 𝑣 to obtain �̂� (𝑣). Besides,
for each such path Γ, if there exists a vertex with a weight smaller than 𝑟 (𝑡−1) (𝑣) in H(Γ), we
cannot find a 𝑘-clique 𝐶 containing 𝑣 where 𝑣 has the smallest weight in 𝐶 . If vertices in P(Γ)
have weights smaller than 𝑟 (𝑡−1) (𝑣), then any 𝑘-clique 𝐶 ∈ E(Γ) containing these vertices will not

contribute to �̂� (𝑣). As a result, we can use the combination rule in Lemma 5.1 to calculate �̂� (𝑣).
The lines 6-13 in the Algorithm 4 exactly show the steps of achieving this. Hence, the theorem

holds. □

Remark. KCCA-Basic is a realization of our framework (refer to Algorithm 3), where PIVOTER
is only used for local 𝑘-clique counting (i.e., step (2) of our framework). It is because our framework

Proc. ACM Manag. Data, Vol. 2, No. 3 (SIGMOD), Article 119. Publication date: June 2024.

119:14 Yingli Zhou, Qingshuo Guo, Yixiang Fang, and Chenhao Ma

updates a vertex 𝑣 ’s weight 𝑟 (𝑣) based on the number of 𝑘-cliques containing 𝑣 . Note that any other

local 𝑘-clique counting algorithms can be easily applied to our framework.

5.2 Our optimized algorithm KCCA

While KCCA-Basic is faster than KClist++ and SCTL for processing each iteration, it often requires

more iterations to achieve the same approximation ratio with KClist++, as shown in our later

experiments. To reduce the number of iterations, we devise a simultaneous update weight strategy

coupled with two update orderings.

• Simultaneous weight update strategy. Most of the existing iteration-based algorithms

[40, 41, 43, 54, 56] utilize a simultaneous (or asynchronous) update strategy to speed up the

convergence. The key idea is that in each step, we utilize the latest updated elements of the solution

to compute subsequent elements within the same iteration. For readers who are familiar with

linear algebra, there is a perspective [10, 51] explaining the idea: the sequential (synchronous) and

simultaneous (asynchronous) algorithms are analogous to Jacobi and Gauss-Seidel iterations for

iterative solvers, respectively. Inspired by the idea above, we develop a simultaneous weight update

strategy for KCCA-Basic. Specifically, within each iteration, if a vertex 𝑣 ’s weight 𝑟 (𝑣) changes, and
the updated vertex weight is promptly visible to subsequent updates of other vertices in the same

iteration. The simultaneous weight update strategy enables a more balanced weight distribution

among vertices, making our algorithm converge faster, as all the vertices in the densest subgraph

have the same vertex weight upon convergence.

•Update orderings. In both KClist++ and SCTL, a more random 𝑘-clique visiting order benefits

the convergence to the optimal solution [31, 56]. However, this is not always true in our framework,

as shown in our experiment. To reduce the number of iterations, it is better to make the weight

distribution more balanced. In light of this, we prefer to process root-to-leaf paths containing more

𝑘-cliques first, by proposing two update orderings strategies:

(1) Depth order: assign higher priority to root-to-leaf paths with deeper depths since they tend

to contain more 𝑘-cliques.

(2) Degeneracy order: assign higher priority to root-to-leaf paths whose root nodes have higher

degeneracy values (i.e., core numbers), since higher degeneracy values also imply more

𝑘-cliques.

By combining the above optimization techniques, we develop an optimized algorithm KCCA, as
shown in Algorithm 5.

As shown in Algorithm 5, there are two major differences between KCCA and KCCA-Basic: (1)
KCCA processes the root-to-leaf paths of SCT following a fixed order (line 2), which can make it

converge faster. (2) In each iteration, when a vertex 𝑣 ’s weight 𝑟 (𝑣) changes in KCCA, the updated
vertex weight is immediately applied to subsequent updates within the same iteration (lines 10-13),

while KCCA-Basic considers it in the next iteration.

From a theoretical perspective, KCCA needs more iterations than KCCA-Basic to achieve the same

approximation ratio solution. However, in practice, KCCA always converges faster than KCCA-Basic.

Example 5. Continue with Example 3 where 𝑘 = 3. For each vertex 𝑣 in the graph, since 𝑟 (𝑣) can
be randomly initialized, we simply set 𝑟 (𝑣) = 0. Then, we update vertices’ weights by random order
(corresponding to vertex ids), degeneracy order, and depth order, respectively, and report the results
after one iteration in Figure 6, where boxes shaded in red represent the vertices selected in the solution
(using lines 13-18 of Algorithm 1). Notably, the degeneracy and depth orders result in a subgraph
induced by {𝑣2, 𝑣3, 𝑣4, 𝑣5, 𝑣6} with density 7

5
in one iteration. However, for the random order, it induces

a subgraph with density 1 due to an imbalance in their assigned weights.

To show the complexity of KCCA, we first introduce the complexity of PIVOTER.

Proc. ACM Manag. Data, Vol. 2, No. 3 (SIGMOD), Article 119. Publication date: June 2024.

A Counting-based Approach for Efficient 𝑘-Clique Densest Subgraph Discovery 119:15

Algorithm 5: KCCA
input :A graph 𝐺 and two positive integers 𝑘 and 𝑇

output :An approximate CDS S𝑘 (𝐺)
1 run lines 1-3 of Algorithm 4;

2 SCT← reorder SCT by depth order or degeneracy order ;
3 foreach 𝑡 ← 1, 2, 3, · · · ,𝑇 do
4 𝛾𝑡 ← 2

𝑡+2 ;

5 foreach 𝑣 ∈ 𝑉 (𝐺) do
6 𝑟 (𝑡) (𝑣) ← (1 − 𝛾𝑡) · 𝑟 (𝑡−1) (𝑣) ;
7 foreach root-to-leaf path Γ ∈ SCT do
8 while P(Γ) ≠ ∅ do
9 𝑣 ← argmin𝑢∈𝑉 (Γ) 𝑟

(𝑡) (𝑢) ;
10 if 𝑣 ∈ H (Γ) then
11 𝑟 (𝑡) (𝑣) ← 𝑟 (𝑡) (𝑣) + 𝛾𝑡 ·

(| P (Γ) |
𝑘−|H(Γ) |

)
;

12 break;

13 𝑟 (𝑡) (𝑣) ← 𝑟 (𝑡) (𝑣) + 𝛾𝑡 ·
(| P (Γ) |−1
𝑘−|H(Γ) |−1

)
;

14 P(Γ) ← P(Γ)\{𝑣} ;

15 S𝑘 (𝐺) ← run lines 13-18 of Algorithm 1;

16 return S𝑘 (𝐺)

𝒗𝟏 𝒗𝟐 𝒗𝟑 𝒗𝟒 𝒗𝟓 𝒗𝟔 𝒗𝟕 𝒗𝟖 𝒗𝟗 𝒗𝟏𝟎

1 3 1 2 1 0 1 1 0 0

1 2 1 1 2 1 1 1 0 0

1 2 2 1 1 1 1 0 0 1

random order

degeneracy order

depth order

Fig. 6. Illustrating different update orders.

Lemma 5.4 ([34]). Given a graph𝐺 with 𝑛 vertex and degeneracy (i.e., the maximum core number)
of 𝛿 , the time and space complexity used for building SCT are both of O(𝑛 · 3𝛿/3) and the SCT contains
O(𝑛 · 3𝛿/3) nodes.

