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In many real-world applications, the relationships between entities can be modeled as temporal graphs, where

each edge is associated with a timestamp representing the interaction time. As a fundamental problem in

network science, the connected component (CC) query has received tremendous research attention. Existing

works on CC queries in the temporal graph find sets of vertices that are either connected in every timestamp

of a time interval, or connected by paths with edges of increasing timestamps. However, these temporal

constraints are too strict for applications without needing time-respecting paths. In this paper, we relax the

above constraints by introducing a novel CC model, called window-CC, for both the undirected and directed

temporal graphs in a given time window. We first propose online algorithms to query the window-CC and

further develop efficient index-based query algorithms. Experimental results on real large undirected and

directed temporal graphs show that our best index-based query algorithms are up to three and two orders of

magnitude faster than the two online algorithms, respectively. Moreover, compared to the baseline indices,

our optimized indices cost much less space in both theory and practice.
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1 INTRODUCTION
In many real-world applications, the relationships between entities can be modeled as temporal

graphs, where each edge is associated with a timestamp representing the interaction time. Research

on temporal graphs has recently attracted much attention from both industry and research commu-

nities [29, 52, 59]. Figure 1 presents examples of undirected and directed temporal graphs, where
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Fig. 1. Two example temporal graphs.

the numbers on the edges denote the occurring time of the edges. For example, in Figure 1(a), the

edge between vertices 𝑣1 and 𝑣2 denotes that they have an interaction (e.g., 𝑣1 and 𝑣2 confirms a

transaction) at timestamp 0; in Figure 1(b), the edge between vertices 𝑣2 and 𝑣3 denotes that they

have an interaction (e.g., 𝑣2 sends a message to 𝑣3) at timestamp 1.

In this paper, we study the problem of connected component (CC) query on temporal graphs,

and the general goal is to find all the CCs in a query time window from a temporal graph. As

a fundamental structure in the graph, the CC is a maximal set of vertices such that each pair

of vertices is mutually reachable in the graph. It has found various real applications, such as

community detection [14, 33], PPI network analysis [9, 18], and network routing protocols [2, 27].

Most of the existing works about CC focus on conventional static graphs, including distributed BFS

search [4] and distributed Union-Find algorithms [11, 39], but they cannot be applied to temporal

graphs due to the temporal edges. Recently, some works have attempted to study the CC query on

temporal graphs. For example, Vernet et al. [51] proposed the persistent CC model for temporal

graphs, which is a set of vertices that are connected in every timestamp of a time window. Bhadra

and Ferreira [6, 7] introduced the temporal CC model, which is a set of vertices such that each pair

of vertices is connected by a path with edges of increasing timestamps. However, these temporal

constraints are too strict for applications without time-respecting paths.

To tackle the issues of existing works, we relax the temporal constraints by introducing a novel

CC model, called window-CC, for both the undirected and directed temporal graphs in a time

window [𝑡𝑠 , 𝑡𝑒 ]. Specifically, given a temporal graph𝐺 and a time window [𝑡𝑠 , 𝑡𝑒 ], we first introduce
the concept of the projected graph, which is a static graph formed by edges in 𝐺 with timestamps

in [𝑡𝑠 , 𝑡𝑒 ]. We then formulate the window-CC of the undirected temporal graph as a set of vertices

that are mutually reachable by undirected paths in the projected graph. The window-CC can also

be extended as window-SCC for the directed temporal graph, which is a set of vertices that are

mutually reachable by directed paths in the projected graph. Based on the concepts above, we

propose the window-CC and window-SCC queries, which aim to find all the window-CCs and

window-SCCs from the undirected and directed temporal graphs, respectively.

Applications. The window-CC and window-SCC queries can be used in many real applications.

Here we just name a few:

• Infectious disease tracking. To track the transmission of infectious diseases (e.g., transmission

of Covid-19
1
), researchers often model the interactions between people as an undirected temporal

graph, where each vertex denotes a person and each temporal edge between two vertices means

they have an interaction (e.g., handshake) at a specific timestamp. The window-CCs of the graphs

can be used to reveal the possible infected people. For example, if a patient is tested positive for

Covid-19 at timestamp 𝑡 , then all the people within the patient’s window-CC of time window

1
https://www.cdc.gov/coronavirus/2019-ncov/php/contact-tracing/contact-tracing-plan/contact-tracing.html
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[𝑡 − 𝑑, 𝑡] have been potentially infected, where 𝑑 is the incubation period of Covid-19 (usually 2

weeks), since they have direct or indirect contacts with the patient. Note that here we mainly

consider the projected graph of the incubation period, but do not need the strict time-respecting

paths since the timestamps of edges may not be accurately collected in practice.

• Active community analysis. In social networks, users are often actively involved in different

communities during different periods, where a community is often an SCC [14, 33]. For instance,

the retweet relationships between Twitter users can be modeled as a directed temporal graph,

where each vertex denotes a user and each temporal edge between two vertices means one

retweets a message of the other at a specific timestamp. By finding the window-SCCs in different

time windows (e.g., different weeks) from the graph, we can track the active communities that

a user participates in. Thus, various recommendation tasks can be performed in different time

periods by using the community-based A/B testing [12], which assigns different treatments (e.g.,

friend invitation or product recommendation) to the user, as widely investigated by LinkedIn

[23] and Alipay [8].

• Network anomaly detection. In E-commerce, the money transfer transactions between users

can be modeled as a temporal graph. Since cycles may reveal anomaly behaviors (e.g., credit card

fraud) [42], the window-CCs/SCCs can be applied to detecting them. Besides, we will show later

that we have used window-SCCs to identify anomaly DBLP data in Section 5.4.

Query time Index space Indexing time

U-online 𝑂 (𝑚 + 𝑛) ∅ ∅
U-baseline 𝑂 (𝑛 log log𝑛) 𝑂 (𝑛 log𝑛 · 𝑡𝑚𝑎𝑥 ) 𝑂 ((𝑚 + 𝑛 log𝑛)𝑡𝑚𝑎𝑥 )
TSF-index 𝑂 (𝑛) 𝑂 (𝑚) 𝑂 (𝑚𝑡𝑚𝑎𝑥 )

Table 1. Solutions for undirected temporal graphs.

Query time Index space Indexing time

D-online 𝑂 (𝑚 + 𝑛) ∅ ∅
D-baseline 𝑂 (𝑛) 𝑂 (𝑛𝑡𝑚𝑎𝑥 ) 𝑂 ((𝑚 + 𝑛)𝑡2𝑚𝑎𝑥 )
RES-index 𝑂 (𝑛) 𝑂 (𝑚) 𝑂 (𝑚𝑡𝑚𝑎𝑥 + 𝑛𝑡2𝑚𝑎𝑥 )

Table 2. Solutions for directed temporal graphs.

Online solutions. The online solutions can be developed using existing algorithms of CC

computation. Specifically, given an undirected temporal graph and a time window [𝑡𝑠 , 𝑡𝑒 ], we
collect all the edges with timestamps in this window. After that, we compute all the CCs from the

graph projected by these edges using a CC computation algorithm (e.g., BFS or DFS). Similarly, for

the directed temporal graph, we can compute all the SCCs using an SCC computation algorithm

(e.g., [19, 47, 49]). However, such online solutions require accessing all the edges in the window, so

the efficiency and scalability are limited, especially when the window is wide.

In this paper, we aim to design index-based solutions for efficient window-CC and window-SCC

queries on large temporal graphs. A naive index is to pre-compute and store the answer for any

time window. Although this approach has high query efficiency, the index itself takes 𝑂 (𝑛𝑡2𝑚𝑎𝑥 )
space cost, where 𝑛 denotes the number of vertices and 𝑡𝑚𝑎𝑥 is the number of distinct time slots in

the graph, making the space overhead render this approach impractical.

Index-based solutions. For the undirected temporal graph, we build an index by compressing

all the CCs in the time windows with the same start time. Specifically, consider a fixed start time 𝑡𝑠 .

Initially, we regard each vertex 𝑣 as a single CC and assign it a label 𝐿(𝑣) indicating the CC that

contains it. Then, we sequentially consider the edges in [𝑡𝑠 , 𝑡𝑚𝑎𝑥 ] in chronological order and merge
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the disjoint CCs connected by each edge. Whenever there is a merge process between two disjoint

CCs, we update the label of vertices in the smaller CC with the label of the larger CC and record

the update time. After the above process, each vertex is associated with a list of ⟨𝑙𝑎𝑏𝑒𝑙, 𝑡𝑖𝑚𝑒⟩ pairs,
which can serve as an index, termed as U-baseline. The index costs 𝑂 (𝑛 log𝑛 · 𝑡𝑚𝑎𝑥 ) space and can

be built in 𝑂 ((𝑚 + 𝑛 log𝑛)𝑡𝑚𝑎𝑥 ) time, where𝑚 is the number of edges.

Although the U-baseline index is better than the naive index, it is still costly in time and space

when 𝑡𝑚𝑎𝑥 is large. We further propose the TSF-index, or temporal spanning forest (TSF) index,

by exploiting the idea that the CCs of an undirected graph can be represented by its spanning

trees. Specifically, we first introduce the concept of TSF, which preserves the spanning trees

of a projected undirected graph by an edge set. We then observe that there are two kinds of

overlapping relationships among the TSFs over different time windows. The first one reveals

the nested relationships of TSFs sharing the same start time, while the second one shows the

overlapping relationships of TSFs for multiple start times. Based on the observation, we design the

TSF-index, whose time and space cost are much less than those of U-baseline index.

For the directed temporal graph, inspired by TSF-index, we develop an index called D-baseline

by building a forest structure for each start time 𝑡𝑠 , where two vertices are in the same tree iff

they are in the same SCC. However, unlike the undirected graph, the SCCs of a directed graph

cannot be derived by a directed spanning tree [20], so we cannot use the directed spanning tree to

represent an SCC. Instead, we propose to create some undirected edges to denote the SCCs. For

each start time 𝑡𝑠 , we run SCC algorithms on the projected graph 𝐺 [𝑡𝑠 ,𝑡 ] for each 𝑡 ∈ [𝑡𝑠 , 𝑡𝑚𝑎𝑥 ] in
chronological order, and create the aforementioned forest structure. Since the forest contains at

most (𝑛 − 1) edges, the index costs 𝑂 (𝑛𝑡𝑚𝑎𝑥 ) space and can be built in 𝑂 ((𝑚 + 𝑛)𝑡2𝑚𝑎𝑥 ) time.

The D-baseline index is still costly in both time and space cost when 𝑡𝑚𝑎𝑥 is large. To alleviate

these issues, we further develop another novel index, called RES-index or reconstruction edge set

(RES) index. The key idea is that for any SCC with 𝑘 vertices in the directed graph, we theoretically

prove that it can be represented by a set of 2(𝑘−1) edges in the original SCC, which is termed as the

reconstruction edge set (RES). Inspired by the two kinds of overlapping relationships among TSFs

above, we further identify two kinds of overlapping relationship among the RES’s over different

time windows. We further develop the RES-index which takes the same space cost as TSF-index.

We would like to remark that there is a trade-off between the online and index-based solutions.

While the index-based solutions need some extra time cost for offline index construction, they

outperform online solutions when the number of queries is large, because their offline processing

time cost could be amortized. The experimental results on real-world temporal graphs show that

our solutions are highly efficient. In particular, the queries based on the TSF-index and RES-index

are up to three and two orders of magnitude faster than the two online algorithms. Besides, these

two indices cost much less space than the baseline indices.

In summary, our principal contributions are as follows.

• We introduce the problems of querying window-CCs and window-SCCs on undirected and

directed temporal graphs, respectively, which have not been studied in the literature yet.

• We propose several index-based solutions to support the efficient queries of window-CCs and

window-SCCs. The space costs of the best indices are linear to the sizes of the graphs.

• Weperform an extensive experimental evaluation on real-world datasets from SNAP and KONECT

[30, 32], demonstrating the high efficiency and effectiveness of the proposed solutions.

Outline. We formulate our research problems and present online algorithms in Section 2. In

Sections 3 and 4, we present the index-based algorithms for undirected and directed temporal

graphs, respectively. We report experimental results in Section 5. We review the related work in

Section 6 and conclude in Section 7.
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2 PRELIMINARIES
We first formally present the window-CC and window-SCC queries in Section 2.1, and then show

their online solutions in Section 2.2.

