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ABSTRACT
Given a directed graph G, the directed densest subgraph (DDS)

problem refers to finding a subgraph from G, whose density is the

highest among all subgraphs of G. The DDS problem is fundamen-

tal to a wide range of applications, such as fake follower detection

and community mining. Theoretically, the DDS problem closely

connects to other essential graph problems, such as network flow

and bipartite matching. However, existing DDS solutions suffer

from efficiency and scalability issues. In this paper, we develop

a convex-programming-based solution by transforming the DDS

problem into a set of linear programs. Based on the duality of linear

programs, we develop efficient exact and approximation algorithms.

Especially, our approximation algorithm can support flexible pa-

rameterized approximation guarantees. We have performed an ex-

tensive empirical evaluation of our approaches on eight real large

datasets. The results show that our proposed algorithms are up to

five orders of magnitude faster than the state-of-the-art.
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Figure 1: An example of fake follower detection [37].

1 INTRODUCTION
As one of the most representative kinds of graph data [9, 19–22, 27,

34, 35], directed graphs have been widely used to model complex

relationships among objects [2, 9, 27]. For example, in Twitter, a

directed edge can represent the “following” relationship between

two users [27]; the Wikipedia article network can be modeled as

a directed graph by mapping articles to vertices and links among

articles to edges [9]; the Web network can also be modeled as a

vast directed graph [2]; in gene regulatory networks, a link from

gene A to gene B represents the regulatory relationship between

those genes [29].

In this work, we study efficient solutions of the directed densest
subgraph (DDS) problem, which aims to find the subgraph of a

given directed graph having the highest density. This problem was

first introduced by Kannan and Vinay [28], and has since received

significant research interest [4, 10, 17, 30, 37, 50]. Essentially, the

DDS problem aims to find two sets of vertices, S∗ and T ∗, from G,
where (1) vertices in S∗ have a large proportion of outgoing edges

to those in T ∗, and (2) vertices in T ∗ receive a large proportion of

edges from those in S∗ [28, 37]. The DDS has been widely used in

many real applications [17], such as fake follower detection [24,

46], community mining [31], link spam detection [16], and graph

compression [8]. For example, Figure 1 illustrates the application of

fake follower detection [24, 46], which aims to identify fraudulent

actions in a microblogging network, with edges representing the

“following” relationships among users. By issuing a DDS query, we

can find two sets of users S∗ and T ∗. Since compared with other

users, the user d (in T ∗) has unusually numerous followers (i.e.,

a, e, f ,д,h) in S∗; it may be worth investigating whether d has

bribed the users in S∗ for following him/her.

Given a directed graphG = (V ,E) and two sets of (not necessarily
disjoint) vertices S,T ⊆ V , the density of the directed subgraph
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induced by S andT is the number |E(S,T )| of edges linking vertices
in S to vertices in T over the square root of the product of their

sizes, i.e., ρ(S,T ) = |E(S,T ) |√
|S | |T |

. Based on the density definition, the

DDS problem [4, 10, 28, 30, 37] is defined as finding two sets of

vertices, S∗ and T ∗, such that ρ(S∗,T ∗) is the largest among all the

possible choices of S,T ⊆ V . For example, for the directed graph

in Figure 1, the DDS is the subgraph induced by S∗ = {a, e, f ,д,h}

and T ∗ = {d}, whose density is ρ∗ = 5√
5×1
=
√
5, and there is no

other subgraph whose density is larger than

√
5.

In undirected graphs, the density of a graphG = (V ,E) is defined

to be ρ(G) = |E |
|V | [18], which is different from that in directed

graphs. In other words, finding the densest subgraph in undirected

graphs (DS problem for short) amounts to finding the subgraph

with the highest average degree [18]. For example, suppose we

treat the graph in Figure 1 as an undirected graph by ignoring the

directions of the edges. In that case, the densest subgraph will be

the graph itself, with density 1, since there is no subgraph with a

higher density. Compared to the DS problem, the DDS problem asks

for two sets, S∗ andT ∗, which provides the advantage to distinguish
different roles of vertices in the above application. On the other

hand, if we restrict S = T , the density of a directed graph reduces

to the classical notion of the density of undirected graphs. Hence, it

naturally generalizes the density of undirected graphs and provides

more information specific to directed graphs.