Lemma 5.5. Given a graph 𝐺 with degeneracy of 𝛿 , the maximum depth of the SCT of 𝐺 is O(𝛿).

Proof. The depth of each root-to-leaf path on the SCT is the size of the clique formed by all

nodes in the path. On the other hand, the size of any clique in 𝐺 cannot exceed 𝛿 + 1. Hence, the
lemma holds. □

Based on the above two lemmas, we can derive the following Theorem:

Theorem 5.6. Given a graph 𝐺 with 𝑛 vertices and degeneracy of 𝛿 , KCCA cost 𝑂 (𝑛 · 3𝛿/3) space
and the time complexity for each iteration is O(𝑛 · 3𝛿/3 · 𝛿 log𝛿).

Proof. The process of each path takes O(𝛿 log𝛿) time, as each path has 𝑂 (𝛿) nodes by Lemma

5.4. Besides, the SCT of 𝐺 contains O(𝑛 · 3𝛿/3) root-to-leaf paths, as it contains O(𝑛 · 3𝛿/3) nodes
by Lemma 5.5. Hence, the theorem holds. □

The complexity of KCCA does not depend on 𝑘 , the clique size, unlike KClist++ and SCTL which

scale with 𝑘 . The detailed complexity comparison of the three algorithms is shown in Table 1. Note

Proc. ACM Manag. Data, Vol. 2, No. 3 (SIGMOD), Article 119. Publication date: June 2024.

119:16 Yingli Zhou, Qingshuo Guo, Yixiang Fang, and Chenhao Ma

Table 3. Approx. ratios of representative CDS algorithms.

Algorithm approx. ratio # iterations

KClist++ [56] (1 + 𝜖) Ω(log(1+1/𝜖)Δ |Ψ𝑘 (𝐺) |
√
𝑘

𝜖2
)

SCTL [31] (1 + 𝜖) Ω(log(1+1/𝜖)Δ |Ψ𝑘 (𝐺) |
√
𝑘

𝜖2
)

KCCA-Basic (ours) (1 + 𝜖) Ω(Δ |Ψ𝑘 (𝐺) |
𝜖2
)

KCCA (ours) (1 + 𝜖) Ω(Δ |Ψ𝑘 (𝐺) |
√
𝑘

𝜖2
)

* Note: 𝜖 is the given approximation ratio, Δ is the maximum number

of 𝑘-cliques that share a vertex in𝐺 , and |Ψ𝑘 (𝐺) | denotes the number

of 𝑘-cliques in 𝐺 .

that KCCA-Basic shares the same complexity as KCCA, since they only use different update orders

and strategies.

Next, we analyze the convergence rate of KCCA. Since KCCA updates its variables simultaneously

and it is not a gradient-descent-like algorithm, we need analysis methods different from the one

used in Section 4. For lack of space, we present the detailed proof in Section A of our technical

report [50].

Theorem 5.7. Suppose Δ denotes the maximum number of 𝑘-cliques that share a vertex in 𝐺 . In

Algorithm 5, for 𝑡 > Ω(Δ |Ψ𝑘 (𝐺) |
√
𝑘

𝜖2
), we have ∥r∥∞ − 𝜌𝑘 (D𝑘 (𝐺)) ≤ 𝜖 .

Hence, Algorithm 5 is guaranteed to find a (1 + 𝜖)-approximation solution after Ω(Δ |Ψ𝑘 (𝐺) |
√
𝑘

𝜖2
)

iterations. Besides, from a theoretical perspective, KCCA needs more iterations than KCCA-Basic to

achieve the same approximation ratio solution. However, in practice, KCCA always converges faster

than KCCA-Basic, since KCCA can make a more balanced vertex weight distribution. The detailed

relationship between the approximation ratio and the required number of iterations in the worst

case for the four algorithms is shown in Table 3.

5.3 Limitations
While KCCA has achieved remarkable performance on the CDS problem, it still has some limitations.

Since our algorithm employs local 𝑘-clique counting from PIVOTER, it inherits PIVOTER’s limitations.

A key limitation is that SCT costs O(𝑛 · 𝛿 · 3𝛿/3) time for local counting, and has O(𝑛 · 3𝛿/3)
nodes, where 𝑛 and 𝛿 are the numbers of vertex and degeneracy of the graph respectively. For the

LiveJournal dataset with 𝑛=4M and 𝛿=360, KCCA is costly in both time and space. As shown in Table

1 of [34], the local counting version cannot finish within the time limit on LiveJournal, which is

much slower than global counting (6 days for global 10-clique counting [34]). Thus, the results

of PIVOTER on LiveJournal in [34] suggest that the KCCA has its limits for real datasets with high

degeneracy values. In addition, all CDS algorithms’ complexity has an exponential relationship

with 𝛿 , indicating that all algorithms (including KCCA) are not suitable for these datasets. Moreover,

if any new algorithms for local 𝑘-clique counting are proposed, our framework can easily adapt

these algorithms to achieve better performance.

6 EXPERIMENTS
We now present the experimental results. Section 6.1 discusses the setup. We discuss the results in

Sections 6.2 and 6.3.

Proc. ACM Manag. Data, Vol. 2, No. 3 (SIGMOD), Article 119. Publication date: June 2024.

A Counting-based Approach for Efficient 𝑘-Clique Densest Subgraph Discovery 119:17

Table 4. Datasets used in our experiments.

Dataset Category |𝑉 | |𝐸 | 𝛿 𝐾

bio-SC-GT Biological 1,716 31,564 60 48

econ-beacxc Economic 507 42,176 118 87

WikiTalk Communication 120,834 237,551 54 27

Slashdot Comments 77,360 469,180 54 26

loc-gowalla Locations 196,591 950,327 51 29

DBLP Collaboration 317,080 1,049,866 113 113

web-Stanford Web 281,903 1,992,636 71 61

web-Google Web 916,428 4,322,051 44 44

as-skitter Web 1,696,415 11,095,298 111 67

Wikipedia-link Hyperlink 3,033,374 43,845,958 175 124

zhishi-baidu Hyperlink 7,827,193 62,246,014 267 268

ew-2013 Social 4,206,785 101,355,853 145 41

Orkut Social 3,072,627 117,185,083 253 51

Friendster Social 124,836,180 1,806,067,135 304 129

6.1 Setup

CoreApp KClist++ SCTL KCCA

5 7 9 11 13
10
−1

10
2

10
4

10
6

𝑘

ti
m
e
(s
)

(a) bio-SC-GT

5 7 9 11 13

10
1

10
2

10
3

𝑘

(b) WikiTalk

5 7 9 11 13

10
0

10
1

10
2

𝑘

(c) loc-gowalla

7 9 11 13 15

10
−1
10

1

10
3

10
5

INF

𝑘

(d) DBLP

7 9 11 13 15
10

0

10
2

10
4

10
5

INF

𝑘

(e) web-Stanford

7 11 15 19 23

10
1

10
3

10
5

INF

𝑘

ti
m
e
(s
)

(f) web-Google

7 11 15 19 23
10

2

10
3

10
4

10
5

INF

𝑘

(g) as-skitter

7 11 15 19 23
10

2

10
3

10
4

10
5

INF

𝑘

(h) Wikipedia-link

10 15 20 25 30
10

2

10
3

10
4

10
5

INF

𝑘

(i) zhishi-baidu

10 15 20 25 30
10

2

10
3

10
4

10
5

INF

𝑘

(j) ew-2013

Fig. 7. Effect of 𝑘 on the efficiency of CoreApp, KClist++, SCTL, and KCCA.