2.1 Problem definitions
Consider an undirected temporal graph 𝐺 = (𝑉 , 𝐸), where 𝑉 and 𝐸 denote the sets of vertices and

edges, respectively. Let |𝑉 | = 𝑛 and |𝐸 | =𝑚. Each edge 𝑒 ∈ 𝐸 is a triplet (𝑢, 𝑣, 𝑡) with 𝑢 ∈ 𝑉 , 𝑣 ∈ 𝑉
and 𝑡 ∈ N representing the interaction timestamp between 𝑢 and 𝑣 . W.l.o.g., we assume that the

timestamps of edges are consecutive integer values in the range [0, 𝑡𝑚𝑎𝑥 ], implying that𝑚 ≥ 𝑡𝑚𝑎𝑥 .

Definition 1 (projected graph). The projected graph of an undirected temporal graph𝐺 = (𝑉 , 𝐸)
over a time window [𝑡𝑠 , 𝑡𝑒 ] is 𝐺 [𝑡𝑠 ,𝑡𝑒 ]=(𝑉 , 𝐸 [𝑡𝑠 ,𝑡𝑒 ]), where 𝐸 [𝑡𝑠 ,𝑡𝑒 ]={(𝑢, 𝑣) | (𝑢, 𝑣, 𝑡) ∈ 𝐸 ∧ 𝑡 ∈ [𝑡𝑠 , 𝑡𝑒 ]}.

Before formulating the concept of window-CC, we present the definition of span-reachability

[52].

Definition 2 (span-reachability [52]). Given an undirected temporal graph 𝐺 = (𝑉 , 𝐸), two
vertices 𝑢, 𝑣 and a time window [𝑡𝑠 , 𝑡𝑒 ], 𝑢 span reaches 𝑣 in [𝑡𝑠 , 𝑡𝑒 ], denoted by 𝑢 ⇝[𝑡𝑠 ,𝑡𝑒 ] 𝑣 , if 𝑢 is
connected to 𝑣 via a path in the projected graph 𝐺 [𝑡𝑠 ,𝑡𝑒 ] .

Definition 3 (window-CC). Given an undirected temporal graph 𝐺 = (𝑉 , 𝐸) and a time window
[𝑡𝑠 , 𝑡𝑒 ], the window-CC is a maximal set of vertices 𝑆 , such that for any two vertices 𝑢, 𝑣 ∈ 𝑆 , 𝑢 ⇝[𝑡𝑠 ,𝑡𝑒 ]
𝑣 .

Example 1. In the undirected temporal graph of Figure 1(a), we have 𝑣1 ⇝[0,4] 𝑣6 but 𝑣1 ̸⇝[0,3] 𝑣6.
For the time window [0, 4], there is one window-CC {𝑣1, 𝑣2, 𝑣3, 𝑣4, 𝑣5, 𝑣6}, while for the time window
[0, 3], there are two window-CCs, i.e., {𝑣1, 𝑣2, 𝑣3} 𝑎𝑛𝑑 {𝑣4, 𝑣5, 𝑣6}.

Problem 1 (window-CC qery). Given an undirected temporal graph 𝐺 = (𝑉 , 𝐸) and a time
window [𝑡𝑠 , 𝑡𝑒 ], find all the window-CCs in this time window.

For the directed temporal graph, the definitions of projected graphs and span-reachability can

be similarly defined as shown in [52], so we omit the details. The concept of the window-CC can

be reformulated as window-SCC, defined as follows.

Definition 4 (window-SCC). Given a directed temporal graph 𝐺 = (𝑉 , 𝐸) and a time window
[𝑡𝑠 , 𝑡𝑒 ], the window-SCC is a maximal set of vertices 𝑆 , such that for any two vertices 𝑢, 𝑣 ∈ 𝑆 ,
𝑢 ⇝[𝑡𝑠 ,𝑡𝑒 ] 𝑣 and 𝑣 ⇝[𝑡𝑠 ,𝑡𝑒 ] 𝑢.

Problem 2 (window-SCCqery). Given a directed temporal graph𝐺 = (𝑉 , 𝐸) and a time window
[𝑡𝑠 , 𝑡𝑒 ], find all the window-SCCs in this time window.

Example 2. Consider the directed temporal graph in Figure 1(b). For the time window [0, 4], the
whole graph is a window-SCC. For the time window [0, 2], there are two window-SCCs, which are
{𝑣1, 𝑣2, 𝑣3} and {𝑣4, 𝑣5, 𝑣6}.

2.2 Online algorithms
Before presenting the online algorithms, we introduce a technique for shrinking the size of the

undirected temporal graph without affecting the final query result. Since the reachability infor-

mation of a static undirected graph can be maintained by a spanning forest with at most (𝑛 − 1)
edges, we can construct a spanning forest for each𝐺 [𝑡,𝑡 ] with each 𝑡 ∈ [0, 𝑡𝑚𝑎𝑥 ], and then replace 𝐸

with the edges in the spanning forests. In practice, since the shrinking technique above can reduce

the number of edges significantly, we use it to preprocess all the undirected temporal graphs by
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default. Note that for the directed graph, since the directed spanning forest [20] cannot capture the

reachability information, the shrinking technique above cannot be used directly.

As aforementioned, there are some existing algorithms for querying CCs or SCCs in conventional

static graphs. For querying CCs in an undirected graph, the Breadth-First Search (BFS), Depth-First

Search (DFS), and Union-Find data structure can give solutions in𝑂 (𝑚 +𝑛) time cost. For querying

SCCs in a directed graph, various algorithms have been discovered to process in 𝑂 (𝑚 + 𝑛) time

[19, 47, 49]. These algorithms can be used for answering our window-CC queries on temporal

graphs. The general idea is that we can first build a projected graph 𝐺 [𝑡𝑠 ,𝑡𝑒 ] , and then run an

existing CC computation algorithm above if 𝐺 [𝑡𝑠 ,𝑡𝑒 ] is undirected, or an existing SCC computation

algorithm above if 𝐺 [𝑡𝑠 ,𝑡𝑒 ] is directed. For lack of space, we omit the details here. We denote the

online algorithms for processing undirected and directed temporal graphs by U-online and D-online

respectively.

Lemma 1. The running time of the online window-CC and window-SCC query algorithms are
bounded by 𝑂 (𝑚 [𝑡𝑠 ,𝑡𝑒 ] + 𝑛).

Proof. The lemma directly follows the discussions above. □

Unlike the conventional static graph, the temporal graph often has a relatively large number of

edges due to the unlimited number of timestamps. Therefore, although the online query algorithms

take linear time cost as stated by Lemma 1, they are still inefficient and unscalable for processing

large temporal graphs. In this paper, we focus on developing efficient index-based solutions.

We would also like to note that the window-CC is defined based on span-reachability, so our

solutions can also be used to answer the span-reachability queries in undirected temporal graphs

[52].

3 INDEX-BASED SOLUTIONS FOR UNDIRECTED TEMPORAL GRAPHS
As mentioned in Section 1, the naive index takes 𝑂 (𝑛𝑡2𝑚𝑎𝑥 ) space cost, which is impractical if

𝑡𝑚𝑎𝑥 is large, so we do not further consider it in the paper. In the following, we first present two

index-based solutions, and the best one only costs 𝑂 (𝑚) space.

3.1 A baseline index-based solution
3.1.1 Index overview. In this section, we propose a nontrivial index named U-baseline index, and

the main idea is that for each start time, we try to record a set of “labels” for each vertex, such that

the window-CCs in different time windows are well-preserved.

Specifically, consider a sub-problem where the start time 𝑡𝑠 is fixed and the goal is to answer a

query with time window [𝑡𝑠 , 𝑡𝑒 ] where 𝑡𝑒 ∈ [𝑡𝑠 , 𝑡𝑚𝑎𝑥 ]. We observe that for the time windows [𝑡𝑠 , 𝑡𝑠 ],
[𝑡𝑠 , 𝑡𝑠 + 1], · · · , [𝑡𝑠 , 𝑡𝑚𝑎𝑥 ], the corresponding window-CCs would only be merged but never split,

when 𝑡𝑒 increases from 𝑡𝑠 to 𝑡𝑚𝑎𝑥 . Thus, by considering all the edges in [𝑡𝑠 , 𝑡𝑚𝑎𝑥 ] in chronological

order, we can label the window-CCs and keep track of label changes when they are merged. We

now formally define the vertex label.

Definition 5 (Vertex label). Given an undirected graph, the label of each vertex 𝑣 , 𝐿(𝑣), denotes
the CC containing it. Initially, each vertex 𝑣 forms a single CC with a label 𝐿(𝑣) = 𝑣 .

We denote the vertex set of the CC containing 𝑣 by 𝑆 (𝑣), i.e., 𝑆 (𝑣) = {𝑢 ∈ 𝑉 |𝐿(𝑢) = 𝐿(𝑣)}. By
considering all the edges in chronological order, we can merge the window-CCs incrementally.

Initially, each vertex 𝑣 forms a single CC with 𝐿(𝑣) = 𝑣 . Then, for each edge (𝑢, 𝑣, 𝑡), if 𝑢 and 𝑣 are

not in the same window-CC, we merge the two window-CCs of 𝑢 and 𝑣 , by adding vertices of the

small one into the large one, with the following union operation:
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Definition 6 (Union). Given an edge (𝑢, 𝑣, 𝑡), if |𝑆 (𝑢) | > |𝑆 (𝑣) |, then we set 𝐿(𝑤) = 𝐿(𝑢) for all
𝑤 ∈ 𝑆 (𝑣), and update 𝑆 (𝑢) = 𝑆 (𝑢) ∪𝑆 (𝑣); otherwise, we set 𝐿(𝑤) = 𝐿(𝑣) for all𝑤 ∈ 𝑆 (𝑢), and update
𝑆 (𝑣) = 𝑆 (𝑢) ∪ 𝑆 (𝑣).

In the above process, whenever we merge two window-CCs, we can record some ⟨𝑙𝑎𝑏𝑒𝑙, 𝑡𝑖𝑚𝑒⟩
pairs for vertices whose labels are changed. As a result, we obtain an index structure, which contains

such pairs for each start time and each vertex, denoted by

𝐵(𝑡𝑠 , 𝑣) = (⟨𝑙1, 𝑡1⟩, ⟨𝑙2, 𝑡2⟩, · · · ) . (1)

Example 3. Consider the graph in Figure 1(a). By anchoring the start time 𝑡𝑠 = 2, we can build the
index structure in Figure 2(a), where the process of merging CCs is depicted in Figure 2(b).

𝐵(2, 𝑣!): ⟨𝑣!, 2⟩ 𝐵(2, 𝑣"): ⟨𝑣", 2⟩ 𝐵(2, 𝑣#): 𝑣#, 2 , ⟨𝑣$, 4⟩
𝐵(2, 𝑣%): 𝑣%, 2 , ⟨𝑣$, 3⟩ 𝐵(2, 𝑣$): 𝑣$, 2 𝐵(2, 𝑣&): 𝑣$, 2

(a)

(b)

v3v3 v2v2

v5v5 v6v6

v1v1v4v4

v3v3 v2v2

v5v5 v6v6

v1v1v4v4

v3v3 v2v2

v5v5 v6v6

v1v1v4v4

22
[2,2][2,2] [2,3][2,3] [2,4][2,4]

L(v2) : v2L(v2) : v2

L(v1) : v1L(v1) : v1

L(v3) : v3L(v3) : v3

L(v5) : v5L(v5) : v5

L(v4) : v4L(v4) : v4

L(v6) : v6 → v5L(v6) : v6 → v5 L(v6) : v5L(v6) : v5

L(v4) : v4 → v5L(v4) : v4 → v5

L(v4) : v5L(v4) : v5
33

44

L(v3) : v3 → v5L(v3) : v3 → v5

22 22

33

L(v2) : v2L(v2) : v2L(v3) : v3L(v3) : v3

L(v1) : v1L(v1) : v1 L(v1) : v1L(v1) : v1

L(v5) : v5L(v5) : v5

L(v2) : v2L(v2) : v2

L(v6) : v5L(v6) : v5L(v5) : v5L(v5) : v5

Fig. 2. The U-baseline index by anchoring 𝑡𝑠 = 2.

Next, we analyze the space cost of the index by Lemmas 2 and 3.

Lemma 2. For each anchored start time 𝑡𝑠 , the label of each vertex is changed at most (log𝑛) times.

Proof. In the union operation, when we merge two window-CCs, we always add vertices in the

smaller one into the larger one, by updating the labels of vertices in the smaller window-CC as the

label of the larger one. Thus, for vertices in the smaller window-CC, the size of the window-CC

containing them will be at least doubled after the union operation. Since the size of any window-CC

is at most 𝑛, the label of each vertex is changed at most (log𝑛) times. □

Lemma 3. The baseline index costs 𝑂 (𝑛 log𝑛 · 𝑡𝑚𝑎𝑥 ) space.