Prior works. In the literature, both exact [10, 30, 37] and ap-

proximation algorithms [4, 10, 28, 37, 50] have been developed for

solving the DDS problem. The state-of-the-art exact algorithm is

DC-Exact [37], which improves the flow-based algorithm proposed

by Khuller and Saha [30] via the divide-and-conquer strategy and

elegant core-based pruning techniques. Nevertheless, DC-Exact
[37] is still inefficient on large datasets since it involves heavy cost

of max-flow computation. For example, as we will show later, on a

graph with 2.14M vertices and 17.6M edges, DC-Exact takes more

than eight days to find the DDS.

Among approximation algorithms, the most efficient one is

Core-Approx [37], which takes O(
√
m(n +m)) time, where n and

m denote the numbers of vertices and edges in a directed graph

G = (V ,E). However, it can only achieve a theoretical approxima-

tion ratio of 2, where the approximation ratio is the ratio of the

density of the DDS to that of the subgraph returned. As a result, it

does not afford the flexibility to control the approximation guaran-

tee of the subgraph returned, e.g., to be better than 2. To alleviate

this issue, recently Sawlani and Wang [50] have presented an algo-

rithm with approximation ratio of (1 + ε), where ε > 0. However,

as shown by our experiments later, it may perform even slower

than the exact algorithms in some scenarios. Thus, the question

of whether we can design efficient algorithms that can provide an
approximation guarantee that is parameterizable is open.

Contributions. Our contributions are summarized as follows:

(1) An extended linear programming (LP) formulation of the DDS
problem. We present an extended LP formulation of the DDS prob-

lem based on the LP formulation in [10], in which the DDS problem

is converted as a set of linear programs. Based on convex program-

ming, we derive the dual program for each linear program. We

further exploit the duality of the primal and dual problems to avoid

the overhead of computing the max-flow of the whole graph by

leveraging the iterative Frank-Wolfe algorithm [14].

(2) A divide-and-conquer algorithmic framework. The above LP for-

mulation needs to solve O(n2) linear programs by enumerating all

O(n2) possible values of |S |
|T | , which is impractical for large graphs.

To address this issue, we establish a connection between optimal

values of LPs and the density of the DDS. We use these results to

develop a divide-and-conquer strategy for reducing the number of

LPs to solve.

(3) An efficient (1+ε)-approximation algorithm. Based on the frame-

work above, we first develop an efficient approximation algorithm,

CP-Approx, which can produce a (1 + ε)-approximate DDS by ex-

ploiting the duality gap between the primal and dual programs,

where ε > 0. In particular, we devise an efficient strategy to extract

the approximate DDS candidate from the feasible solutions of the

LPs and evaluate whether the candidate satisfies the approximation

guarantee.

(4) An efficient exact algorithm. We further develop an efficient ex-

act algorithm, namely CP-Exact, which similarly extracts the DDS

candidates with that of CP-Approx. Given this, we first present the

approximation algorithm and then introduce the exact algorithm.

Besides, we introduce a novel concept, namely stable subgraph,
based on the feasible solution of the dual program, which can help

locate the DDS candidate and reduce the computation cost of DDS

verification. We also propose a verification strategy based on max-

flow on the stable subgraph.

(5) Extensive experiments.We have experimentally compared our

proposed DDS algorithms with the state-of-the-art algorithms on

eight real large datasets, where the largest one contains around two

billion edges. The results show that for exact DDS algorithms, our

CP-Exact is up to three orders of magnitude faster than the state-of-

the-art exact algorithm. To the best of our knowledge, CP-Exact is

the first exact algorithm that scales to billion-scale graphs. Besides,

for the (1 + ε)-approximation algorithms, our proposed CP-Approx
is up to five orders of magnitude faster than the existing one [50].

Outline. The rest of the paper is organized as follows. We review

the related work in Section 2. In Section 3, we formally present the

DDS problem. Section 4 discusses the linear programming formu-

lation of the DDS problem and its dual program. We present our

exact and approximation algorithms in Section 5 and experimental

results in Section 6. Section 7 concludes the paper.