Datasets.We use 14 real-world datasets from different domains, which are downloaded from

the Stanford Network Analysis Platform
4
, Laboratory of Web Algorithmics

5
, Network Repository

6
, and Konect

7
. Their detailed descriptions can also be found on these websites. Table 4 reports the

statistics of these graphs, where 𝛿 denotes the degeneracy of graph, and 𝐾 denotes the size of the

maximum clique.

Competitors. We evaluate the following approximation algorithms for the CDS problem:

• KCCA: our proposed algorithm in Section 5.2.

• CoreApp [23]: the core-based algorithm, which uses (ℎ𝑚𝑎𝑥 , 𝑘-clique)-core as an approximation

solution of CDS, where (ℎ, 𝑘-clique)-core is the maximal subgraph in which each vertex is

4
http://snap.stanford.edu/data/

5
http://law.di.unimi.it/datasets.php

6
https://networkrepository.com/network-data.php

7
http://konect.cc/networks/

Proc. ACM Manag. Data, Vol. 2, No. 3 (SIGMOD), Article 119. Publication date: June 2024.

119:18 Yingli Zhou, Qingshuo Guo, Yixiang Fang, and Chenhao Ma

contained by at least ℎ 𝑘-cliques in the subgraph, and ℎ𝑚𝑎𝑥 is the largest ℎ such that the (ℎ,

𝑘-clique)-core exists. Besides, to make a fair comparison, we have recently re-implemented

CoreApp in C++, which is much faster than the original implementation in Java [23].

• KClist++ [56]: the convex programming based algorithm, which is recapped in Section 3.1.

• SCTL [31]: the state-of-the-art approximation algorithm, which is discussed in Section 3.2.

Note that CoreApp [23] provides a 𝑘-approximation ratio solution, while others achieve a (1 + 𝜖)-
approximation. We follow the state-of-the-art CDS work [31] to set the default number of iterations

𝑇=10. We implement all the algorithms in C++ and run experiments on a machine having an Intel(R)

Xeon(R) Gold 6338R 2.0GHz CPU and 512GB of memory, with Ubuntu installed. If an algorithm

cannot finish in two weeks, we mark its running time as INF in the Figure and “—” in the Table. In

our experiments, we have already included the time cost of building the SCT in all results, which

means that our algorithm is purely online without offline prepossessing.

Running Details. For any 𝜖 , the upper bound of𝑇 is calculated by Theorem 5.7. In our experiments,

we follow the existing works [31, 56]: For any 𝜖 , each (1+𝜖)-approximation algorithm (any of KCCA,
KClist++, and SCTL) starts with 𝑇 = 1 and runs for 𝑇 iterations. Then, we check if the estimated

error is less than 𝜖 . If yes, the algorithm stops; otherwise, 𝑇 is set to 𝑇 × 2 and the process repeats

until the error criterion is met. Note that the empirical value of 𝑇 is usually much smaller than the

upper bound.

6.2 Comparison with existing CDS algorithms
In this section, we extensively compare KCCA with KClist++ and SCTL by various experiments.

Table 5. Efficiency on Orkut and Friendster datasets.

Dataset 𝑘
KClist++ SCTL KCCA

1 + 𝜖 Time (s) 1 + 𝜖 Time (s) 1 + 𝜖 Time (s)

Orkut

15 NA — NA — < 1.01 25,310

20 NA — NA — < 1.01 25,504

25 NA — NA — < 1.01 15,923

30 NA — NA — < 1.01 13,493

35 NA — NA — < 1.01 9,939

Friendster

15 NA — NA — < 1.01 11,821

25 NA — NA — < 1.01 7,770

35 NA — NA — < 1.01 7,129

45 NA — NA — < 1.01 7,240

55 NA — NA — < 1.01 6,269

65 NA — NA — < 1.01 6,951

75 NA — NA — < 1.01 7,466

1. Effect of 𝑘 . Figure 7 compares the average running time of these three algorithms on ten

datasets by varying the clique size 𝑘 , where 𝑘=5∼30 and 𝑇=10. Clearly, KCCA is up to six orders of

magnitude faster than KClist++ and SCTL, since it does not require enumerating the 𝑘-cliques,

whereas KClist++ and SCTL struggle to enumerate a large number of 𝑘-cliques. Besides, for most

of the datasets, the running time of KClist++ and SCTL increases with the growth of 𝑘 , while the

time cost of KCCA remains stable for different 𝑘 , since its time complexity is independent of 𝑘 as

shown in Table 1. Moreover, it is evident that KCCA typically requires less time as 𝑘 increases. This

is because a larger 𝑘 results in a smaller SCT (with the (𝑘 − 1)-core decreasing in size), thus reducing

the number of paths that KCCA needs to traverse.

In addition, we consider the values of 𝑘 , such that the numbers of 𝑘-cliques reach the maximum

values on the two largest datasets. As shown in Figure 2, when 𝑘=25 and 75, the numbers of

Proc. ACM Manag. Data, Vol. 2, No. 3 (SIGMOD), Article 119. Publication date: June 2024.

A Counting-based Approach for Efficient 𝑘-Clique Densest Subgraph Discovery 119:19

10
7

10
8

10
9

10
10

10
11

10
12

10
13

10
0

10
1

10
2

10
3

10
4

10
5

10
6

10
7

The number of 𝑘-cliques

Sp
ee
du

p
ra
te

k = 5

k = 7

k = 9

k = 11

k = 13

bio-SC-GT

web-Google

loc-gowalla

DBLP

web-Stanford

as-skitter

zhishi-baidu

Fig. 8. The number of cliques w.r.t. speedup ratio.

𝑘-cliques, i.e., 1018 and 10
38
, are maximized on Orkut and Friendster datasets, respectively. Table

5 reports the running time and approximation ratios of KClist++, SCTL, and KCCA, where the

numbers of iterations are set to 10. We use “NA” to denote that the algorithm could not be finished

within two weeks. Clearly, by using a few thousands of seconds, KCCA can obtain solutions that are

extremely close to optimal, since its approximation ratio is 1.01. However, both KClist++ and SCTL
can not finish it within two weeks under all settings due to the overwhelming number of 𝑘-cliques

on these datasets. To our best knowledge, KCCA is the first algorithm that can produce solutions

with an approximation ratio of 1.01 for graphs with billions of edges.

Table 6. Comparison of actual approximation ratios.

Dataset 𝑘 CoreApp KClist++ SCTL KCCA

WikiTalk

5 1.399 1.001 1.052 1.006

7 1.286 1.002 1.033 1.006

9 1.283 1.003 1.027 1.006

11 1.295 1.006 1.023 1.006

13 1.179 1.013 1.013 1.009

loc-gowalla

5 1.380 1.016 1.052 1.023

7 1.785 1.000 1.000 1.000

9 1.541 1.000 1.000 1.000

11 1.523 1.000 1.000 1.000

13 1.505 1.001 1.011 1.010

2. Effect of 𝜖 . We evaluate the effect of 𝜖 using nine datasets from different domains, where

each domain has a dataset, and the values of 𝜖 are set to 1, 0.1, 0.05, and 0.01, respectively. The

experimental results are reported in Table 7, which clearly shows that KCCA outperforms the other

algorithms on all datasets. Particularly, on DBLP dataset, KCCA is up to seven orders of magnitude

faster than both KClist++ and SCTL That is, KCCA obtains a (1+𝜖)-solution with 𝜖 < 0.01 in around

100ms, while the other algorithms fail to complete it in two weeks. For around half of the datasets,

KCCA is over four orders of magnitude faster than the two competitors. In addition, on the smallest

datasets (bio-SC-GT and econ-beacxc), both KClist++ and SCTL struggle to produce reasonable

solutions within two weeks in most cases, while KCCA takes only a few seconds and minutes to

achieve solutions with 𝜖 < 0.01 on the bio-SC-GT and econ-beaxcx datasets respectively. This is

Proc. ACM Manag. Data, Vol. 2, No. 3 (SIGMOD), Article 119. Publication date: June 2024.