Proof. For each start time, the space cost is 𝑂 (𝑛 log𝑛) as there are 𝑛 vertices and each vertex’s

label is changed 𝑂 (log𝑛) times. By enumerating all the 𝑡𝑚𝑎𝑥 start times, we obtain Lemma 3. □

3.1.2 Query processing. Based on the index above, to answer a query with the time window [𝑡𝑠 , 𝑡𝑒 ],
we first retrieve 𝐵(𝑡𝑠 , 𝑣) for each vertex 𝑣 ∈ 𝑉 . Then, for each vertex 𝑣 , we find the pair ⟨𝑙𝑎𝑏𝑒𝑙, 𝑡𝑖𝑚𝑒⟩
corresponding to the query time window. Finally, we build an undirected graph and compute the

CCs from it. Algorithm 1 presents the detailed steps. It initializes a graph 𝐺 ′ with only 𝑛 vertices

(line 1). Then, for each vertex 𝑣 , it binary searches the ⟨𝑙𝑘 , 𝑡𝑘⟩ satisfying 𝑡𝑘 ≤ 𝑡𝑒 and 𝑡𝑘+1 > 𝑡𝑒 from

𝐵(𝑡𝑠 , 𝑣) (lines 2-3), and adds an edge (𝑣, 𝑙𝑘 ) to 𝐺 ′ (line 4). Note that after the process above, 𝐺 ′ has
𝑛 − 1 edges. Finally, it finds and returns all the CCs in 𝐺 ′ (line 5).

Lemma 4. Algorithm 1 answers a query in 𝑂 (𝑛 log log𝑛) time.

Proof. By Lemma 2, each 𝐵(𝑡𝑠 , 𝑣) has at most (log𝑛) ⟨𝑙𝑎𝑏𝑒𝑙, 𝑡𝑖𝑚𝑒⟩ pairs. Thus, the binary search
on each 𝐵(𝑡𝑠 , 𝑣) costs 𝑂 (log log𝑛) time, making the overall query time cost be 𝑂 (𝑛 · log log𝑛). □
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Algorithm 1: U-baseline-query(𝐵, [𝑡𝑠 , 𝑡𝑒 ])
Input: the index 𝐵 and query time window [𝑡𝑠 , 𝑡𝑒 ];
Output: all the window-CCs in 𝐺 [𝑡𝑠 ,𝑡𝑒 ] ;

1 𝐺 ′ ← (𝑉 , 𝐸 ′) where 𝐸 ′ = ∅;
2 for 𝑣 ∈ 𝑉 do
3 ⟨𝑙𝑘 , 𝑡𝑘 ⟩ ← binary search a pair ⟨𝑙𝑘 , 𝑡𝑘 ⟩ such that 𝑡𝑘 ≤ 𝑡𝑒 and 𝑡𝑘+1 > 𝑡𝑒 from 𝐵(𝑡𝑠 , 𝑣);
4 add an edge (𝑣, 𝑙𝑘 ) between 𝑣 and 𝑙𝑘 into 𝐺 ′;

5 return all the CCs computed from 𝐺 ′;

3.1.3 Index construction. To build the index, for each start time 𝑡𝑠 , we sequentially consider the

edges in chronological order, during which we merge the CCs and record the ⟨𝑙𝑎𝑏𝑒𝑙, 𝑡𝑖𝑚𝑒⟩ pairs.
Algorithm 2 shows the details. For each start time 𝑡𝑠 , we first initialize 𝐿(𝑣), 𝑆 (𝑣), and 𝐵(𝑡𝑠 , 𝑣) for
each vertex 𝑣 (lines 1-4). We then sequentially consider the edges in chronological order, merge

window-CCs, and record the ⟨𝑙𝑎𝑏𝑒𝑙, 𝑡𝑖𝑚𝑒⟩ pairs (lines 5-14). For each edge (𝑢, 𝑣, 𝑡), if the two end

vertices are not in the same CC, we merge the vertices of the small CC into the large one and

change their labels, during which the ⟨𝑙𝑎𝑏𝑒𝑙, 𝑡𝑖𝑚𝑒⟩ pairs are recorded.

Algorithm 2: U-baseline-construct(𝐺)
Input: an undirected temporal graph 𝐺 = (𝑉 , 𝐸);
Output: the index 𝐵(𝑡𝑠 , 𝑣) for all 0 ≤ 𝑡𝑠 ≤ 𝑡𝑚𝑎𝑥 and all 𝑣 ∈ 𝑉 ;

1 for 𝑡𝑠 ∈ [0, 𝑡𝑚𝑎𝑥 ] do
2 for 𝑣 ∈ 𝑉 do
3 𝐿(𝑣) ← 𝑣 , 𝑆 (𝑣) ← {𝑣};
4 𝐵(𝑡𝑠 , 𝑣) ← (⟨𝑣, 𝑡𝑠 ⟩);
5 for (𝑢, 𝑣, 𝑡) ∈ 𝐸 ∧ 𝑡 ≥ 𝑡𝑠 do
6 if 𝐿(𝑢) ≠ 𝐿(𝑣) then
7 if |𝑆 (𝑢) | ≥ |𝑆 (𝑣) | then
8 𝑆 (𝑢) ← 𝑆 (𝑢) ∪ 𝑆 (𝑣);
9 for𝑤 ∈ 𝑆 (𝑣) do
10 𝐿(𝑤) ← 𝐿(𝑢), 𝑆 (𝑤) ← 𝑆 (𝑢);
11 delete all ⟨𝑙, 𝑡⟩ pairs in 𝐵(𝑡𝑠 ,𝑤);
12 append ⟨𝐿(𝑤), 𝑡⟩ to 𝐵(𝑡𝑠 ,𝑤);

13 else
14 merge 𝑆 (𝑢) into 𝑆 (𝑣) and update labels (similar to lines 8-12);

Lemma 5. Algorithm 2 takes 𝑂 ((𝑚 + 𝑛 log𝑛)𝑡𝑚𝑎𝑥 ) time cost.

Proof. There are 𝑂 (𝑡𝑚𝑎𝑥 ) start times and for each 𝑡𝑠 , we examine at most𝑚 edges, and each

vertex is involved in𝑂 (log𝑛) union operations, so the overall time cost is𝑂 ((𝑚 +𝑛 log𝑛)𝑡𝑚𝑎𝑥 ). □

In addition, the U-baseline index can be easily updated without re-building it from scratch, when

a new edge (𝑢, 𝑣, 𝑡𝑚𝑎𝑥 + 1) is added into the graph. Specifically, we can design a revised version of

Algorithm 2, by ranging 𝑡𝑠 from 0 to (𝑡𝑚𝑎𝑥 + 1) in its outer loop. When 𝑡𝑠 ∈ [0, 𝑡𝑚𝑎𝑥 ], instead of

the trivial initialization in lines 2-4, we re-use the sets 𝐿, 𝑆 with the previously derived 𝐵(𝑡𝑠 , ·), and
only consider the newly added edge by running lines 5-14; when 𝑡𝑠 = 𝑡𝑚𝑎𝑥 + 1, we directly follow

the original procedure.
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3.2 An advanced index-based solution
Generally, the solution using the U-baseline index performs well on small-to-moderate-sized graphs,

but the index space cost may still be too large, especially when 𝑡𝑚𝑎𝑥 is large. To further reduce the

space and time cost of indexing, we propose an advanced index, called temporal spanning forest

(TSF) index, or TSF-index, by exploiting the idea that on an undirected graph, each CC corresponds

to a spanning tree of its spanning forest.

3.2.1 The concept of TSF and its properties. We first introduce the novel concept of TSF.

Definition 7 (TSF). Given an undirected temporal graph 𝐺 = (𝑉 , 𝐸) and a time window [𝑡𝑠 , 𝑡𝑒 ],
the TSF over [𝑡𝑠 , 𝑡𝑒 ] is the minimum edge set Ψ[𝑡𝑠 ,𝑡𝑒 ] ⊆ 𝐸, such that all the CCs of the graph 𝐺 ′ =
(𝑉 ,Ψ[𝑡𝑠 ,𝑡𝑒 ]) are exactly the window-CCs of 𝐺 [𝑡𝑠 ,𝑡𝑒 ] .

By Definition 7, the TSF has the minimum number of edges, implying that the edges form the

spanning trees. Next, we show that there exist two kinds of overlapping relationships among

different TSFs, allowing us to design a space-efficient index.

• Nested relationship by anchoring a start time. This is described by Lemma 6.

Lemma 6. Given an undirected temporal graph𝐺 and an anchored start time 𝑡𝑠 , there exists a chain
of TSFs such that

Ψ[𝑡𝑠 ,𝑡𝑠 ] ⊆ Ψ[𝑡𝑠 ,𝑡𝑠+1] ⊆ · · · ⊆ Ψ[𝑡𝑠 ,𝑡𝑚𝑎𝑥 ] . (2)

Proof. We prove the lemma by giving a method to construct such a chain. Suppose that Ψ[𝑡𝑠 ,𝑡𝑠 ]
has been derived by an MST algorithm [22]. We show that Ψ[𝑡𝑠 ,𝑡𝑠+1] can be derived based on Ψ[𝑡𝑠 ,𝑡𝑠 ] .
Specifically, we first initialize Ψ[𝑡𝑠 ,𝑡𝑠+1]= Ψ[𝑡𝑠 ,𝑡𝑠 ] , and then update it by the edges with timestamp

𝑡𝑠 + 1. For each edge (𝑢, 𝑣, 𝑡𝑠 + 1), if vertices 𝑢 and 𝑣 are not connected via the edges in Ψ[𝑡𝑠 ,𝑡𝑠+1] , we
add it into Ψ[𝑡𝑠 ,𝑡𝑠+1] . After processing all the edges with 𝑡 = 𝑡𝑠 + 1, we obtain Ψ[𝑡𝑠 ,𝑡𝑠+1] . By repeating

the above process, we can derive a chain of TSFs satisfying Eq. (2). Figure 3 shows this process

when we are constructing Ψ[2,𝑡 ] of Figure 1(a). □

v3v3 v2v2

v5v5 v6v6

v1v1v4v4

22

v3v3 v2v2

v5v5 v6v6

v1v1v4v4

22

v3v3 v2v2

v5v5 v6v6

v1v1v4v4

44

22

33

Ψ[2,2]Ψ[2,2] Ψ[2,3]Ψ[2,3] Ψ[2,4]Ψ[2,4]

33

Fig. 3. The nested relationship by anchoring 𝑡𝑠 = 2.

By Lemma 6, for each anchored 𝑡𝑠 , we can compress all the TSFs Ψ[𝑡𝑠 ,𝑡𝑠 ] , Ψ[𝑡𝑠 ,𝑡𝑠+1] , · · · , Ψ[𝑡𝑠 ,𝑡𝑚𝑎𝑥 ]
using𝑂 (𝑛) space cost by only keeping the newly added edges for each TSF. However, if we directly

compress all the TSFs for each 𝑡𝑠 ∈ [0, 𝑡𝑚𝑎𝑥 ] as an index, it will take 𝑂 (𝑛𝑡𝑚𝑎𝑥 ) space cost, which is

still costly when 𝑡𝑚𝑎𝑥 is large. To overcome the enormous space cost caused by 𝑡𝑚𝑎𝑥 , we observe

and exploit another overlapping relationship among TSFs.