2 RELATEDWORK
Densest subgraph discovery is a fundamental problem in network

science [4, 6]. In the following, we mainly review the works of

densest subgraph discovery on undirected graphs and directed

graphs, respectively. A more comprehensive tutorial can be found

in [17].

Densest subgraph discovery on undirected graphs. Given
an undirected graphG=(V , E), its density is defined as |E |

|V | . Goldberg

[18] first introduced the densest subgraph problem on undirected

graphs, which aims to find the subgraph with the highest density

among all the subgraphs, and designed a max-flow-based exact

algorithm. Later, more efficient exact algorithmswere developed [13,

41, 51, 53]. Generally, the algorithms above work well on small or
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moderate-size graphs but are still inefficient to handle large graphs,

as shown in [13]. Thus, researchers turned to develop efficient

approximation algorithms [4, 7, 10, 13], which often run much

faster by sacrificing some accuracy.

Besides, many variants, such as densest k-subgraph problem

[5], locally densest subgraph problem [47], k-clique-densest sub-
graph problem [13, 41, 51, 53], and density-based graph decompo-

sition [11, 52], have been extensively studied. Furthermore, some

researchers studied how to efficiently maintain the densest sub-

graph on dynamic graphs [3, 6, 12, 25, 49, 50], where graph edges

are inserted and deleted frequently. Among those, [50] also studied

the densest subgraph problem on directed graphs, which will be

introduced later. Nevertheless, the undirected solutions cannot be

directly applied to solving the DDS problem since the definitions

of density on undirected graphs and directed graphs are different.

Densest subgraphdiscovery ondirected graphs (DDSprob-
lem). Kannan and Vinay [28] were the first to define a notion of

density for directed graphs and propose the DDS problem. They

also presented a polynomial-time algorithm based on max-flow.

Charikar [10] developed an exact polynomial-time DDS algorithm

by solvingO(n2) linear programs. As a preview, we would like to re-

mark that its linear program formulation is different from ours, and

our formulation allows us to reduce the number of linear programs

to be solved. Recently, Ma et al. [37] have introduced a novel exact

algorithm by introducing the notion of [x ,y]-core and exploiting a

divide-and-conquer strategy.

Unfortunately, all the algorithms above are still inefficient, so

some efficient approximation algorithms were developed. Kannan

and Vinay [28] proposed an O(logn)-approximation algorithm.

Charikar [10] designed a 2-approximation algorithm taking time

O(n2 · (n +m)). Khuller and Saha updated their algorithm in [30] to

a 2-approximation algorithm with time complexity of O(n(n +m))
(see [37]). Bahmani et al. [4] provided a 2(1 + ε)-approximation

algorithm (ε > 0), based on a streaming model. Ma et al. [37–39]

developed an [x ,y]-core-based 2-approximation algorithm with a

time complexity ofO(
√
m(n+m)). Sawlani and Wang [50] provided

an algorithm for maintaining the (1 + ε)-approximation densest

subgraphs over dynamic directed graphs, and developed an ap-

proximation algorithm for static graphs with a time complexity

of O(log
1+ε n · tLP), where tLP is the time complexity for solving

a linear program and ε > 0. The static version of [50] is the main

competitor of our approximation algorithm.

3 PROBLEM DEFINITION
Consider a directed graph G=(V , E) with vertex set V , |V | = n,
and edge set E, |E | = m. Given two sets S,T ⊆ V which are not

necessarily disjoint, we use E(S , T ) to denote the set of all edges

from S to T , i.e., E(S , T )=E ∩ (S × T ). The subgraph induced by

vertices S ,T , and edges E(S ,T ) is called an (S ,T )-induced subgraph,
denoted byG[S,T ]. For each vertex v ∈ G , we use d+G (v) and d

−
G (v)

to denote its outdegree and indegree in G respectively. Next, we

formally present the definitions of density and the DDS problem.

Unless mentioned otherwise, all the graphs mentioned later in this

paper are directed graphs.

Definition 3.1 (DDS). Given a directed graph G=(V , E) and ver-

tices S,T ⊂ V , the density of the subgraph G[S,T ] is defined as

ρ(S,T ) = |E(S,T ) |√
|S | |T |

. A directed densest subgraph (DDS) ofG is the (S∗,

T ∗)-induced subgraphD = G[S∗,T ∗], whose density ρ(S∗,T ∗) is the
highest among all possible (S , T )-induced subgraphs, for S,T ⊂ V .
We use ρ∗ = ρ(S∗,T ∗) to denote the density of the DDS.