119:20 Yingli Zhou, Qingshuo Guo, Yixiang Fang, and Chenhao Ma

Table 7. Effect of 𝜖 and 𝑘 . (Processing time (in seconds) of kClist++, SCTL, and KCCA; We terminate an
algorithm if the upper bound of its approximation ratio is less than 1+𝜖 ; If an algorithm cannot finish in two
weeks, we mark its running time as “—"; Best performers are highlighted in bold; We use orange, purple,
green, blue, and red colors to denote the cases with 3, 4, 5, 6, and 7 orders of magnitude of improvement over
the best competitor, respectively.)

Dataset 𝜖
𝑘 = 7 𝑘 = 11 𝑘 = 15 𝑘 = 19 𝑘 = 23

KClist++ SCTL KCCA KClist++ SCTL KCCA KClist++ SCTL KCCA KClist++ SCTL KCCA KClist++ SCTL KCCA

bio-SC-GT

1 9.6 25.6 0.3 3,532 5,581 0.3 343,856 609,173 0.2 — — 0.2 — — 0.2
0.1 25.6 68.2 0.3 14,343 47,061 0.3 — — 0.2 — — 0.2 — — 0.2
0.05 57.8 50.4 0.4 27,571 126,072 0.3 — — 0.2 — — 0.2 — — 0.2
0.01 185.6 198.2 1.3 190,755 544,825 1.2 — — 0.7 — — 0.6 — — 0.6

econ-beacxc

1 2,690 11,572 34 — — 51.6 — — 51.5 — — 43.1 — — 51.3
0.1 2,690 11,572 34 — — 51.6 — — 51.5 — — 43.1 — — 51.3
0.05 2,690 11,572 34 — — 51.6 — — 51.5 — — 43.1 — — 51.3
0.01 2,690 356,885 172 — — 246.1 — — 239.5 — — 235.2 — — 238.5

WikiTalk

1 5.3 2.4 1.4 133 34 1.4 362 47 1.3 70 4.3 0.7 3.6 0.3 0.2
0.1 5.3 6.6 1.4 133 117 1.4 1,001 164 1.8 225 7.4 1.3 12.5 0.5 0.3
0.05 5.3 11.7 1.4 227 244 1.4 1,532 245 2.6 361 13.2 2.1 21.1 0.6 0.5
0.01 10.5 81.5 4.7 604 992 4.9 4,292 835 7.3 1,114 89.8 7.2 66.5 1.3 0.9

Slashdot

1 4.3 3.0 0.4 161.8 26.7 0.4 453 64.3 0.3 126.3 6.2 0.2 3.4 0.8 0.1
0.1 4.3 4.5 0.4 161.8 49.8 0.4 453 124.6 0.3 126.2 10.9 0.3 6.3 0.8 0.1
0.05 4.3 7.4 0.7 161.8 95.3 0.4 788 245.5 0.6 249.8 20.2 0.6 10.6 1.0 0.2
0.01 8.3 45.0 2.1 566.2 369.6 2.0 2,344 846.4 1.8 652.6 72.6 3.2 30.7 1.5 0.6

loc-gowalla

1 2.2 2.4 1.4 7.1 4.6 1.1 14.0 7.4 0.8 9.5 2.4 0.6 1.6 0.4 0.4
0.1 2.2 9.1 2.2 7.1 4.6 1.1 14.0 7.4 0.8 9.5 2.4 0.6 1.6 0.4 0.4
0.05 4.1 9.0 3.0 7.1 12.7 1.1 14.0 14.0 0.9 9.5 7.8 0.6 1.6 0.5 0.4
0.01 11.6 29.0 7.4 13.8 44.0 4.2 27.8 105.5 1.2 18.6 29.1 0.7 4.7 1.1 0.5

DBLP

1 444 7,556 0.4 — — 0.3 — — 0.2 — — 0.1 — — 0.1
0.1 444 28,092 0.6 — — 0.3 — — 0.2 — — 0.1 — — 0.1
0.05 444 53,200 0.7 — — 0.3 — — 0.2 — — 0.1 — — 0.1
0.01 444 53,200 0.7 — — 0.3 — — 0.2 — — 0.1 — — 0.1

web-Google

1 15.2 9.3 3.9 608 2,197 2.2 28,457 56,255 1.3 300,165 269,466 0.6 691,236 531,339 0.4
0.1 28.4 73.8 5.5 608 8,306 2.2 28,457 56,255 1.3 300,165 269,466 0.6 691,236 531,339 0.4
0.05 82.2 141.0 8.5 608 8,306 2.2 28,457 56,255 1.3 300,165 269,466 0.6 691,236 531,339 0.4
0.01 82.2 283.9 12.8 1,209 16,162 2.6 55,654 185,611 1.3 539,244 — 0.6 — — 0.4

zhishi-baidu

1 — — 239.4 — — 210.8 — — 165.7 — — 128.2 — — 140.4
0.1 — — 307.5 — — 210.8 — — 165.7 — — 150.1 — — 168.8
0.05 — — 307.5 — — 210.8 — — 165.7 — — 150.1 — — 168.8
0.01 — — 378.1 — — 476.7 — — 443.6 — — 348.1 — — 423.9

ew-2013

1 624 796 606 11,053 5,004 583 143,428 90,743 491 593,939 275,731 467 614,511 132,808 356
0.1 1,327 1,554 815 32,815 17,592 702 485,016 355,844 548 — 976,036 552 — 1,047,641 424
0.05 2,221 2,333 1,015 54,955 34,398 702 788,963 355,845 696 — — 634 — — 483
0.01 3,827 6,523 3,525 179,164 137,710 1,598 — — 1,211 — — 991 — — 483

because real-world biological and economic datasets often contain a vast number of 𝑘-cliques, as

shown in Figure 2. Besides, we present the number of iterations w.r.t 𝜖 on three datasets with 𝑘

= 11 in Figure 9. We can observe that the empirical number of iterations required for these three

algorithms shows comparable results (more details results are in our technical report [50]).

3. Effect of clique numbers. We investigate the effect of the number of cliques on algorithms’

performance. Specifically, we vary 𝑘 from 5 to 13 with 𝑇=10, and report the speedup of KCCA over

the better one from SCTL or KClist++ across seven datasets in Figure 8. We omit the results when

the number of cliques is larger than 10
13
, since SCTL or KClist++ cannot finish 10 iterations within

Proc. ACM Manag. Data, Vol. 2, No. 3 (SIGMOD), Article 119. Publication date: June 2024.

A Counting-based Approach for Efficient 𝑘-Clique Densest Subgraph Discovery 119:21

two weeks. We observe that as the number of 𝑘-cliques increases, KCCA yields larger improvements,

since it does not rely on clique enumeration, and its time complexity is independent of the number

of 𝑘-cliques as shown in Table 1.