•Overlapping relationship formultiple start times.We begin with an important observation

in Lemma 7, which allows us to compress all the TSFs by using only 𝑂 (𝑚) space.
Lemma 7. Given an undirected temporal graph𝐺 , there exist (𝑡𝑚𝑎𝑥 +1) TSFs, i.e., Ψ[0,𝑡𝑚𝑎𝑥 ] , Ψ[1,𝑡𝑚𝑎𝑥 ] ,
· · · , Ψ[𝑡𝑚𝑎𝑥 ,𝑡𝑚𝑎𝑥 ] , such that for each edge (𝑢, 𝑣, 𝑡), there is a chain starting from some �̂� ∈ [0, 𝑡]

Ψ[̂𝑡,𝑡𝑚𝑎𝑥 ],Ψ[̂𝑡+1,𝑡𝑚𝑎𝑥 ], · · · ,Ψ[𝑡,𝑡𝑚𝑎𝑥 ], (3)

satisfying (1) each TSF in the chain contains the edge and (2) the edge is excluded in any TSFs that are
not in the chain.
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Proof. We prove the lemma by giving a method to construct a set of TSFs satisfying the condition

in the lemma. Suppose that Ψ[0,𝑡𝑚𝑎𝑥 ] has been derived by the process in Lemma 6. We then can build

Ψ[1,𝑡𝑚𝑎𝑥 ] based on Ψ[0,𝑡𝑚𝑎𝑥 ] . Specifically, we first initialize Ψ[1,𝑡𝑚𝑎𝑥 ] as Ψ[0,𝑡𝑚𝑎𝑥 ] ∩ 𝐸 [1,𝑡𝑚𝑎𝑥 ] , i.e. delete
edges with timestamp 0 in Ψ[0,𝑡𝑚𝑎𝑥 ] , and then update it by the edges in 𝐸 [1,𝑡𝑚𝑎𝑥 ] . Consider the edges
in chronological order. For each edge (𝑢, 𝑣, 𝑡), if vertices 𝑢 and 𝑣 are not connected via the edges

in Ψ[1,𝑡𝑚𝑎𝑥 ] , we add it into Ψ[1,𝑡𝑚𝑎𝑥 ] . After processing all edges in 𝐸 [1,𝑡𝑚𝑎𝑥 ] , we obtain Ψ[1,𝑡𝑚𝑎𝑥 ] . By
repeating the above process, we can derive a set of TSFs Ψ[0,𝑡𝑚𝑎𝑥 ],Ψ[1,𝑡𝑚𝑎𝑥 ], · · · ,Ψ[𝑡𝑚𝑎𝑥 ,𝑡𝑚𝑎𝑥 ] . Since
each edge with timestamp 𝑡 will be added into Ψ for some �̂� and deleted in the initialization of

Ψ[𝑡+1,𝑡𝑚𝑎𝑥 ] , the condition in the lemma holds. Figure 4 shows this process when we are constructing

Ψ[2,𝑡𝑚𝑎𝑥 ] from Ψ[1,𝑡𝑚𝑎𝑥 ] of Figure 1(a). □
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v1v1v4v4
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44
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44
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Ψ[1,4]Ψ[1,4] Ψ[1,4] ∩ E[2,4]Ψ[1,4] ∩ E[2,4] Ψ[2,4]Ψ[2,4]

Fig. 4. The overlapping relationship between 𝑡𝑠 = 1, 2

By Lemma 7, for each edge (𝑢, 𝑣, 𝑡), we can identify an appearing time interval [̂𝑡, 𝑡] such that for

any 𝑡 ′ ∈ [̂𝑡, 𝑡], the TSF over [𝑡 ′, 𝑡𝑚𝑎𝑥 ] contains it.

3.2.2 Index overview. After processing each edge and obtaining its appearing time interval, we can

reversely organize the edges and their appearing time intervals, such that for each time interval

[𝑡𝑖 , 𝑡 𝑗 ] where 0 ≤ 𝑡𝑖 ≤ 𝑡 𝑗 ≤ 𝑡𝑚𝑎𝑥 , there is a set of edges corresponding to it, denoted by 𝐹 (𝑡𝑖 , 𝑡 𝑗 ),
which can serve as the TSF-index.

Example 4. Figure 5(a) presents the appearing time interval for each edge of the graph in Figure
1(a), based on which we can design the TSF-index as depicted in Figure 5(b).

F(0, 0)={(v1, v2), (v1, v3)}

F(0, 1)={(v4, v5)}

F(0, 2)={(v5, v6)}

F(2, 3)={(v4, v6)}

F(0, 4)={(v3, v4)}

0 1 2 3 4 time

(v1, v2, 0): [0, 0]
(v1, v3, 0): [0, 0]

(v4, v5, 1): [0, 1]
(v5, v6, 2): [0, 2]

(v4, v6, 3): [2, 3]
(v3, v4, 4): [0, 4]（a）

（b）

Fig. 5. The TSF-index for the graph in Figure 1(a).

Lemma 8. The TSF-index costs 𝑂 (𝑚) space.

Proof. By Lemma 7, each edge has only one appearing time interval, so it appears only once

in the index, making the overall space cost be 𝑂 (𝑚). Note that 𝐹 (𝑡𝑖 , 𝑡 𝑗 ) can be stored in a sparse

manner, i.e., we only need to store the 𝐹 (𝑡𝑖 , 𝑡 𝑗 ) if it is non-empty. □

3.2.3 Query processing. To answer a query, we first utilize the TSF-index to find all edges in the

TSF over [𝑡𝑠 , 𝑡𝑒 ], then identify all the window-CCs from 𝐺 ′. Algorithm 3 presents the details. It

initializes a new static graph𝐺 ′ with the original 𝑛 vertices (line 1). Then, it adds the edges of all
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𝐹 (𝑡𝑖 , 𝑡 𝑗 ) with 𝑡𝑖 ≤ 𝑡𝑠 and 𝑡𝑠 ≤ 𝑡 𝑗 ≤ 𝑡𝑒 into 𝐺
′
(lines 2-3), which form the TSF over [𝑡𝑠 , 𝑡𝑒 ]. Finally, it

finds and returns CCs on 𝐺 ′ as the window-CCs (line 4).

Algorithm 3: TSF-query(𝐹, 𝑡𝑠 , 𝑡𝑒 )
Input: the TSF-index 𝐹 and query time window [𝑡𝑠 , 𝑡𝑒 ];
Output: all the window-CCs in 𝐺 [𝑡𝑠 ,𝑡𝑒 ] ;

1 𝐺 ′ ← (𝑉 , 𝐸 ′) where 𝐸 ′ = ∅;
2 for 𝑡𝑖 ∈ [0, 𝑡𝑠 ], 𝑡 𝑗 ∈ [𝑡𝑠 , 𝑡𝑒 ] do
3 𝐸 ′ ← 𝐸 ′ ∪ 𝐹 (𝑡𝑖 , 𝑡 𝑗 );
4 return all the CCs computed from 𝐺 ′ = (𝑉 , 𝐸 ′);

Lemma 9. Algorithm 3 answers a query in 𝑂 (𝑛) time.

Proof. Since the graph 𝐺 ′ has 𝑛 vertices and at most 𝑛 − 1 edges and it represents the TSF over

[𝑡𝑠 , 𝑡𝑒 ], i.e., Ψ[𝑡𝑠 ,𝑡𝑒 ] , finding all the CCs from 𝐺 ′ can be completed in 𝑂 (𝑛) time. □

3.2.4 Index construction. The TSF-index can be built by computing the TSFs for all the possible

time windows and compressing them compactly. We show the steps in Algorithm 4. We first anchor

each start time 𝑡𝑖 (line 1). Then for each 𝑡 𝑗 ∈ [𝑡𝑖 , 𝑡𝑚𝑎𝑥 ], we initialize Ψ[𝑡𝑖 ,𝑡 𝑗 ] by Ψ[𝑡𝑖 ,𝑡 𝑗−1] (lines 2-4).
Afterwards, we process the edges in [𝑡𝑖 , 𝑡𝑚𝑎𝑥 ] in chronological order; that is, for each edge (𝑢, 𝑣, 𝑡 𝑗 ),
if vertices 𝑢 and 𝑣 are not connected via the edges in Ψ[𝑡𝑖 ,𝑡 𝑗 ] , we add it to Ψ[𝑡𝑖 ,𝑡 𝑗 ] (lines 5-7). In the

meantime, if the edge is added for the first time, we put it into 𝐹 (𝑡𝑖 , 𝑡 𝑗 ) according to Lemma 7 (lines

8-9). After processing every time interval [𝑡𝑖 , 𝑡 𝑗 ], we can derive the set of edges in each 𝐹 (𝑡𝑖 , 𝑡 𝑗 )
correspondingly.

Algorithm 4: TSF-construct(𝐺)
Input: an undirected temporal graph 𝐺 = (𝑉 , 𝐸);
Output: the index 𝐹 (𝑡𝑖 , 𝑡 𝑗 ) for all 0 ≤ 𝑡𝑖 ≤ 𝑡 𝑗 ≤ 𝑡𝑚𝑎𝑥 ;

1 for 𝑡𝑖 ← 0, · · · , 𝑡𝑚𝑎𝑥 do
2 for 𝑡 𝑗 ← 𝑡𝑖 , 𝑡𝑖 + 1, · · · , 𝑡𝑚𝑎𝑥 do
3 Ψ[𝑡𝑖 ,𝑡 𝑗 ] ← ∅;
4 if 𝑡 𝑗 > 𝑡𝑖 then Ψ[𝑡𝑖 ,𝑡 𝑗 ] ← Ψ[𝑡𝑖 ,𝑡 𝑗−1] ;
5 for (𝑢, 𝑣, 𝑡 𝑗 ) ∈ 𝐸 do
6 if 𝑢 and 𝑣 are not connected by Ψ[𝑡𝑖 ,𝑡 𝑗 ] then
7 Ψ[𝑡𝑖 ,𝑡 𝑗 ] ← Ψ[𝑡𝑖 ,𝑡 𝑗 ] ∪ {(𝑢, 𝑣, 𝑡 𝑗 )};
8 if (𝑢, 𝑣, 𝑡 𝑗 ) ∉ Ψ[𝑡𝑖−1,𝑡𝑚𝑎𝑥 ] then
9 𝐹 (𝑡𝑖 , 𝑡 𝑗 ) ← 𝐹 (𝑡𝑖 , 𝑡 𝑗 ) ∪ {(𝑢, 𝑣, 𝑡 𝑗 )};

Lemma 10. Algorithm 4 costs 𝑂 (𝑚𝑡𝑚𝑎𝑥 ) time.

Proof. In Algorithm 4, each edge with timestamp 𝑡 𝑗 will be iterated for 𝑂 (𝑡 𝑗 ) times, since it

would be considered for each 𝑡𝑖 ∈ [0, 𝑡 𝑗 ]. Hence, the total time cost is bounded by 𝑂 (𝑚𝑡𝑚𝑎𝑥 ). □

The TSF-index can also be easily maintained when a new edge (𝑢, 𝑣, 𝑡𝑚𝑎𝑥 + 1) is included in the

graph. Specifically, we can revise Algorithm 4, such that 𝑡𝑖 is ranged from 0 to (𝑡𝑚𝑎𝑥 + 1) in its outer

loop. When 𝑡𝑖 ∈ [0, 𝑡𝑚𝑎𝑥 ], the variable 𝑡 𝑗 in the inner loop is fixed as (𝑡𝑚𝑎𝑥 + 1), and instead of

initializing the TSF by lines 3-4, we reconstruct Ψ[𝑡𝑖 ,𝑡𝑚𝑎𝑥 ] from the current TSF-index and then run

the original steps in lines 5-9; when 𝑡𝑖 = 𝑡𝑚𝑎𝑥 + 1, we run the original procedure of the inner loop.
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4 INDEX-BASED SOLUTIONS FOR DIRECTED TEMPORAL GRAPHS
Inspired by the indices for undirected graphs, we first give a spanning forest-based index for

window-SCC queries on directed temporal graphs. To further reduce the indexing time and space

cost, we propose an advanced index with 𝑂 (𝑚) space.

4.1 A baseline index-based solution
4.1.1 Index overview. In this section, we propose an index named D-baseline index. Unlike undi-

rected graphs, an SCC in the directed graph cannot be represented by a directed spanning tree [20],

so we cannot build a directed version of the TSF-index for directed temporal graphs. Instead, we

propose another forest structure of undirected edges, which connects the vertices in each SCC.

Specifically, we maintain an undirected edge set 𝐷 (𝑡𝑠 ) of the forest for each start time 𝑡𝑠 , where

edges are associated with timestamps. If 𝑢 and 𝑣 are in the same SCC in 𝐺 [𝑡𝑠 ,𝑡𝑒 ] , then 𝑢 and 𝑣 are

connected via the edges in 𝐷 (𝑡𝑠 ) with timestamps ≤ 𝑡𝑒 . Figure 6 depicts the constructed forests for

the graph in Figure 1(b).
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Fig. 6. Constructed forests with different 𝑡𝑠 ∈ [0, 4].

Lemma 11. The D-baseline index costs 𝑂 (𝑛𝑡𝑚𝑎𝑥 ) space.