Problem 1 (DDS problem [4, 10, 17, 28, 30, 37]): Given a directed

graph G=(V , E), return a DDS D=G[S∗, T ∗] of G.1

4 FROM DDS TO LP
In this section, we first introduce a linear programming (LP) for-

mulation of the DDS problem (Section 4.1), in which we formulate

the DDS problem as a set of LPs. Next, we present the dual pro-

gram (DP) of the LP formulation (Section 4.2). Finally, we develop a

Frank-Wolfe-based iterative algorithm to solve the DP (Section 4.3).

4.1 An LP formulation of DDS
Recall that ρ∗ is the maximum value of ρ(S,T ) over all subsets S,T
of vertices. Inspired by the linear programming (LP) relaxation

in [10], we present another LP relaxation of ρ∗. Specifically, we

consider all the possible ratios of
|S |
|T | , and for each particular ratio

|S |
|T | =c , we formulate an LP(c) as follows:

LP(c) max xsum =
∑
(u,v)∈E

xu,v

s.t. xu,v ≥ 0, ∀(u,v) ∈ E
xu,v ≤ su , ∀(u,v) ∈ E
xu,v ≤ tv , ∀(u,v) ∈ E∑

u ∈V
su = a

√
c,∑

v ∈V
tv =

b
√
c
,

a + b = 2.

Our LP relaxation is similar to the LP relaxation in [10], but they

are different since we have an additional constraint a+b = 2. When

a = 1 and b = 1, our LP formulation is exactly the same as the one

in [10]. We will show later that this additional constraint allows us

to establish the connection between the optimal value of the LP(c)
for a fixed c , denoted by OPT(LP(c)), and the density of the DDS,

and the connection will play a key role in reducing the number

of LPs examined. For other variables, su , tv , and xu,v indicate the

inclusion of a vertex u/vertex v/edge (u,v) in an optimal densest

subgraph according to whether the variable value is larger than 0,

when c = |S
∗ |

|T ∗ | .

Next, we show that our LP relaxation is correct for the DDS

problem by establishing the lower and upper bounds ofOPT(LP(c)).

Lemma 4.1 (Lower bound ofOPT(LP(c))). For a fixed c , consider
two arbitrary sets of vertices P ,Q ⊆ V , and let c ′ = |P |

|Q | . Then,

OPT(LP(c)) ≥ 2

√
c
√
c ′

c+c ′ ρ(P ,Q).

1
There might be several directed densest subgraphs of a graph, and our algorithm will

find one of them.

Session 12: Graph Data Management and Mining SIGMOD ’22, June 12–17, 2022, Philadelphia, PA, USA

847



By Lemma 4.1, it is easy to observe that if we set c = c ′ = |S
∗ |

|T ∗ | ,

then we have OPT(LP(c)) ≥ ρ(S∗,T ∗).

Lemma 4.2 (Upper bound ofOPT(LP(c))). Given a feasible solu-
tion (x , s, t ,a,b) of LP(c)with value xsum, we can construct an (S,T )-
induced subgraph G[S,T ] such that

√
abρ(S,T ) ≥ xsum.

Lemma 4.2 implies that given a fixed c , we have a subgraph sat-

isfying

√
abρ(S,T ) ≥ OPT(LP(c)), where a,b are from the optimal

solution of LP(c).
The proofs of Lemmas 4.1 and 4.2 can be obtained by following

the proofs of Lemma 5 and 6 in [10], respectively. We provide the

detailed proofs in the technical report [36].

Combining Lemmas 4.1 and 4.2, we get Theorem 4.3.

Theorem 4.3. ρ∗ = ρ(S∗,T ∗) = maxc {OPT(LP(c))}.