4. Actual approximation ratio. In Table 6, we report the actual approximation ratios of the

approximation solutions returned by each algorithm on WikiTalk and loc-gowalla, where the

numbers of iterations are set to 10. We observe that both KClist++ and kCCA yield near-optimal

approximations, and they outperform CoreApp and SCTL in terms of accuracy. Hence, CoreApp
performs worse than KCCA in terms of both efficiency and accuracy.

KClist++ SCTL KCCA

1 0.1 0.050.01
10

0

10
1

10
2

𝜖

(a) bio-SC-GT

1 0.1 0.050.01
10

0

10
1

10
2

𝜖

(b) WikiTalk

1 0.1 0.050.01
10

0

10
1

𝜖

(c) Slashdot

1 0.1 0.050.01
10

0

10
1

𝜖

(d) loc-gowalla

1 0.1 0.050.01
10

0

10
1

𝜖

(e) web-Google

Fig. 9. The number of iterations w.r.t 𝜖 .

6.3 Detailed analysis of KCCA
We perform an in-depth evaluation and analysis of KCCA.

20% 40% 60% 80%100%
10
−1
10

0

10
1

10
2

10
3

10
4

percentage

ti
m
e
(s
)

KCCA

50

100

th
e
va

lu
e
of
𝛿

the value of 𝛿

(a) as-skitter

20% 40% 60% 80%100%
10

0

10
1

10
2

10
3

10
4

percentage

KCCA

50

100

150

200the value of 𝛿

(b) Wikipedia-link

20% 40% 60% 80%100%
10
−1
10

0

10
1

10
2

10
3

10
4

percentage

KCCA

100

200

300

400
the value of 𝛿

(c) zhishi-baidu

20% 40% 60% 80%100%
10

0

10
1

10
2

10
3

10
4

percentage

KCCA

50

100

150

200the value of 𝛿

(d) ew-2013

Fig. 10. Scalability test for KCCA algorithm.

1. Time cost of different steps in KCCA. Recall that KCCA sequentially performs the following

three steps: (1) reducing the original graph to (𝑘 − 1)-core (coreReduce), (2) building the SCT

(buildTree), (3) updating vertex weights with 𝑇 iterations via SCT updateIter. Figure 11 shows
the time cost of these three steps on ten datasets, where 𝑘 = 15,𝑇 = 10, and the graphs are assumed

to be loaded into memory. Note that all results reported in our paper include the time of the above

three components. We see that buildTree is the most computationally expensive step on the large

graphs. For example, the time cost of buildTree on ew-2013 and Friendster datasets is significantly

larger than that on other datasets. Besides, on the other datasets, we observe that the third step

accounts for a relatively large portion of the total time during the execution of KCCA.
2. The impact of degeneracy on algorithm performance. In this experiment, we we evaluate

the effect 𝛿 of the graph on the performance of our proposed algorithm (KCCA) with 𝑘 = 7 and 𝑇 =

10. Specifically, for each graph, we first randomly select 20%, 40%, 60%, 80%, and 100% of its vertices

and then obtain five sub-graphs induced by these vertices, respectively. Afterwards, we run KCCA
on these sub-graphs, and report both the average efficiency results and the values of 𝛿 for each

sub-graph. The result is given in Figure 10. We observe that the running time of KCCA on all datasets

is proportional to the value of 𝛿 , which is aligned with our previous complexity analysis in Table 1.

Proc. ACM Manag. Data, Vol. 2, No. 3 (SIGMOD), Article 119. Publication date: June 2024.

119:22 Yingli Zhou, Qingshuo Guo, Yixiang Fang, and Chenhao Ma

0 20 40 60 80 100

bio-SC-GT

econ-beacxc

Slashdot

loc-gowalla

DBLP

web-Google

as-skitter

zhishi-baidu

ew-2013

Friendster

Time proportion (%)
coreReduce buildTree updateIter

Fig. 11. Proportion of time cost of each step in KCCA.

3. Ablation study of weight update strategies and orderings. In this experiment, we evaluate

the effect of two key optimization techniques: weight update strategies and orderings. We develop

six different algorithms with different update strategies and orderings to compare the variants

between KCCA-Basic and KCCA. The detailed descriptions of the different variants are shown in

Table 8. We then run these six algorithms on four datasets with 𝑇=10, report the approximation

ratios in Table 9, and present the efficiency results on four datasets in Figure 12.

Table 8. Descriptions of the different variants.

Name Update Order Update Strategy

KCCA-Basic (KB) Random Sequential

KCCA-BP (KBP) Depth Sequential

KCCA-BG (KBG) Degeneracy Sequential

KCCA-RA (KRA) Random Simultaneous

KCCA-DP (KDP) Depth Simultaneous

KCCA Degeneracy Simultaneous

KB KBP KBG KRA KDP KCCA

5 7 9 11 13

0.6

0.8

1

𝑘

ti
m
e
(s
)

(a) bio-SC-GT

5 7 9 11 13

1

2

3

𝑘

ti
m
e
(s
)

(b) WikiTalk

5 7 9 11 13

1

2

3

𝑘

ti
m
e
(s
)

(c) loc-gowalla

5 7 9 11 13
0

2

4

𝑘

ti
m
e
(s
)

(d) web-Stanford

Fig. 12. Efficiency comparison of variants algorithms.

Proc. ACM Manag. Data, Vol. 2, No. 3 (SIGMOD), Article 119. Publication date: June 2024.

A Counting-based Approach for Efficient 𝑘-Clique Densest Subgraph Discovery 119:23

Table 9. Comparison of actual approximation ratios (Red denotes the best result, and Green denotes the best
result excluding KCCA).

Dataset 𝑘
KB KBP KBG KRA KDP KCCA

1 + 𝜖 1 + 𝜖 1+ 𝜖 1 + 𝜖 1 + 𝜖 1 + 𝜖

bio-SC-GT

5 1.139 1.139 1.139 1.037 1.058 1.018
7 1.183 1.183 1.183 1.011 1.043 1.011
9 1.218 1.218 1.218 1.074 1.047 1.006
11 1.278 1.278 1.278 1.076 1.018 1.009
13 1.365 1.365 1.365 1.084 1.061 1.022

WikiTalk

5 1.192 1.192 1.192 1.061 1.078 1.006
7 1.295 1.295 1.295 1.052 1.067 1.007
9 1.345 1.345 1.345 1.040 1.051 1.007
11 1.478 1.478 1.478 1.042 1.026 1.006
13 1.466 1.466 1.466 1.021 1.052 1.009

loc-gowalla

5 1.395 1.395 1.395 1.072 1.056 1.024
7 1.838 1.838 1.838 1.059 1.058 1.016
9 1.497 1.497 1.497 1.011 1.016 1.007
11 1.103 1.103 1.103 1.017 1.021 1.006
13 1.081 1.081 1.081 1.017 1.021 1.006

web-Stanford

7 1.944 1.944 1.944 1.121 1.102 1.032
9 2.195 2.195 2.195 1.138 1.122 1.040
11 2.540 2.540 2.540 1.148 1.126 1.049
13 3.051 3.051 3.051 1.328 1.188 1.041
15 3.305 3.305 3.305 1.219 1.154 1.056

We make the following observations and analysis: (1) The running time of all six algorithms

is almost the same, but the approximation ratios of the results of these six algorithms differ

significantly. (2) The different update orderings under the sequential weight update strategy give

the same result, as the vertex weight changes (i.e., sum across all 𝑘-cliques containing it) are the

same w.r.t. different orders, as shown in the first three columns of the table. (3) Those algorithms

that use the simultaneous weight update strategy consistently achieve lower approximation ratios

than algorithms with the sequential weight update strategy, regardless of the update order. This

result implies that the simultaneous weight update strategy indeed plays a crucial role in reducing

the number of iterations. (4) For the later three algorithms, the random order and depth order result

in comparable performance, but the degeneracy order is much better than them. Thus, we adopt

the degeneracy order in our algorithms. Besides, we can infer from the results that if we want all

algorithms to achieve the same empirical approximation ratios, the algorithms that perform worse

in Table 9 need more iterations and time cost.