Proof. For each start time 𝑡𝑠 , the space cost is 𝑂 (𝑛) as |𝐷 (𝑡𝑠 ) | ≤ 𝑛. By enumerating all the 𝑡𝑚𝑎𝑥

start times, the lemma holds. □

4.1.2 Query processing. To solve the query over a time window [𝑡𝑠 , 𝑡𝑒 ], we first retrieve all the
edges in 𝐷 (𝑡𝑠 ) with timestamps ≤ 𝑡𝑒 . Then, we construct a new static graph 𝐺 ′ = (𝑉 , 𝐸 ′) where 𝑉
contains all the vertices of the graph 𝐺 and 𝐸 ′ represents the retrieved edges. Finally, we detect all

the CCs from graph 𝐺 ′. Algorithm 5 shows the steps above. It firstly initializes a graph 𝐺 ′ without
edges (line 1), then adds all the edges in 𝐷 (𝑡𝑠 ) with timestamps in [𝑡𝑠 , 𝑡𝑒 ] into𝐺 ′ (line 2), and finally
returns CCs on𝐺 ′ as the window-SCCs (line 3), which actually are the same as the SCCs in𝐺 [𝑡𝑠 ,𝑡𝑒 ] .

Algorithm 5: D-baseline-query(𝐷, [𝑡𝑠 , 𝑡𝑒 ])
Input: the index 𝐷 and the query time window [𝑡𝑠 , 𝑡𝑒 ];
Output: all window-SCCs in 𝐺 [𝑡𝑠 ,𝑡𝑒 ] ;

1 𝐺 ′ ← (𝑉 , 𝐸 ′) where 𝐸 ′ = ∅;
2 for 𝑒 = (𝑢, 𝑣, 𝑡) ∈ 𝐷 (𝑡𝑠 ) ∧ 𝑡 ≤ 𝑡𝑒 do 𝐸 ′ ← 𝐸 ′ ∪ {(𝑢, 𝑣)} ;
3 return all the CCs computed from 𝐺 ′;

Lemma 12. Algorithm 5 answers a query in 𝑂 (𝑛) time.

Proof. Since 𝐷 (𝑡𝑠 ) is a forest structure with 𝑛 vertices, its number of edges is at most 𝑛 − 1.
Hence, the total time cost is 𝑂 (𝑛). □

4.1.3 Index construction. To build the index, for each start time 𝑡𝑠 , we iteratively find all SCCs

in 𝐺 [𝑡𝑠 ,𝑡 ] for each 𝑡 ∈ [𝑡𝑠 , 𝑡𝑚𝑎𝑥 ], and create the minimal undirected edges to connect the vertices

newly involved in the same SCC at time 𝑡 . Algorithm 6 gives the details. We first anchor each start
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time 𝑡𝑠 and initialize 𝐷 (𝑡𝑠 ) (lines 1-2). As the time window expands to [𝑡𝑠 , 𝑡], we run algorithms to

find all SCCs in 𝐺 [𝑡𝑠 ,𝑡 ] (lines 3-4). Then for each SCC, we add undirected edges into 𝐷 until the

vertices in the SCC are connected by the edges in 𝐷 (lines 5-9).

Algorithm 6: D-baseline-construct(𝐺)
Input: a directed temporal graph 𝐺 = (𝑉 , 𝐸);
Output: the index 𝐷 (𝑡𝑠 ) for all 0 ≤ 𝑡𝑠 ≤ 𝑡𝑚𝑎𝑥 ;

1 for 𝑡𝑠 = 0, 1, · · · , 𝑡𝑚𝑎𝑥 do
2 𝐷 (𝑡𝑠 ) ← ∅;
3 for 𝑡 ← 𝑡𝑠 , 𝑡𝑠 + 1, · · · , 𝑡𝑚𝑎𝑥 do
4 run algorithms to find SCCs on 𝐺 [𝑡𝑠 ,𝑡 ] ;
5 for each SCC in 𝐺 [𝑡𝑠 ,𝑡 ] do
6 choose a vertex 𝑢 in the SCC;

7 for all other vertices 𝑣 in the SCC do
8 if 𝑢 and 𝑣 are not connected by 𝐷 (𝑡𝑠 ) then
9 𝐷 (𝑡𝑠 ) ← 𝐷 (𝑡𝑠 ) ∪ {(𝑢, 𝑣, 𝑡)};

Lemma 13. Algorithm 6 costs 𝑂 ((𝑚 + 𝑛)𝑡2𝑚𝑎𝑥 ) time.

Proof. For each time window [𝑡𝑠 , 𝑡𝑒 ], the time complexity of finding all SCCs in 𝐺 [𝑡𝑠 ,𝑡𝑒 ] is
𝑂 (𝑚 [𝑡𝑠 ,𝑡𝑒 ] + 𝑛) [19, 47, 49], so the overall time complexity is 𝑂

(∑
𝑡𝑠 ,𝑡𝑒

𝑚 [𝑡𝑠 ,𝑡𝑒 ] + 𝑛𝑡2𝑚𝑎𝑥

)
. Since

𝑚 [𝑡𝑠 ,𝑡𝑒 ] ≤ 𝑚, the complexity is also bounded by 𝑂 ((𝑚 + 𝑛)𝑡2𝑚𝑎𝑥 ). □

In addition, when a new edge (𝑢, 𝑣, 𝑡𝑚𝑎𝑥 + 1) arrives, we can update the D-baseline index without

re-building it from scratch. Specifically, we can design a revised version of Algorithm 6, by ranging

𝑡𝑠 from 0 to (𝑡𝑚𝑎𝑥 + 1) in its outer loop. When 𝑡𝑠 ∈ [0, 𝑡𝑚𝑎𝑥 ], the variable 𝑡 in the inner loop (line 3)

is fixed as 𝑡 = 𝑡𝑚𝑎𝑥 + 1; when 𝑡𝑠 = 𝑡𝑚𝑎𝑥 + 1, we run the original procedure of the inner loop.

4.2 An advanced index-based solution
The solution based on the D-baseline index handles small graphs smoothly but is costly when 𝑡𝑚𝑎𝑥

is large. To reduce the enormous indexing cost caused by 𝑡𝑚𝑎𝑥 , we propose an advanced index,

called reconstruction edge set (RES) index, or RES-index, by maintaining small sets of edges to

reconstruct SCCs, whose space cost is 𝑂 (𝑚).

4.2.1 The concept of RES and its properties. The D-baseline index does not have the nested rela-

tionships w.r.t. different anchoring start times, as depicted in Figure 6. Hence, it is hard to design

the space-efficient index by compressing the D-baseline indexes. Inspired by TSF-index (Definition

7), we can also extract the directed edge subset of 𝐸 to reconstruct the SCCs concerning different

time windows. We conjecture that such reconstruction edge sets can have nested relationships

that allow compression. To verify it, we determine the edges contributing to SCCs by defining the

reconstruction edge set (RES) in Definition 8.

Definition 8 (RES). Given a directed temporal graph 𝐺 = (𝑉 , 𝐸) and a time window [𝑡𝑠 , 𝑡𝑒 ], the
RES over [𝑡𝑠 , 𝑡𝑒 ] is an edge set Φ[𝑡𝑠 ,𝑡𝑒 ] ⊆ 𝐸, such that all the SCCs of the graph 𝐺 ′ = (𝑉 ,Φ[𝑡𝑠 ,𝑡𝑒 ]) are
exactly the window-SCCs of 𝐺 [𝑡𝑠 ,𝑡𝑒 ] .

As the RES’s are designed for indexing, it is desired that the size of Φ[𝑡𝑠 ,𝑡𝑒 ] can be bounded by

𝑂 (𝑛). To fulfill such a requirement, we give an approach to find Φ[𝑡𝑠 ,𝑡𝑒 ] by carefully choosing edges

that strongly connect an SCC. Inspired by the ideas of Kosaraju algorithm [47], we can perform two

BFS procedures on an SCC with 𝑘 vertices and its reverse graph, respectively, and use the edges
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gone through by the procedures to represent the SCC, where the number of such edges is at most

2𝑘 − 2. Iterating over all SCC’s, we can obtain Φ[𝑡𝑠 ,𝑡𝑒 ] , which has most 2𝑛 − 2 edges. The details
to process an SCC are presented in Algorithm 7. We first obtain the reverse graph of 𝐺 ′ and then

select a vertex in 𝑆 randomly (lines 1-2). Next, we use BFS to find the edges in𝐺 ′ and the reverse of
𝐺 ′ (lines 3-6).

Algorithm 7: Find-RES(𝐺 ′, 𝑆)
Input: an SCC 𝑆 and the subgraph 𝐺 ′ induced by 𝑆 ;

Output: a set of no more than 2|𝑆 | − 2 edges representing 𝑆 ;
1 𝐺
′ ← the reverse graph of 𝐺 ′;

2 select a vertex 𝑢 ∈ 𝑆 randomly;

3 perform BFS on 𝑆 in 𝐺 ′ starting from 𝑢;

4 𝐸1 ← the edge set which BFS went through;

5 perform BFS on 𝑆 in 𝐺
′
starting from 𝑢;

6 𝐸2 ← the edge set which BFS went through;

7 𝐸2 ← the reverse edges in 𝐸2;

8 return 𝐸1 ∪ 𝐸2;

Similar to TSFs, there exist two kinds of overlapping relationships among different RES’s, dis-

cussed as follows.

• Nested relationship by anchoring a start time. This is illustrated by Lemma 14.

Lemma 14. Given a directed temporal graph𝐺 and an anchored start time 𝑡𝑠 , there exists a chain of
RES’s such that

Φ[𝑡𝑠 ,𝑡𝑠 ] ⊆ Φ[𝑡𝑠 ,𝑡𝑠+1] ⊆ · · · ⊆ Φ[𝑡𝑠 ,𝑡𝑚𝑎𝑥 ] . (4)

Proof. We prove the lemma by giving a method to construct such a chain. Suppose that Φ[𝑡𝑠 ,𝑡𝑠 ]
has been derived by invoking Algorithm 7 on each SCC of 𝐺 [𝑡𝑠 ,𝑡𝑠 ] . We show that Φ[𝑡𝑠 ,𝑡𝑠+1] can be

derived based on Φ[𝑡𝑠 ,𝑡𝑠 ] . We shrink each SCC of𝐺 [𝑡𝑠 ,𝑡𝑠 ] into a vertex and update𝐺 [𝑡𝑠 ,𝑡𝑠+1] with the

shrinked vertices accordingly. For each SCC in the updated𝐺 [𝑡𝑠 ,𝑡𝑠+1] , we use Algorithm 7 to find

edges that strongly connect the SCC. By combining those edges with Φ[𝑡𝑠 ,𝑡𝑠 ] , we obtain Φ[𝑡𝑠 ,𝑡𝑠+1] .
By repeating the above process, we can derive a chain of RES’s satisfying Eq. (4). Figure 7 shows

this process by constructing Φ[0,𝑡𝑚𝑎𝑥 ] for the graph in Figure 1(b). □
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Fig. 7. The nested relationship by anchoring 𝑡𝑠 = 0

By Lemma 14, for each anchored start time 𝑡𝑠 , we can compress all RES’s Φ[𝑡𝑠 ,𝑡𝑠 ] , Φ[𝑡𝑠 ,𝑡𝑠+1] , · · · ,
Φ[𝑡𝑠 ,𝑡𝑚𝑎𝑥 ] using𝑂 (𝑛) space cost, by only keeping the newly added edges for each RES with the help

of Algorithm 7. For example, compressing the RES’s for 𝑡𝑠 = 0 will give us Φ[0,𝑡𝑚𝑎𝑥 ] in the leftmost

subfigure of Figure 8. Taking a closer look at Figure 8, we can find that filtering the edges appearing

in [0, 1] in the RES Φ[0,𝑡𝑚𝑎𝑥 ] gives us more edges than Φ[0,1] , which is different from TSFs. A natural

question is whether those edges Φ[0,𝑡𝑚𝑎𝑥 ] ∩ 𝐸 [0,1] connect the same SCCs with Φ[0,1] . We prove that

Φ[𝑡𝑠 ,𝑡𝑚𝑎𝑥 ] ∩ 𝐸 [𝑡𝑠 ,𝑡𝑒 ] is indeed a valid RES to recover the corresponding SCCs by Lemmas 15 and 16.
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Lemma 15. If 𝐸1 ⊆ 𝐸 [𝑡𝑠 ,𝑡𝑒 ] is a valid RES for some Φ[𝑡𝑠 ,𝑡𝑒 ] , then 𝐸1 ∪ 𝐸2 is also a valid RES for
Φ[𝑡𝑠 ,𝑡𝑒 ] , where 𝐸2 ⊆ 𝐸 [𝑡𝑠 ,𝑡𝑒 ] .