Proof. According to Lemma 4.1, by setting c = c ′ = |S
∗ |

|T ∗ | , we

can get maxc {OPT(LP(c))} ≥ ρ(S∗,T ∗), From Lemma 4.2, there

exists an (S,T )-induced subgraph G[S,T ] such that

√
abρ(S,T ) ≥

maxc {OPT(LP(c))}, where a and b are from the optimal solution

to LP(c∗) where c∗ is the value that maximizes OPT(LP(c)). Since
a + b = 2 and a,b ≥ 0, we have

√
abρ(S,T ) ≤ ρ(S,T ) ≤ ρ(S∗,T ∗).

Hence, ρ(S∗,T ∗) = maxc {OPT(LP(c))}. □

Theorem 4.3 establishes the connection between the DDS and the

maximum value among the optimal values of all linear programs,

which means our LP formulation is correct for the DDS problem.

4.2 The dual program
To solve LP(c) for a fixed c , we use the Frank-Wolfe method [14],

which is one of the simplest and earliest known iterative optimizers.

However, for LP(c), it is hard to derive the gradient of all variables

w.r.t.

∑
(u,v)∈E xu,v . Thus, we resort to solving the dual program

DP(c) of LP(c). Hence, we first introduce the dual program DP(c)
of LP(c). Then, based on the duality of DP(c), we can figure out the

connection between the DDS and OPT(LP(c)) (which is also the

optimal value of DP(c), denoted by OPT(DP(c))) when c is fixed. In
the next section, we will further show that this connection enables

a divide-and-conquer strategy for reducing the number of LPs to

be solved.

Now, we present the Lagrangian dual DP(c) of LP(c),

DP(c) min ϕ

s.t. αu,v + βv,u ≥ 1, ∀(u,v) ∈ E
ζ ≥

∑
(u,v)∈E

αu,v , ∀u ∈ V

η ≥
∑
(u,v)∈E

βv,u , ∀v ∈ V

ϕ ≥ 2

√
cζ ,

ϕ ≥
2

√
c
η,

αu,v , βv,u ≥ 0. ∀(u,v) ∈ E
Before analyzing the properties of DP(c), we propose a novel

concept called c-biased density and the corresponding c-biased DDS
to facilitate the following derivation of OPT(DP(c)).

Definition 4.4 (c-biased density). Given a directed graph G =
(V ,E), a fixed c ∈ R+, and two sets of vertices P ,Q ⊆ V , the c-
biased density of the (P ,Q)-induced subgraph G[P ,Q] is defined
as

ρc (P ,Q) =
2

√
c
√
c ′

c + c ′
ρ(P ,Q) =

2

√
c
√
c ′

c + c ′
|E(P ,Q)|√
|P | · |Q |

, (1)

where c ′ = |P |
|Q | . Note when c

′ = c , ρc (P ,Q) = ρ(P ,Q).

Definition 4.5 (c-biased DDS). Given a directed graphG = (V ,E)
and a fixed c , the c-biased directed densest subgraph (c-biased DDS)
is the (S∗c ,T

∗
c )-induced subgraph, i.e.,G[S

∗
c ,T
∗
c ], whose c-biased den-

sity is the highest among all the possible (S,T )-induced subgraphs.

Let ρ∗c = ρc (S
∗
c ,T
∗
c ) be the density of the c-biased DDS.

Example 4.6. For the directed graphG shown in Figure 2a, if c is
fixed to 2, the 2-biased DDS will be the subgraph induced by (S∗

2
=

{u1,u2},T
∗
2
= {u3,u4}). Its 2-biased density is

2

√
2

√
c ′

2+c ′ ρ(S∗
2
,T ∗

2
) =

4

√
2

3
, where c ′ =

|S∗
2
|

|T ∗
2
|
= 1. □

By analyzing the feasible solution of DP(c), we can derive an

upper bound of OPT(LP(c)), by exploiting the weak duality.

Lemma 4.7 (Upper bound of OPT(DP(c))). For a fixed c , let
S∗c ,T

∗
c be the two subsets that maximize ρc (S,T ) (i.e.,G[S∗c ,T

∗
c ] is the

c-biased DDS). Then, there exists a feasible solution to DP(c) whose
value is ρc (S∗c ,T

∗
c ).

To facilitate the proof of Lemma 4.7, we introduce an auxiliary

bipartite graph B and propagable paths defined on B.
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(b) The auxiliary bipartite graph B

Figure 2: A directed graph and its auxiliary bipartite graph.