7 RELATEDWORKS
This section reviews the existing works of edge-density-based densest subgraph problem and

𝑘-clique densest subgraph problem. Other variants of the densest subgraph problem are also

discussed.

• Edge-density-based densest subgraph (EDS). EDS aims to find the subgraph with the

maximum average degree [2, 4–9, 21, 29, 30, 39, 55, 58]. This problem can be addressed by solving

a parametric maximum-flow problem [29], which establishes a framework for conducting a binary

search on the maximum density and using a flow network as a verification tool for EDS. In general,

exact EDS solutions are suitable for small graphs, but their performance declines for larger graphs.

Proc. ACM Manag. Data, Vol. 2, No. 3 (SIGMOD), Article 119. Publication date: June 2024.

119:24 Yingli Zhou, Qingshuo Guo, Yixiang Fang, and Chenhao Ma

Consequently, researchers have turned to approximation algorithms [6, 11, 23, 37] to enhance

efficiency. The peeling algorithm for 𝑘-core decomposition runs in linear time and provides a

2-approximation [11]. In addition, the EDS problem can be formulated as a convex programming

and solved by the Frank-Wolfe algorithm [19, 30, 33, 56].

• 𝑘-clique densest subgraph (CDS). The CDS problem is proposed to better detect “near-clique”

subgraphs [22, 23, 31, 42, 47, 60]. Notably, when 𝑘 = 2, this problem reduces to the well-known EDS

problem. The maximum-flow based algorithm is extended to solve this problem [23, 47, 60]. Fang

et al. [23] proposed a cohesive subgraph model (ℎ, 𝑘-clique)-core for graph reduction, where (ℎ,

𝑘-clique)-core is the maximal subgraph in which each vertex is contained by at least ℎ 𝑘-cliques

in the subgraph. Besides, they prove that the (ℎ𝑚𝑎𝑥 , 𝑘-clique)-core is a 𝑘-approximation of the

CDS, where ℎ𝑚𝑎𝑥 is the largest ℎ such that the (ℎ, 𝑘-clique)-core exists. In addition, the convex

programming based algorithms [31, 56] have been studied, which are extensively reviewed in

Section 3.

• Other variants of the densest subgraph problem.Many variants of EDS have been studied

[3, 17, 24, 44, 49, 55, 65]. The densest 𝑘-subgraph problem (DkS) aims to maximize the number of

edges in a subgraph with 𝑘 vertices, which is NP-hard [24]. Another version of EDS called optimal

quasi-clique [61], extracts a subgraph, which is more compact, with a smaller diameter than the

EDS. Again, this variant is NP-hard [62]. To identify locally dense regions, Qin et al.[49] proposed

the top-𝑘 locally densest subgraphs problem, and Ma et al. [44] proposed a convex programming

solution based on density-friendly graph decomposition [19]. In addition, [64] studies the 𝑃-mean

densest subgraph problem and proposes a generalized peeling algorithm. To personalize search

results, the anchored densest subgraph problem [17] aims to maximize 𝑅-subgraph density of the

subgraphs containing an anchored node set. Besides, the directed densest subgraph problem is also

well studied [43, 45, 46]. Recently, the fair densest subgraph problem and diverse densest subgraph

problems [1, 48] have been explored to achieve equitable outcomes and overcome algorithmic bias.

8 CONCLUSIONS
In this paper, we investigate the problem of efficient 𝑘-clique densest subgraph (CDS) discovery.

The existing CDS algorithms, either 𝑘-core or convex programming based solutions, often need to

enumerate almost all the 𝑘-cliques, which is very inefficient because real-world graphs usually have

a vast number of 𝑘-cliques. To improve the efficiency, we first propose a novel framework based on

the Frank-Wolfe algorithm, which only needs 𝑘-clique counting, rather than 𝑘-clique enumeration,

where the former one is often much faster than the latter one. Based on the framework, we develop

an efficient approximation algorithm, by employing the state-of-the-art 𝑘-clique counting algorithm

and proposing several optimization techniques. Our experimental results on 14 real-world large

graphs show that our proposed algorithm is effective and efficient for the CDS problem and achieves

up to seven orders of magnitude faster than the state-of-the-art algorithm. In the future, we will

design distributed algorithms for the CDS problem to handle extremely large graphs that cannot be

kept by a single machine.

Acknowledgements. This work was supported in part by NSFC under Grants 62102341, and

62302421, Guangdong Talent Program under Grant 2021QN02X826, Shenzhen Science and Tech-

nology Program under Grants JCYJ20220530143602006 and ZDSYS 20211021111415025, and Basic

and Applied Basic Research Fund in Guangdong Province under Grant 2023A1515011280. This

paper was also supported by Shenzhen Stability Science Program and Guangdong Key Lab of

Mathematical Foundations for Artificial Intelligence. We would like to thank Dr. Shweta Jain for

her excellent 𝑘-clique counting algorithm, which inspired our work.

Proc. ACM Manag. Data, Vol. 2, No. 3 (SIGMOD), Article 119. Publication date: June 2024.

A Counting-based Approach for Efficient 𝑘-Clique Densest Subgraph Discovery 119:25

REFERENCES
[1] Aris Anagnostopoulos, Luca Becchetti, Adriano Fazzone, Cristina Menghini, and Chris Schwiegelshohn. 2020. Spectral

relaxations and fair densest subgraphs. In Proceedings of the 29th ACM International Conference on Information &
Knowledge Management. 35–44.

[2] Venkat Anantharam and Justin Salez. 2016. The densest subgraph problem in sparse random graphs. (2016).

[3] Reid Andersen and Kumar Chellapilla. 2009. Finding dense subgraphs with size bounds. In International workshop on
algorithms and models for the web-graph. Springer, 25–37.

[4] Albert Angel, Nick Koudas, Nikos Sarkas, Divesh Srivastava, Michael Svendsen, and Srikanta Tirthapura. 2014. Dense

subgraph maintenance under streaming edge weight updates for real-time story identification. The VLDB journal 23
(2014), 175–199.

[5] Yuichi Asahiro, Refael Hassin, and Kazuo Iwama. 2002. Complexity of finding dense subgraphs. Discrete Applied
Mathematics 121, 1-3 (2002), 15–26.

[6] Bahman Bahmani, Ravi Kumar, and Sergei Vassilvitskii. 2012. Densest subgraph in streaming and mapreduce. arXiv
preprint arXiv:1201.6567 (2012).

[7] Oana Denisa Balalau, Francesco Bonchi, TH Hubert Chan, Francesco Gullo, and Mauro Sozio. 2015. Finding subgraphs

with maximum total density and limited overlap. In Proceedings of the Eighth ACM International Conference on Web
Search and Data Mining. 379–388.

[8] Sayan Bhattacharya, Monika Henzinger, Danupon Nanongkai, and Charalampos Tsourakakis. 2015. Space-and time-

efficient algorithm for maintaining dense subgraphs on one-pass dynamic streams. In Proceedings of the forty-seventh
annual ACM symposium on Theory of computing. 173–182.