Proof. We prove the lemma by contradiction. Assume 𝐺 ′′ = (𝑉 , 𝐸1 ∪ 𝐸2) has a different set
of SCCs as that of 𝐺 ′ = (𝑉 , 𝐸1), then let 𝐸2 = 𝐸 [𝑡𝑠 ,𝑡𝑒 ] , 𝐺

′′ = 𝐺 [𝑡𝑠 ,𝑡𝑒 ] has inconsistent SCCs with
𝐺 ′ = (𝑉 , 𝐸1). This contradicts Definition 8. □

Lemma 16. Φ[𝑡𝑠 ,𝑡𝑚𝑎𝑥 ] ∩ 𝐸 [𝑡𝑠 ,𝑡𝑒 ] is a valid RES for Φ[𝑡𝑠 ,𝑡𝑒 ] .

Proof. Since Φ[𝑡𝑠 ,𝑡𝑒 ] ⊆ Φ[𝑡𝑠 ,𝑡𝑚𝑎𝑥 ] and Φ[𝑡𝑠 ,𝑡𝑒 ] ⊆ 𝐸 [𝑡𝑠 ,𝑡𝑒 ] , there exists a valid RES satisfying

Φ[𝑡𝑠 ,𝑡𝑒 ] ⊆ Φ[𝑡𝑠 ,𝑡𝑚𝑎𝑥 ] ∩ 𝐸 [𝑡𝑠 ,𝑡𝑒 ] . By Lemma 15, Φ[𝑡𝑠 ,𝑡𝑚𝑎𝑥 ] ∩ 𝐸 [𝑡𝑠 ,𝑡𝑒 ] is also a valid RES. □

By Lemma 16, it is safe to only keep track of Φ[𝑡𝑠 ,𝑡𝑚𝑎𝑥 ] for each 𝑡𝑠 ∈ [0, 𝑡𝑚𝑎𝑥 ]. However, if we
only compress RES’s by each anchored start time, the index covering all start times will still take

𝑂 (𝑛 · 𝑡𝑚𝑎𝑥 ) space cost, which is the same as that of D-baseline index. To alleviate the enormous

space cost caused by 𝑡𝑚𝑎𝑥 , we exploit another overlapping relationship among RES’s.

• Overlapping relationship for multiple start times. We present an important observation

in Lemma 17, which allows us to compress all the RES’s by using only 𝑂 (𝑚) space.

Lemma 17. Given an directed temporal graph𝐺 , there exist (𝑡𝑚𝑎𝑥 +1) RES’s, i.e., Φ[0,𝑡𝑚𝑎𝑥 ] , Φ[1,𝑡𝑚𝑎𝑥 ] ,
· · · , Φ[𝑡𝑚𝑎𝑥 ,𝑡𝑚𝑎𝑥 ] , such that for each edge (𝑢, 𝑣, 𝑡), there is a chain and some 𝑡𝑙 , 𝑡𝑟 ∈ [0, 𝑡]

Φ[𝑡𝑙 ,𝑡𝑚𝑎𝑥 ],Φ[𝑡𝑙+1,𝑡𝑚𝑎𝑥 ], · · · ,Φ[𝑡𝑟 ,𝑡𝑚𝑎𝑥 ], (5)

satisfying (1) each RES in the chain contains the edge and (2) the edge is excluded in any RES’s that
are not in the chain.

Proof. We prove the lemma by giving a method to construct a set of RES’s satisfying the

condition in the lemma. Suppose that Φ[0,𝑡𝑚𝑎𝑥 ] has been derived by the process in Lemma 14. We

then can build Φ[1,𝑡𝑚𝑎𝑥 ] based on Φ[0,𝑡𝑚𝑎𝑥 ] . Specifically, when calling Algorithm 7 to collect edges

for Φ[1,𝑡𝑚𝑎𝑥 ] , the edges in Φ[0,𝑡𝑚𝑎𝑥 ] have the privilege to be traversed first when performing BFS.

By repeating the above process, we can derive a set of RES’s Φ[0,𝑡𝑚𝑎𝑥 ] , Φ[1,𝑡𝑚𝑎𝑥 ] , · · · , Φ[𝑡𝑚𝑎𝑥 ,𝑡𝑚𝑎𝑥 ] .
Since each edge with timestamp 𝑡 will be added into Φ for some 𝑡𝑙 and deleted for some 𝑡𝑟 + 1, the
condition in the lemma holds. □

By Lemma 17, for each edge (𝑢, 𝑣, 𝑡), we can identify an appearing time interval [𝑡𝑙 , 𝑡𝑟 ] such that

for any 𝑡 ′ ∈ [𝑡𝑙 , 𝑡𝑟 ], the RES over [𝑡 ′, 𝑡𝑚𝑎𝑥 ] contains it. For example, the edge (𝑣5, 𝑣6, 1) appears in
the RES’s starting from 𝑡𝑠 ∈ [0, 1], as shown in Figure 8.

v3v3 v2v2

v5v5 v6v6

v1v1v4v4

(ts = 0)(ts = 0) (ts = 1)(ts = 1) (ts ≥ 2)(ts ≥ 2)

v3v3 v2v2

v5v5 v6v6

v1v1v4v4
00

00

11

11

22

22

33

44

v3v3 v2v2

v5v5 v6v6

v1v1v4v4

11

11

22

22

33 33

44

Fig. 8. The structure of RES’s.

4.2.2 Index overview. After obtaining the appearing time intervals for all edges, we can reversely

organize the edges and their appearing time intervals, such that for each time interval [𝑡𝑖 , 𝑡 𝑗 ] where
0 ≤ 𝑡𝑖 ≤ 𝑡 𝑗 ≤ 𝑡𝑚𝑎𝑥 , there is a set of edges corresponding to it, denoted by 𝑅(𝑡𝑖 , 𝑡 𝑗 ), which can serve

as the RES-index.
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Example 5. Figure 9(a) presents the appearing time interval for each edge of the graph in Figure
1(b), based on which we can design the RES-index as depicted in Figure 9(b).

R(0, 0)={(v1, v2 , 0), (v6, v4, 0)}

R(0, 1)={(v2, v3, 1), (v3, v4, 3), (v3, v1, 2), (v4, v5, 2), (v5, v6, 1), (v6, v1, 4)}

0 1 2 time

(v1, v2, 0): [0, 0]
(v6, v4, 0): [0, 0]
(v2, v3, 1): [0, 1]

(v3, v4, 3): [0, 1]
(v3, v1, 2): [0, 1]

(v4, v5, 2): [0, 1]
(v5, v6, 1): [0, 1]（a）

（b）

(v6, v1, 4): [0, 1]
(v1, v2, 3): [1, 1]

R(1, 1)={(v1, v2, 3)}

Fig. 9. The RES-index for the graph in Figure 1(b).

Lemma 18. The RES-index costs 𝑂 (𝑚) space.
Proof. The lemma can be proved similarly to Lemma 8. □

4.2.3 Query processing. To answer the query over a time window [𝑡𝑠 , 𝑡𝑒 ], we first utilize the

RES-index to find all the edges in the RES over [𝑡𝑠 , 𝑡𝑒 ]. Then we can construct a new static graph

𝐺 ′ = (𝑉 , 𝐸 ′) where 𝑉 remains the same as the original graph 𝐺 and 𝐸 ′ represents the retrieved
edges. Finally, we run SCC algorithms on the graph𝐺 ′ to detect all the SCCs. Algorithm 8 presents

the details. The algorithm first constructs an empty graph 𝐺 ′ (line 1). Then, it adds all the edges in
𝑅(𝑡𝑖 , 𝑡 𝑗 ) where 𝑡𝑖 ≤ 𝑡𝑠 and 𝑡𝑠 ≤ 𝑡 𝑗 ≤ 𝑡𝑒 into 𝐺

′
(line 2). Finally, it computes and returns SCCs on 𝐺 ′

(line 3).

Algorithm 8: RES-query(Φ, 𝑡𝑠 , 𝑡𝑒 )
Input: the RES-index 𝑅 and query time window [𝑡𝑠 , 𝑡𝑒 ];
Output: all window-SCCs in 𝐺 [𝑡𝑠 ,𝑡𝑒 ] ;

1 𝐺 ′ ← (𝑉 , 𝐸 ′), 𝐸 ′ ← ∅;
2 for 𝑡𝑖 ∈ [0, 𝑡𝑠 ], 𝑡 𝑗 ∈ [𝑡𝑠 , 𝑡𝑒 ] do 𝐸 ′ ← 𝐸 ′ ∩ 𝑅(𝑡𝑖 , 𝑡 𝑗 ) ;
3 return all the SCCs computed from 𝐺 ′;

Lemma 19. Algorithm 8 answers a query in 𝑂 (𝑛) time.

Proof. In Algorithm 8, the constructed edge set 𝐸 ′ corresponds to a valid Φ[𝑡𝑠 ,𝑡𝑒 ] . Since |Φ[𝑡𝑠 ,𝑡𝑒 ] |
is bounded by 𝑂 (𝑛), the query time complexity is bounded by 𝑂 ( |Φ[𝑡𝑠 ,𝑡𝑒 ] | + 𝑛) = 𝑂 (𝑛). □

4.2.4 A two-pointer optimization. As mentioned above, we would need to compute Φ[𝑡𝑠 ,𝑡𝑚𝑎𝑥 ] for
each 𝑡𝑠 ∈ [0, 𝑡𝑚𝑎𝑥 ] before obtaining RES-index. A straightforward idea is to run SCC algorithms on

𝐺 [𝑡𝑠 ,𝑡𝑒 ] for all time windows. This is unrealistic since it costs 𝑂 ((𝑚 + 𝑛)𝑡2𝑚𝑎𝑥 ) time. Fortunately, we

observe that for each edge with the start time 𝑡𝑠 ∈ [𝑡𝑙 , 𝑡𝑟 ] in Lemma 17, the smallest 𝑡 when it is

involved in an SCC of𝐺 [𝑡𝑠 ,𝑡 ] is increasing as 𝑡𝑠 increases. We define such 𝑡 as the effective time in
Definition 9 and we formally prove the observation above in Lemma 20.

Definition 9 (effective time). Given an edge 𝑒 and a start time 𝑡𝑠 , if both vertices of 𝑒 are in the
same SCC of 𝐺 [𝑡𝑠 ,𝑡 ] , but they are not in the same SCC of 𝐺 [𝑡𝑠 ,𝑡−1] , then the effective time of 𝑒 at 𝑡𝑠 is
defined as 𝑇 (𝑡𝑠 , 𝑒) = 𝑡 . If 𝑒 is never involved in an SCC, 𝑇 (𝑡𝑠 , 𝑒) = 𝑡𝑚𝑎𝑥 + 1.
Lemma 20 (monotonicity of effective time). For an edge 𝑒 in 𝐺 , it holds for all 𝑡𝑠 ≥ 1 that

𝑇 (𝑡𝑠 , 𝑒) ≥ 𝑇 (𝑡𝑠 − 1, 𝑒).
Proof. We prove the lemma by contradiction. Assume𝑇 (𝑡𝑠 , 𝑒) < 𝑇 (𝑡𝑠−1, 𝑒). Then𝑇 (𝑡𝑠 , 𝑒) ≤ 𝑡𝑚𝑎𝑥

and 𝑒 is involved in an SCC of 𝐺 [𝑡𝑠 ,𝑇 (𝑡𝑠 ,𝑒) ] . Therefore, it should be also involved in an SCC of

𝐺 [𝑡𝑠−1,𝑇 (𝑡𝑠 ,𝑒) ] , which contradicts our assumption. □
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By Lemma 20, the effective times of an edge 𝑒 at different 𝑡𝑠 from its appearing time interval

[𝑡𝑙 , 𝑡𝑟 ] are monotonically increasing.

Example 6. As shown in Figure 10, the edge 𝑒 = (𝑣1, 𝑣2, 3) has effective times 2, 3, 5. When 𝑡𝑠 = 0,
𝑣1, 𝑣2 starts to form an SCC at time 𝑇 (0, 𝑒) = 2. Similarly 𝑇 (1, 𝑒) = 3. When 𝑡𝑠 ≥ 2, 𝑣1, 𝑣2 can never
form an SCC. Then 𝑇 (𝑡𝑠 , 𝑒) = 𝑡𝑚𝑎𝑥 + 1 = 5 for 𝑡𝑠 ≥ 2. Hence, this edge 𝑒 only needs to be considered
when running SCC algorithms for 𝐺 [𝑡𝑠 ,𝑡 ′ ] , where 𝑇 (𝑡𝑠 − 1, 𝑒) ≤ 𝑡 ′ ≤ 𝑇 (𝑡𝑠 , 𝑒).