Definition 4.8 (Auxiliary bipartite graph). Given a directed graph
G = (V ,E), its auxiliary bipartite graph B is a triplet, i.e., B =
(L,R,EB ), where L = {u

L |u ∈ V }, R = {uR |u ∈ V }, EB = {(u
L ,vR )|

(u,v) ∈ E} ⊆ L × R.

Figure 2 shows an auxiliary bipartite graph of a directed graph.

Note that the auxiliary bipartite is only used to explain the design;

it is not materialized in the implementation.

Definition 4.9 (Propagable path). Given a feasible solution (α , β,
ζ ,η,ϕ) of DP(c), which satisfies that ∀(u,v) ∈ E,αu,v + βv,u = 1.

A path uI
0
→ uI

1
→ · · · → uIk in B is called a propagable path,

denoted as PuI
0
{uIk

, where I is a binary variable and can be L

or R indicating that the corresponding vertex belongs to L or R,
respectively, if the following conditions are fulfilled,
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(1) αui ,ui+1 > 0, 0 ≤ i < k , if uIi ∈ L,

(2) βui ,ui+1 > 0, 0 ≤ i < k , if uIi ∈ R.

The weight of the propagable path is defined as,

w(PuI
0
{uIk
) = min({αui ,ui+1 |u

I
i ∈ L} ∪ {βui ,ui+1 |u

I
i ∈ R}). (2)

Proof of Lemma 4.7. We claim that there exists a feasible solu-

tion (α , β , ζ ,η,ϕ) to DP(c) with objective value ρc (S
∗
c ,T
∗
c ), where

ζ = 1

2

√
c
ρc (S

∗
c ,T
∗
c ), η =

√
c
2
ρc (S

∗
c ,T
∗
c ). We prove the claim by con-

tradiction.

Suppose there were no feasible α and β which satisfy the first

three conditions inDP(c). In other words, for any α and β satisfying

∀(u,v) ∈ E,αu,v + βu,v = 1, there exists a vertex u ∈ V such

that

∑
v ∈V αu,v > ζ or a vertex v ∈ V such that

∑
u ∈V βu,v > η.

Without loss of generality, we assume

∑
v ∈V αu0,v > ζ . Meanwhile,

none of the following cases exists,

(1) ∃PuL
0
{uRk

∈ B and

∑
v βuk ,v < η,

(2) ∃PuL
0
{uLk

∈ B and

∑
v αuk ,v < ζ .

Otherwise, assuming case (1) exists, we can propagate the value of

min{
∑
v ∈V αu,v − ζ ,w(PuL

0
{uRk
),η −

∑
v βuk ,v } from

∑
v ∈V αu,v

to

∑
v βuk ,v by changing the α and β values along the propagable

path, until no such case exists.

For u0 such that

∑
v ∈V αu0,v > ζ , we construct two sets Sc =

{v |∃PuL
0
{vL ∈ B} ∪ {u0} and Tc = {v |∃PuL

0
{vR ∈ B}. Thus,

|E(Sc ,Tc )| =
∑

(u,v)∈E(Sc ,Tc )

(αu,v + βv,u )

> ζ |Sc | + η |Tc |

=

(
|Sc |
√
c
+
√
c |Tc |

)
ρc (S

∗
c ,T
∗
c )

2

.

(3)

Further, we have

|E(Sc ,Tc )| =

(
|Sc |
√
c
+
√
c |Tc |

)
ρc (Sc ,Tc )

2

. (4)

Combining Equations (3) and (4), we have ρc (Sc ,Tc ) > ρc (S
∗
c ,T
∗
c ),

which contradicts with the assumption made in Lemma 4.7 that

G[S∗c ,T
∗
c ] is the c-biased DDS. Hence, the lemma holds. □

Combining Lemmas 4.1 and 4.7, we can establish the connection

between the c-biased DDS and OPT(LP(c)) by Theorem 4.10.

Theorem 4.10. For a fixed c , let G[S∗c ,T
∗
c ] be the c-biased DDS.

Then, we have OPT(LP(c)) = OPT(DP(c)) = ρc (S
∗
c ,T
∗
c ).