[9] Digvijay Boob, Yu Gao, Richard Peng, Saurabh Sawlani, Charalampos Tsourakakis, Di Wang, and Junxing Wang.

2020. Flowless: Extracting densest subgraphs without flow computations. In Proceedings of The Web Conference 2020.
573–583.

[10] Richard L. Burden and J. Douglas Faires. 2010. Numerical Analysis (9 ed.). Brooks/Cole, Cengage Learning.
[11] Moses Charikar. 2000. Greedy approximation algorithms for finding dense components in a graph. In International

workshop on approximation algorithms for combinatorial optimization. Springer, 84–95.
[12] Jie Chen and Yousef Saad. 2010. Dense subgraph extraction with application to community detection. IEEE Transactions

on knowledge and data engineering 24, 7 (2010), 1216–1230.

[13] Tianyi Chen and Charalampos Tsourakakis. 2022. Antibenford subgraphs: Unsupervised anomaly detection in financial

networks. In Proceedings of the 28th ACM SIGKDD Conference on Knowledge Discovery and Data Mining. 2762–2770.
[14] Norishige Chiba and Takao Nishizeki. 1985. Arboricity and subgraph listing algorithms. SIAM Journal on computing

14, 1 (1985), 210–223.

[15] Edith Cohen, Eran Halperin, Haim Kaplan, and Uri Zwick. 2003. Reachability and distance queries via 2-hop labels.

SIAM J. Comput. 32, 5 (2003), 1338–1355.
[16] Guangyu Cui, Yu Chen, De-Shuang Huang, and Kyungsook Han. 2008. An algorithm for finding functional modules

and protein complexes in protein-protein interaction networks. Journal of Biomedicine and Biotechnology 2008 (2008).

[17] Yizhou Dai, Miao Qiao, and Lijun Chang. 2022. Anchored densest subgraph. In Proceedings of the 2022 International
Conference on Management of Data. 1200–1213.

[18] Maximilien Danisch, Oana Balalau, and Mauro Sozio. 2018. Listing k-cliques in sparse real-world graphs. In Proceedings
of the 2018 World Wide Web Conference. 589–598.

[19] Maximilien Danisch, T-H Hubert Chan, and Mauro Sozio. 2017. Large scale density-friendly graph decomposition via

convex programming. In Proceedings of the 26th International Conference on World Wide Web. 233–242.
[20] Xiaoxi Du, Ruoming Jin, Liang Ding, Victor E Lee, and John H Thornton Jr. 2009. Migration motif: a spatial-temporal

pattern mining approach for financial markets. In Proceedings of the 15th ACM SIGKDD international conference on
knowledge discovery and data mining. 1135–1144.

[21] Alessandro Epasto, Silvio Lattanzi, and Mauro Sozio. 2015. Efficient densest subgraph computation in evolving graphs.

In Proceedings of the 24th international conference on world wide web. 300–310.
[22] Yixiang Fang, Wensheng Luo, and Chenhao Ma. 2022. Densest subgraph discovery on large graphs: Applications,

challenges, and techniques. Proceedings of the VLDB Endowment 15, 12 (2022), 3766–3769.
[23] Yixiang Fang, Kaiqiang Yu, Reynold Cheng, Laks VS Lakshmanan, and Xuemin Lin. 2019. Efficient algorithms for

densest subgraph discovery. Proceedings of the VLDB Endowment 12, 11 (2019), 1719–1732.
[24] Uriel Feige, Michael Seltser, et al. 1997. On the densest k-subgraph problem. Citeseer.

[25] Eugene Fratkin, Brian T Naughton, Douglas L Brutlag, and Serafim Batzoglou. 2006. MotifCut: regulatory motifs

finding with maximum density subgraphs. Bioinformatics 22, 14 (2006), e150–e157.
[26] David Gibson, Ravi Kumar, and Andrew Tomkins. 2005. Discovering large dense subgraphs in massive graphs. In

Proceedings of the 31st international conference on Very large data bases. 721–732.

Proc. ACM Manag. Data, Vol. 2, No. 3 (SIGMOD), Article 119. Publication date: June 2024.

119:26 Yingli Zhou, Qingshuo Guo, Yixiang Fang, and Chenhao Ma

[27] Aristides Gionis, Flavio PP Junqueira, Vincent Leroy, Marco Serafini, and Ingmar Weber. 2013. Piggybacking on social

networks. In VLDB 2013-39th International Conference on Very Large Databases, Vol. 6. 409–420.
[28] Aristides Gionis and Charalampos E Tsourakakis. 2015. Dense subgraph discovery: Kdd 2015 tutorial. In Proceedings of

the 21th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. 2313–2314.
[29] Andrew V Goldberg. 1984. Finding a maximum density subgraph. (1984).

[30] Elfarouk Harb, Kent Quanrud, and Chandra Chekuri. 2022. Faster and scalable algorithms for densest subgraph and

decomposition. Advances in Neural Information Processing Systems 35 (2022), 26966–26979.
[31] Yizhang He, Kai Wang, Wenjie Zhang, Xuemin Lin, and Ying Zhang. 2023. Scaling Up k-Clique Densest Subgraph

Detection. Proceedings of the ACM on Management of Data 1, 1 (2023), 1–26.
[32] Haiyan Hu, Xifeng Yan, Yu Huang, Jiawei Han, and Xianghong Jasmine Zhou. 2005. Mining coherent dense subgraphs

across massive biological networks for functional discovery. Bioinformatics 21, suppl_1 (2005), i213–i221.
[33] Martin Jaggi. 2013. Revisiting Frank-Wolfe: Projection-free sparse convex optimization. In International conference on

machine learning. PMLR, 427–435.

[34] Shweta Jain and C Seshadhri. 2020. The power of pivoting for exact clique counting. In Proceedings of the 13th
International Conference on Web Search and Data Mining. 268–276.

[35] Shweta Jain and C Seshadhri. 2020. Provably and efficiently approximating near-cliques using the Turán shadow:

PEANUTS. In Proceedings of The Web Conference 2020. 1966–1976.
[36] Ruoming Jin, Yang Xiang, Ning Ruan, and David Fuhry. 2009. 3-hop: a high-compression indexing scheme for

reachability query. In Proceedings of the 2009 ACM SIGMOD International Conference on Management of data. 813–826.
[37] Samir Khuller and Barna Saha. 2009. On finding dense subgraphs. In International colloquium on automata, languages,

and programming. Springer, 597–608.
[38] Tommaso Lanciano, Atsushi Miyauchi, Adriano Fazzone, and Francesco Bonchi. 2023. A survey on the densest

subgraph problem and its variants. arXiv preprint arXiv:2303.14467 (2023).

[39] Victor E Lee, Ning Ruan, Ruoming Jin, and Charu Aggarwal. 2010. A survey of algorithms for dense subgraph discovery.

Managing and mining graph data (2010), 303–336.
[40] Qing Liu, Xuliang Zhu, XinHuang, and Jianliang Xu. 2021. Local algorithms for distance-generalized core decomposition

over large dynamic graphs. Proceedings of the VLDB Endowment 14, 9 (2021), 1531–1543.
[41] Linyuan Lü, Tao Zhou, Qian-Ming Zhang, and H Eugene Stanley. 2016. The H-index of a network node and its relation

to degree and coreness. Nature communications 7, 1 (2016), 10168.
[42] Wensheng Luo, Chenhao Ma, Yixiang Fang, and Laks VS Lakshman. 2023. A Survey of Densest Subgraph Discovery

on Large Graphs. arXiv preprint arXiv:2306.07927 (2023).