0 1 2 3 4𝑡

𝑡𝑠 = 0 𝑡𝑠 = 1

5

𝑡𝑠 ≥ 2

𝒆 = (𝒗𝟏, 𝒗𝟐, 𝟑)

Fig. 10. Effective times of 𝑒 = (𝑣1, 𝑣2, 3).
The number of different time windows where an edge is considered is 𝑂 (𝑡𝑚𝑎𝑥 ) by Lemma 21.

Therefore, the time complexity is reduced to 𝑂 (𝑚𝑡𝑚𝑎𝑥 + 𝑛𝑡2𝑚𝑎𝑥 ).
Lemma 21. For an edge 𝑒 in𝐺 , it can be considered in 2𝑡𝑚𝑎𝑥 + 1 = 𝑂 (𝑡𝑚𝑎𝑥 ) different time windows.

Proof. For the start time 𝑡𝑠 , the number of different time windows is 𝑇 (𝑡𝑠 , 𝑒) −𝑇 (𝑡𝑠 − 1, 𝑒) + 1.
Therefore, the total number of different time windows is:

𝑡𝑚𝑎𝑥∑︁
𝑡𝑠=0

(𝑇 (𝑡𝑠 , 𝑒) −𝑇 (𝑡𝑠 − 1, 𝑒) + 1) = 𝑡𝑚𝑎𝑥 + 1 + 𝑡𝑚𝑎𝑥 = 2 · 𝑡𝑚𝑎𝑥 + 1,

where 𝑇 (−1, 𝑒) = 0. The equation is asymptotic to 𝑂 (𝑡𝑚𝑎𝑥 ). □

4.2.5 Index construction. Based on the above two-pointer optimization, the RES-index can be built

by computing the RES’s for all possible time windows efficiently and compressing them compactly.

Algorithm 9 shows the detailed steps. We first anchor each start time 𝑡𝑖 and initialize 𝐺 ′ (lines
1-2). The vertex set 𝑉 ′ represents the set of current SCCs in 𝐺 . Since the initial graph is empty,

the initial value of 𝑉 ′ is 𝑉 . As the time window expands to [𝑡𝑖 , 𝑡 𝑗 ], we initialize Φ[𝑡𝑖 ,𝑡 𝑗 ] by Φ[𝑡𝑖 ,𝑡 𝑗−1]
based on Lemma 14 (lines 3-5). For each original edge 𝑒 = (𝑢, 𝑣, 𝑡 𝑗 ) ∈ 𝐸𝑡 𝑗 , we map it into 𝐺 ′ by
adding (𝑢 ′, 𝑣 ′) into 𝐸 ′ (lines 6-7). We clear 𝐸𝑡 𝑗 and run algorithms to find SCCs on 𝐺 ′ (line 8). For
each SCC found (line 9), we iterate the internal edges and put the corresponding original edges into

𝐸𝑡 𝑗 (lines 10-11). Hence, for the next anchored start time 𝑡𝑖 + 1, those edges will only be accessed

at timestamp 𝑡 𝑗 , i.e., the effective time at 𝑡𝑖 . Afterward, we find the RES edges in 𝐸 ′ which can

connect all pairs of vertices in the SCC with bidirectional paths via Algorithm 7 (line 12). We add

the corresponding original edges of them into Φ[𝑡𝑖 ,𝑡 𝑗 ] and shrink the SCC in 𝐺 ′ into a new vertex

(line 13). After processing every 𝑡 𝑗 ∈ [𝑡𝑖 , 𝑡𝑚𝑎𝑥 ], we can derive Φ[𝑡𝑖 ,𝑡𝑚𝑎𝑥 ] and the corresponding edges
in 𝑅 (lines 14-15).

Lemma 22. Algorithm 9 costs 𝑂 (𝑚𝑡𝑚𝑎𝑥 + 𝑛𝑡2𝑚𝑎𝑥 ) time.

Proof. According to Lemma 21, each edge is processed 𝑂 (𝑡𝑚𝑎𝑥 ) times. Meanwhile, each vertex

is processed 𝑂 (𝑡2𝑚𝑎𝑥 ) times. Hence, the overall time cost is bounded by 𝑂 (𝑚𝑡𝑚𝑎𝑥 + 𝑛𝑡2𝑚𝑎𝑥 ). □

Additionally, when a new edge (𝑢, 𝑣, 𝑡𝑚𝑎𝑥 + 1) appears, the RES-index can be maintained without

recomputing from scratch. Specifically, we can revise Algorithm 9. In the outer loop (line 1), we

range variable 𝑡𝑖 from 0 to (𝑡𝑚𝑎𝑥 + 1). In the inner loop, when 𝑡𝑖 ∈ [0, 𝑡𝑚𝑎𝑥 ], the variable 𝑡 𝑗 is fixed
as (𝑡𝑚𝑎𝑥 + 1), and instead of initializing the RES by lines 4-5, we reconstruct Φ[𝑡𝑖 ,𝑡𝑚𝑎𝑥 ] from the

current RES-index, initialize 𝐸 ′ as 𝐸 [𝑡𝑖 ,𝑡𝑚𝑎𝑥 ] , and run the steps in lines 8-15; when 𝑡𝑖 = 𝑡𝑚𝑎𝑥 + 1, we
follow the original procedure.
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Algorithm 9: RES-construct(𝐺)
Input: a directed temporal graph 𝐺 = (𝑉 , 𝐸);
Output: the index 𝑅(𝑡𝑖 , 𝑡 𝑗 ) for all 0 ≤ 𝑡𝑖 ≤ 𝑡 𝑗 ≤ 𝑡𝑚𝑎𝑥 ;

1 for 𝑡𝑖 ← 0, · · · , 𝑡𝑚𝑎𝑥 do
2 𝐺 ′ ← (𝑉 ′, 𝐸 ′) where 𝑉 ′ ← 𝑉 , 𝐸 ′ ← ∅;
3 for 𝑡 𝑗 ← 𝑡𝑖 , · · · , 𝑡𝑚𝑎𝑥 do
4 Φ[𝑡𝑖 ,𝑡 𝑗 ] ← ∅;
5 if 𝑡 𝑗 > 𝑡𝑖 then Φ[𝑡𝑖 ,𝑡 𝑗 ] ← Φ[𝑡𝑖 ,𝑡 𝑗−1] ;
6 for 𝑒 = (𝑢, 𝑣, 𝑡 𝑗 ) ∈ 𝐸𝑡 𝑗 do
7 Map 𝑢, 𝑣 to 𝑢 ′, 𝑣 ′; 𝐸 ′ ← 𝐸 ′ ∪ {𝑒 ′ = (𝑢 ′, 𝑣 ′)};
8 Clear 𝐸𝑡 𝑗 and run algorithms to find SCCs on 𝐺 ′;
9 for each SCC in 𝐺 ′ do
10 for each internal edge 𝑒 ′ in the SCC do
11 𝑒 ← the original edge of 𝑒 ′; Add 𝑒 into 𝐸𝑡 𝑗 ;

12 Find RES edges 𝐸𝑆 for the SCC by calling Algorithm 7;

13 Add 𝐸𝑆 to Φ[𝑡𝑖 ,𝑡 𝑗 ] and shrink the SCC into a vertex;

14 for 𝑒 ∈ Φ[𝑡𝑖 ,𝑡𝑚𝑎𝑥 ]\Φ[𝑡𝑖−1,𝑡𝑚𝑎𝑥 ] do 𝑡𝑙 (𝑒) ← 𝑡𝑖 ;

15 for 𝑒 ∈ Φ[𝑡𝑖−1,𝑡𝑚𝑎𝑥 ]\Φ[𝑡𝑖 ,𝑡𝑚𝑎𝑥 ] do add 𝑒 into 𝑅(𝑡𝑙 (𝑒), 𝑡𝑖 − 1);

5 EXPERIMENTS
We now present the experimental results. We first discusses the setup in Section 5.1. Then we

report the efficiency results in Sections 5.2 and 5.3. We further motivate the window-CC/SCC by a

case study of anomaly DBLP data detection in Section 5.4. Our codes are available in two GitHub

repositories including window-CC
2
and window-SCC

3
solutions, respectively.

5.1 Setup

Datasets

Undirected temporal graphs Directed temporal graphs

contact facebook mit youtube dblp_coauthor wikipedia bitcoin dblp-cite CollegeMsg email-eu flickr amazon

(CT) (FB) (MIT) (YT) (DA) (WK) (BTC) (DC) (CM) (EE) (FK) (AM)

𝑛 275 63,732 97 3,223,590 1,824,702 1,870,710 5,881 12,590 1,899 986 2,302,926 19,546,448

𝑚 28,244 817,035 1,086,404 9,375,374 29,487,744 39,953,145 35,592 49,759 59,835 332,334 33,140,017 52,885,992

𝑡𝑚𝑎𝑥 15,661 333,923 33,451 202 76 2,197 35,591 29 58,910 207,879 133 272

size (bytes) 225,952 6,536,280 8,691,232 75,002,992 235,901,952 319,625,160 284,736 396,632 478,680 2,658,672 265,120,136 423,087,936

Table 3. Datasets used in our experiments.

In our experiments, we use 12 real-world temporal graphs from SNAP [32] and KONECT project

[30]. Table 3 provides the statistics of each graph, where 𝑛 and 𝑚 are the numbers of vertices

and edges respectively, 𝑡𝑚𝑎𝑥 is the maximum timestamp (counting from 0), and size (bytes) is the
memory cost (in bytes) of the graph.

To measure the query efficiency of each dataset, for each dataset, we generate 1000 queries

with the size of query window (i.e., 𝑡𝑒 − 𝑡𝑠 ) as 0.8𝑡𝑚𝑎𝑥 where 𝑡𝑠 is selected randomly. Then we

execute the 1000 queries sequentially and compute the average time cost of the queries. Besides, the

indexing time and the average query time of each dataset is measured, respectively. All algorithms

2
https://github.com/ForwardStar/spannedCC

3
https://github.com/ForwardStar/spannedSCC
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are implemented in C++, compiled with the g++ compiler at -O3 optimization level, and run on a

Linux machine with an Intel Xeon 2.40GHz CPU and 128GB RAM.

5.2 Efficiency on undirected temporal graphs
5.2.1 Query processing. Figure 11 shows the average query time of three query algorithms on all

undirected datasets. Note that the results of the U-baseline-query algorithm are not reported for FB

and WK datasets since it raises an OOM (out-of-memory) exception for the huge space cost. In the

figures and tables, we use “N/A” to denote that the index construction could not be finished within

72 hours or raised an OOM exception. Clearly, our index-based query algorithms are faster than

the U-online solution. Besides, we see that the larger ratio of𝑚 over 𝑛 results in a larger speedup,

which is in line with the time complexities of these query algorithms as listed in Table 1.
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U-online U-baseline-query TSF-query
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N
/A

Fig. 11. Average time cost of window-CC queries.

We also evaluate the effect of the query time window size. For each graph, we fix the start time

of the query window as 𝑡 = 0 and consider five query time window sizes, i.e., 20%, 40%, 60%, 80%

and 100% of 𝑡𝑚𝑎𝑥 respectively. We then record the average running time of 1,000 queries with each

window size. Figure 12 reports the efficiency results on undirected datasets. When the time window

is small, all algorithms cost a similar amount of time. However, when the time window is larger,

the U-online algorithm takes more time, while our index-based solutions’ time costs do not change

much.
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Fig. 12. Effect of the size of the query window on undirected temporal graphs.
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5.2.2 Index construction. We compare the efficiency of index construction algorithms on all graphs

in Figure 13(a). Clearly, the TSF-index can be built faster than the U-baseline index, since U-baseline-

construct costs 𝑂 ((𝑚 + 𝑛 log𝑛)𝑡𝑚𝑎𝑥 ) time while TSF-construct needs 𝑂 (𝑚𝑡𝑚𝑎𝑥 ) time. Besides, we

report the space cost of each index on all graphs in Figure 13(b). We see that the space cost of

TSF-index is much less than that of U-baseline-index, because their space costs are bounded by

𝑂 (𝑚) and 𝑂 (𝑛 log𝑛 · 𝑡𝑚𝑎𝑥 ), respectively.
U-baseline-construct TSF-construct
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Fig. 13. Index construction time and index space cost.

Besides, we test the scalability of the index construction algorithms. Specifically, for each graph,

we build four subgraphs using edges with timestamps in [0, 𝑓 · 𝑡𝑚𝑎𝑥 ] with 𝑓 =25%, 50%, 75%, and

100%, respectively. Table 4 depicts the indexing time and space costs on these subgraphs. We can see

that TSF-index scales better than the U-baseline index for its optimized time and space complexities.