Proof. We have OPT(LP(c)) ≥ ρc (S
∗
c ,T
∗
c ) by Lemma 4.1, and

OPT(LP(c)) ≤ ρc (S
∗
c ,T
∗
c ) by Lemma 4.7 and weak duality. Thus,

Theorem 4.10 holds by strong duality. □

Here, we use an example to illustrate further the correctness of

Theorem 4.10.

Example 4.11. For c = 2, we can construct the optimal solutions

for LP(c) and DP(c), whose value is exactly the c-biased density of

c-biased DDS discussed in Example 4.6.

For LP(c), by setting a = 2

3
and b = 4

3
, we can get s1 = s2 =

√
2

3

and t3 = t4 =
√
2

3
. Then, xu1,u3 = xu1,u4 = xu2,u3 = xu2,u4 =

√
2

3
.

Hence, the value of this solution is
4

√
2

3
. (ref. the proof of Lemma 4.1)

For DP(c), by setting ∀(u,v) ∈ E,αu,v = 1

3
, ∀(u,v) ∈ E, βv,u =

2

3
, we can get ζ = 2

3
, η = 4

3
, and ϕ = 4

√
2

3
.

Because both LP(2) and DP(2) have solutions with value of
4

√
2

3
,

OPT(LP(2)) = OPT(DP(2)) = ρc (S
∗
2
,T ∗

2
) = 4

√
2

3
. □

Comparison with the LP formulation in [10]. After a de-

tailed analysis of our LP(c) and DP(c), we provide an in-depth

comparison between the two LP formulations (i.e., ours and the

one in [10]) from two perspectives:

(1) From the perspective of LP(c). When a = 1 and b = 1, our LP

formulation (LP(c)) is the same as the one in [10]. Hence, a + b = 2

is a relaxation, which allows slightly larger search space for a fixed

c = |S |
|T | . Intuitively, because the search space of LP(c) is enlarged,

it is quite possible that the subgraph corresponding to the optimal

value for a fixed c has a different |S |
|T | ratio from c . We can observe

this difference from Example 4.11, when c = 2, the c-biased DDS

is the subgraph induced by (S∗
2
= {u1,u2},T

∗
2
= {u3,u4}), whose

|S |
|T | ratio is actually 1. In next section, we will show how to use this

difference to reduce the number of c values to be examined.

(2) From the perspective of DP(c). The dual program in [10] min-

imizes 2

√
cζ + 2√

c
η, while our DP(c) minimizes max(2

√
cζ , 2√

c
η).

Hence, it can be treated that our DP(c) is equivalent to the dual

program in [10] with one more constraint that 2

√
cζ = 2√

c
η, be-

cause our DP(c) reaches the optimal when 2

√
cζ = 2√

c
η according

to Lemma 4.7 and its proof. Meanwhile, this constraint helps us to

derive the equivalence between the optimal value of DP and the

density the c-biased DDS via the propagable path.

4.3 Solving the dual program DP(c)
In this subsection, we introduce the Frank-Wolfe-based method

for solving DP(c), when c is fixed. To do this, we first simplify the

DP(c) as follows:

(1) ϕ = max


max

u ∈V
{2
√
c

∑
(u,v)∈E

αu,v },

max

v ∈V
{
2

√
c

∑
(u,v)∈E

βv,u }.

(2) ∀(u,v) ∈ E,αu,v + βv,u = 1.

The second item holds, because we are trying to minimize ϕ and if

there exist an edge (u,v) such that αu,v + βv,u > 1, then we might

further minimize ϕ by decreasing the value of αu,v or βv,u .
Next, we introduce a new vector ®r :

®r = ⟨rα (1), rα (2), · · · , rα (n), rβ (1), rβ (2), · · · , rβ (n)⟩, (5)

where rα (u) = 2

√
c
∑
(u,v)∈E αu,v denotes the outgoing weight

defined on u and rβ (v) =
2√
c
∑
(u,v)∈E βv,u denotes the incoming

weight defined on v . As a result, the dual program DP(c) can be
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re-written as

DP(c) min ∥®r ∥∞

s.t. αu,v + βv,u = 1, ∀(u,v) ∈ E
2

√
c

∑
(u,v)∈E

αu,v = rα (u), ∀u ∈ V

2

√
c

∑
(u,v)∈E

βv,u = rβ (v), ∀v ∈ V

αu,v , βv,u ≥ 0. ∀(u,v) ∈ E

(6)