[43] Wensheng Luo, Zhuo Tang, Yixiang Fang, Chenhao Ma, and Xu Zhou. 2023. Scalable algorithms for densest subgraph

discovery. In 2023 IEEE 39th International Conference on Data Engineering (ICDE). IEEE, 287–300.
[44] Chenhao Ma, Reynold Cheng, Laks VS Lakshmanan, and Xiaolin Han. 2022. Finding locally densest subgraphs: a

convex programming approach. Proceedings of the VLDB Endowment 15, 11 (2022), 2719–2732.
[45] Chenhao Ma, Yixiang Fang, Reynold Cheng, Laks VS Lakshmanan, and Xiaolin Han. 2022. A convex-programming

approach for efficient directed densest subgraph discovery. In Proceedings of the 2022 International Conference on
Management of Data. 845–859.

[46] Chenhao Ma, Yixiang Fang, Reynold Cheng, Laks VS Lakshmanan, Wenjie Zhang, and Xuemin Lin. 2020. Efficient algo-

rithms for densest subgraph discovery on large directed graphs. In Proceedings of the 2020 ACM SIGMOD International
Conference on Management of Data. 1051–1066.

[47] Michael Mitzenmacher, Jakub Pachocki, Richard Peng, Charalampos Tsourakakis, and Shen Chen Xu. 2015. Scalable

large near-clique detection in large-scale networks via sampling. In Proceedings of the 21th ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining. 815–824.

[48] Atsushi Miyauchi, Tianyi Chen, Konstantinos Sotiropoulos, and Charalampos E Tsourakakis. 2023. Densest Diverse

Subgraphs: How to Plan a Successful Cocktail Party with Diversity. In Proceedings of the 29th ACM SIGKDD Conference
on Knowledge Discovery & Data Mining. 1710–1721.

[49] Lu Qin, Rong-Hua Li, Lijun Chang, and Chengqi Zhang. 2015. Locally densest subgraph discovery. In Proceedings of
the 21th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. 965–974.

[50] The Technique Report. 2023. A Counting-based Approach for Efficient 𝑘-Clique Densest Subgraph Discovery (technical

report). https://drive.google.com/file/d/1-9bDgjiQuIDKnUOWy16JU-iaX-reQNTc/view?usp=sharing.

[51] Yousef Saad. 2003. Iterative methods for sparse linear systems. SIAM.

[52] Barna Saha, AllisonHoch, Samir Khuller, Louiqa Raschid, and Xiao-Ning Zhang. 2010. Dense subgraphswith restrictions

and applications to gene annotation graphs. In Research in Computational Molecular Biology: 14th Annual International
Conference, RECOMB 2010, Lisbon, Portugal, April 25-28, 2010. Proceedings 14. Springer, 456–472.

[53] Raman Samusevich, Maximilien Danisch, and Mauro Sozio. 2016. Local triangle-densest subgraphs. In 2016 IEEE/ACM
International Conference on Advances in Social Networks Analysis and Mining (ASONAM). IEEE, 33–40.

Proc. ACM Manag. Data, Vol. 2, No. 3 (SIGMOD), Article 119. Publication date: June 2024.

https://drive.google.com/file/d/1-9bDgjiQuIDKnUOWy16JU-iaX-reQNTc/view?usp=sharing

A Counting-based Approach for Efficient 𝑘-Clique Densest Subgraph Discovery 119:27

[54] Ahmet Erdem Sariyüce, C Seshadhri, and Ali Pinar. 2018. Local algorithms for hierarchical dense subgraph discovery.

Proceedings of the VLDB Endowment 12, 1 (2018), 43–56.
[55] Saurabh Sawlani and Junxing Wang. 2020. Near-optimal fully dynamic densest subgraph. In Proceedings of the 52nd

Annual ACM SIGACT Symposium on Theory of Computing. 181–193.
[56] Bintao Sun, Maximilien Danisch, TH Hubert Chan, and Mauro Sozio. 2020. Kclist++: A simple algorithm for finding

k-clique densest subgraphs in large graphs. Proceedings of the VLDB Endowment (PVLDB) (2020).
[57] Brian K Tanner, Gary Warner, Henry Stern, and Scott Olechowski. 2010. Koobface: The evolution of the social botnet.

In 2010 eCrime Researchers Summit. IEEE, 1–10.
[58] Nikolaj Tatti and Aristides Gionis. 2015. Density-friendly graph decomposition. In Proceedings of the 24th International

Conference on World Wide Web. 1089–1099.
[59] Etsuji Tomita, Akira Tanaka, and Haruhisa Takahashi. 2006. The worst-case time complexity for generating all maximal

cliques and computational experiments. Theoretical computer science 363, 1 (2006), 28–42.
[60] Charalampos Tsourakakis. 2015. The k-clique densest subgraph problem. In Proceedings of the 24th international

conference on world wide web. 1122–1132.
[61] Charalampos Tsourakakis, Francesco Bonchi, Aristides Gionis, Francesco Gullo, and Maria Tsiarli. 2013. Denser than

the densest subgraph: extracting optimal quasi-cliques with quality guarantees. In Proceedings of the 19th ACM SIGKDD
international conference on Knowledge discovery and data mining. 104–112.

[62] Charalampos E Tsourakakis. 2014. Mathematical and algorithmic analysis of network and biological data. arXiv
preprint arXiv:1407.0375 (2014).

[63] Charalampos E Tsourakakis. 2014. A novel approach to finding near-cliques: The triangle-densest subgraph problem.

arXiv preprint arXiv:1405.1477 (2014).

[64] Nate Veldt, Austin R Benson, and Jon Kleinberg. 2021. The generalized mean densest subgraph problem. In Proceedings
of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining. 1604–1614.

[65] Yichen Xu, Chenhao Ma, Yixiang Fang, and Zhifeng Bao. 2023. Efficient and Effective Algorithms for Generalized

Densest Subgraph Discovery. Proceedings of the ACM on Management of Data 1, 2 (2023), 1–27.
[66] Kaiqiang Yu and Cheng Long. 2021. Graph Mining Meets Fake News Detection. In Data Science for Fake News: Surveys

and Perspectives. Springer, 169–189.
[67] Yang Zhang and Srinivasan Parthasarathy. 2012. Extracting analyzing and visualizing triangle k-core motifs within

networks. In 2012 IEEE 28th international conference on data engineering. IEEE, 1049–1060.
[68] Feng Zhao and Anthony KH Tung. 2012. Large scale cohesive subgraphs discovery for social network visual analysis.

Proceedings of the VLDB Endowment 6, 2 (2012), 85–96.

Received October 2023; revised January 2024; accepted February 2024

Proc. ACM Manag. Data, Vol. 2, No. 3 (SIGMOD), Article 119. Publication date: June 2024.

	Abstract
	1 Introduction
	2 Preliminaries
	2.1 Problem definition
	2.2 The CP formulations of CDS problem

	3 Two state-of-the-art algorithms
	3.1 The KClist++ algorithm
	3.2 The SCTL algorithm

	4 A Counting-Based CDS Framework
	5 Our KCCA algorithm
	5.1 A basic algorithm based on PIVOTER
	5.2 Our optimized algorithm KCCA
	5.3 Limitations

	6 Experiments
	6.1 Setup
	6.2 Comparison with existing CDS algorithms
	6.3 Detailed analysis of KCCA

	7 Related works
	8 Conclusions
	References