Metrics Construction time (`𝑠) Index space cost (bytes)

Indices U-baseline-construct TSF-construct U-baseline-construct TSF-construct

𝑓 25% 50% 75% 100% 25% 50% 75% 100% 25% 50% 75% 100% 25% 50% 75% 100%

CT 349K 1.1M 2.1M 3.6M 197K 709K 1.6M 2.8M 5.3M 12M 26M 51M 70K 127K 177K 226K

FB N/A N/A N/A N/A 117M 432M 9.9B 17B N/A N/A N/A N/A 1.1M 1.8M 2.5M 3.2M

MIT 2.9M 7.6M 15M 22M 1.9M 5.7M 12M 18M 12M 22M 35M 43M 489K 859K 1.2M 1.4M

YT 19M 44M 96M 221M 1.4M 4.8M 15M 36M 244M 626M 1.5B 3.1B 16M 23M 33M 54M

DA 1.3M 4.0M 15M 83M 7.8K 47K 1.1M 11M 187K 10M 195M 1.2B 6.6K 220K 4.3M 36M

WK 57M N/A N/A N/A 2.9M 36M 232M 15B 429M N/A N/A N/A 2.5M 19M 78M 237M

Table 4. Scalability test of indexing time and size.

We also evaluate the efficiency of index maintenance. Specifically, we first build the U-baseline

index and TSF-index with edges in [0, 0.8𝑡𝑚𝑎𝑥 ]. Then, we update the indices with the remaining

edges in (0.8𝑡𝑚𝑎𝑥 , 𝑡𝑚𝑎𝑥 ]. Table 5 shows the average update time of each new edge on each dataset.

Clearly, the maintenance of the indices is much faster than rebuilding the indices from scratch.

Algorithms U-baseline-index TSF-index

Datasets CT FB MIT YT DA WK CT FB MIT YT DA WK

Time (`𝑠) 234 N/A 257 59 2 N/A 253 2K 381 12 1 40

Table 5. The average update time of each new edge.

In addition, the above index-based query algorithms’ efficiency is measured without considering

the index construction time, so they may not be reasonable for scenarios that need to consider the

indexing time and query time in a collective manner. Thus, we also evaluate the number of TSF-

index-based queries required to amortize the index construction time cost, and report the minimum

numbers of such queries in Table 6. For each dataset, when the total number of queries exceeds the

number in Table 6, the TSF-query algorithm will be faster than the U-online algorithm. Note that
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the results of the U-baseline-index are skipped since it fails to build the index on some datasets. We

can observe that the numbers of such queries are not very large, and thus the TSF-query algorithm

performs better than the U-online algorithm for applications which may have large numbers of

queries.

Undirected graph Directed graph

Datasets CT FB MIT YT DA WK CT FB MIT YT DA WK

No. 874 9.1K 479 15 7 69 1.9M 10 1.1M 5.9M 437 102

Table 6. The minimum number of queries required to amortize the index construction time cost.

5.3 Efficiency on directed temporal graphs
5.3.1 Query processing. Figure 14 shows the average query time of three query algorithms on all

directed datasets. The results of the D-baseline-query algorithm are not reported for EE dataset

since it fails to build the index within 72 hours. Our RES-query algorithm is always faster than the

D-online algorithm. The speedup mainly depends on the ratio of𝑚 over 𝑛 as the D-online algorithm

and index-based algorithms cost 𝑂 (𝑚) and 𝑂 (𝑛) time, respectively. Besides, the D-baseline-query

algorithm is slightly faster than the RES-query algorithm because the retrieved edge set of RES-

index is twice the number of D-baseline-index, and the RES-query algorithm needs to run an SCC

algorithm while the D-baseline-query algorithm does not, although they have the same theoretical

time complexities.
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Fig. 14. Average time cost of window-SCC queries.

We also evaluate the effect of the query time window size by setting experiments similar to those

of undirected temporal graphs in Section 5.2.1. Figure 15 depicts the results on directed datasets.

Clearly, for any size of the query windows, our index-based solutions always perform better than

the D-online solution.

5.3.2 Index construction. We report the efficiency of the index construction algorithms on all

datasets in Figure 16(a). Notice that for EE dataset with a large 𝑡𝑚𝑎𝑥 value, the D-baseline-construct

algorithm fails to build the index within 72 hours while the RES-construct algorithm succeeds. The

reason is that the construction of the D-baseline-index takes 𝑂 ((𝑚 + 𝑛)𝑡2𝑚𝑎𝑥 ) time, while the time

complexity of the RES-index is smaller than it. Besides, we compare the space cost of indices in

Figure 16(b). Clearly, the RES-index costs much less space than the D-baseline-index, since its space

cost 𝑂 (𝑚) is linear to the size of the graph, while the D-baseline-index needs 𝑂 (𝑛𝑡𝑚𝑎𝑥 ) space.
Besides, we test the scalability of index construction algorithms by setting experiments similar to

those for undirected temporal graphs in Section 5.3.2. Table 7 reports the time and space costs for

different 𝑓 values. We can observe that the RES-index scales better than D-baseline-index because

of its optimized time and space complexities.

We also evaluate the maintenance efficiency using similar settings for the efficiency evaluation

of index maintenance on the undirected graph. Table 8 shows the average update time of each new
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Fig. 15. Effect of the size of the query window on directed temporal graphs.
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Fig. 16. Index construction time and size.

Metrics Construction time (`𝑠) Index space cost (bytes)

Indices D-baseline-construct RES-construct D-baseline-construct RES-construct

𝑓 25% 50% 75% 100% 25% 50% 75% 100% 25% 50% 75% 100% 25% 50% 75% 100%

BTC 8.6B 34B 72B 152B 95M 786M 3.2B 6.3B 419M 838M 1.3B 1.7B 103K 200K 303K 396K

DC 23K 101K 291K 523K 2.8K 14K 54K 106K 806K 1.6M 2.3M 3.1M 2.3K 13K 42K 80.1K

CM 8.3B 31B 65B 130B 149M 895M 2.7B 4.7B 224M 448M 672M 896M 132K 302K 461K 638K

EE 40B 137B N/A N/A 1.8B 6.6B 14B 24B 418M 8.4B N/A N/A 891K 1.9M 2.8M 3.7M

FK 144M 466M 1.2B 2.1B 54K 454M 814M 1.6B 627M 1.3B 1.9B 2.5B 42K 79M 100M 121M

AM 2.1B 9.1B 28B 136B 16M 146M 603M 4.4B 11B 22B 33B 43B 1.9M 7.7M 25M 129M

Table 7. Scalability test of indexing time and size.

edge on each dataset. We see that the maintenance of the indices is much faster than rebuilding the

indices from scratch.

In addition, we also evaluate the number of index-based queries that are required to amortize

the index construction time cost. Table 6 presents the minimum numbers of such queries by using

the RES-index on the directed datasets. Note that the results of the D-baseline index are skipped
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Algorithms D-baseline-index RES-index

Datasets BTC DC CM EE FK AM BTC DC CM EE FK AM

Time (`𝑠) 5.6M 73 2.7M N/A 40 2.8K 3.7M 108 654K 973K 33 3.5K

Table 8. The average update time of each new edge.

since it fails to build the index on some datasets. We see that if 𝑡𝑚𝑎𝑥 is not too large, the RES-query

algorithm is more efficient when the number of queries is large.

5.4 A case study of anomaly DBLP data detection
Consider the DBLP-citation (DC) graph, where each vertex is a paper and each edge indicates

one paper cites the other, and the timestamps are publishing time. Strictly speaking, there should

be no SCC in the graph since it implies wrong citations, i.e., a paper published in the year 𝑡 may

cite another paper published in year 𝑡 ′ with 𝑡 ′ > 𝑡 , but in practice some anomaly cases may exist

somehow.

By varying the query time windows of window-SCC queries, we identify two groups of window-

SCCs, which reveal the existence of some “wrong” citation data. The first group of window-SCCs

has time windows of one or two years, while the second group has time windows of three or more

years. With a careful investigation, we find that for the first group, the paper citations are actually

correct, because some papers may cite other preprint papers which are published in the following

one or two years. However, for the second group, we do find some erroneous data. For example,

the webpage of DBLP website
4
shows that the SIGMOD paper [21] published in 1989 cites another

paper [38] published in 2011. We download the SIGMOD paper and find that it does cite that paper

[38], which was actually published in 1986. Hence, the DBLP website does not present the year of

reference correctly.

6 RELATEDWORKS
6.1 CC queries on static graphs
As a fundamental problem in network science, the computation of CC has received plenty of

attention, and most of the existing works focus on static undirected graphs. Computing CCs in

a static graph can be achieved in linear time regarding the input graph size by BFS or DFS [31].

Recently, to process large graphs, some parallel approaches have been proposed. Earlier solutions

considered the PRAM model [3], but their implementations are often complex and inefficiently

matching the programming models of the current distributed frameworks. To solve this problem,

distributed CCs computation algorithms based on MapReduce [41, 44] and Pergel [16, 46] have

been proposed, and they mainly focus on reducing the total data communication cost and the

number of iterations.

For the directed graph, computing the SCCs is known to take 𝑂 (𝑚 + 𝑛) time using Tarjan

algorithm [47], Kosaraju-Sharir algorithm [49], or Path-based algorithm [19], which are based on

DFS. However, these serial algorithms are inefficient for large graphs since the computation of DFS

is known P-complete [45]. As a result, many parallel algorithms have been proposed to speed up

the computation of SCCs, such as Forward-Backward-based algorithms [17, 26, 48], GPU-based

algorithms [34, 54], and parallel randomized DFS algorithm [36]. In addition, distributed algorithms

have been studied for large directed graphs [28, 57].

Nevertheless, the existing works above mainly focus on conventional static graphs, so their

solutions cannot be applied to processing large temporal graphs due to the temporal edges.

4
https://dblp.org/rec/conf/sigmod/GraefeW89.html (click “load references” checkbox)
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6.2 CC queries on temporal graphs
Recently, a few CC queries have been studied in temporal graphs, where each edge has a timestamp

denoting the interaction time. For example, Akrida and Spirakis [1], Vernet et al. [51] proposed

the persistent CC model for temporal graphs, which is a set of vertices that are connected in each

timestamp of a time interval. Bhadra and Ferreira [6, 7] introduced the temporal CC model, which

is a set of vertices such that each pair of vertices is connected by a path with edges of increasing

timestamps. Nevertheless, these works fail to capture the relationships between entities involving

the same group or activity with no time-respecting path connecting them. To the best of our

knowledge, our work is the first one that studies window-CC and window-SCC queries in temporal

graphs.

Another kind of related but different graph model is the dynamic graph, where an edge in it

may appear in a large time interval while an edge of a temporal graph only appears at a single

timestamp. Some works have studied CC queries on dynamic graphs [5, 25, 43, 50]. A dynamic

graph can be transformed into a temporal graph by introducing artificial timestamps, but it may

lead to a huge number of new edges and high time cost if using our algorithms.

In the literature, to process temporal and dynamic graphs, many different types of algorithms

have been developed, including streaming algorithms [40], semi-streaming algorithms [15], sliding

window-based algorithms [10], and incremental graph algorithms [13]. The high-level ideas of

building our indices are somewhat similar to the ideas in the aboveworks. That is, when constructing

the indices, we anchor each start time and then process the temporal edges incrementally, during

which time windows with the same start time have been considered. However, these works do

not build indices to compactly organize all the window-CCs of a temporal graph, for supporting

CC/SCC queries with arbitrary time windows.

In addition, recently some other queries have many studied on temporal graphs. Wu et al. [55]

studied the shortest path problem in temporal graphs. Wen et al. [53] defined a new reachability

concept called span-reachability in temporal graphs and proposed index-based solutions. Gurukar

et al. [24] computed the communication motifs in temporal graphs. Some cohesive subgraph queries

have been studied in temporal graphs, such as 𝑘-core queries [35, 56, 59], quasi-clique query [58],

and dense subgraph query [37].

7 CONCLUSION
In this paper, for the first time, we introduce the concepts of window-CCs and window-SCCs on

undirected and directed temporal graphs, respectively. We then study the queries of window-CC

and window-SCC by developing several efficient index-based query solutions. The space costs of the

best indices are linear to the sizes of the temporal graphs. The extensive experimental evaluation on

12 real-world datasets demonstrates the high efficiency and effectiveness of the proposed solutions.

In the future, we will develop distributed index construction algorithms, which would be useful

for very large temporal graphs containing billions of edges. In the future, we will implement our

algorithms by using a distributed computing platform (e.g., Pregel), which would be very useful

when the temporal graph is too large to be kept by a single machine.
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