Notice that ∥®r ∥∞ = maxu ∈V {|rα (u)|, |rβ (u)|}.
Combining Theorem 4.10 and Equation (6), we can claim that

it is possible to distribute the weight of each edge such that there

exist two vertex sets S∗c and T ∗c satisfying that the outgoing weight

of each vertex u in S∗c and the incoming weight of each vertex

v in T ∗c are exactly the c-biased density of the c-biased DDS, i.e.,

rα (u) = rβ (v) = ρc (S
∗
c ,T
∗
c ). After solving the DP(c) and getting ®r ,

we can get G[S∗c ,T
∗
c ] by the following c-biased DDS construction

method: (1) select the vertices of ®r with the same highest values;

(2) let S∗c include vertices with the highest outgoing weights; and

(3) let T ∗c include vertices with the highest incoming weights.

We then adopt the Frank-Wolfe method to solve DP(c) above in
an iterative manner. In each iteration, the algorithm considers the

linearization of the objective function at the current position and

moves towards a minimizer of this function [26]. To linearize ∥®r ∥∞
at (α , β), we need the subgradient of ∥®r ∥∞, as ∥®r ∥∞ is convex but

not differentiable. Equation (7) gives a subgradient of ∥®r ∥∞.

∂∥®r ∥∞
∂αu,v

=
2

√
c

|M |
· 1rα (u)=∥®r ∥∞ , ∀(u,v) ∈ E;

∂∥®r ∥∞
∂βv,u

=
2

√
c · |M |

· 1rβ (v)=∥®r ∥∞ , ∀(u,v) ∈ E;
(7)

where M = {u |rα (u) = ∥®r ∥∞} ∪ {v |rβ (v) = ∥®r ∥∞}, 1expr is the

indicator function. More precisely, 1expr = 1 if the condition expr
is satisfied; otherwise 1expr = 0.

α̂u,v = 1rα (u)<rβ (v)∨rα (u)=rβ (v)∧c<1, ∀(u,v) ∈ E;
β̂u,v = 1rα (u)>rβ (v)∨rα (u)=rβ (v)∧c≥1, ∀(u,v) ∈ E. (8)

Equation (8) gives (α̂ , β̂), which is the minimizer of the linear func-

tion given by ∂∥®r ∥∞ among the feasible area of DP(c).
Based on Equations (7) and (8), we can develop a variant of the

Frank-Wolfe method [26], called Frank-Wolfe-DDS, to optimize

DP(c) in Equation (6). Algorithm 1 presents the details, which takes

input a directed graphG , the number of iterations N , and the ratio c ,

and outputs (®r (N ),α (N ), β (N )) after N iterations. First, it initializes

α (0), β (0), and ®r (0) (lines 2-4). Then, it repeats N iterations to update

α , β , and r (lines 5-12). In detail, the minimizer of the lineariza-

tion of ∥®r ∥∞ at (α (i−1), β (i−1)), denoted as (α̂ , β̂), is computed via

Equation (8) (lines 7-8); α (i) (resp. β (i)) is calculated based on α (i−1)

(resp. β (i−1)) and α̂ (resp. β̂) in line 9 (resp. line 10); the algorithm

aggregates α (i) and β (i) to obtain ®r (i) (lines 11-12).

Theorem 4.12 (Convergence of Algorithm 1). Suppose d+
max

(resp. d−
max

) is the maximum outdegree (resp. indegree) ofG and c is

Algorithm 1: A Frank-Wolfe-based algorithm.

1 Function Frank-Wolfe-DDS(G = (V , E), N ∈ Z+, c):
2 foreach (u, v) ∈ E do α (0)u,v ←

1

2
, β (0)v,u ←

1

2
;

3 foreach u ∈ V do r (0)α (u) ← 2

√
c
∑
(u,v )∈E α

(0)
u,v ;

4 foreach v ∈ V do r (0)β (v) ←
2√
c

∑
(u,v )∈E β (0)v,u ;

5 for i = 1, . . . , N do
6 γi ← 2

i+2 ;

7 foreach (u, v) ∈ E do
8 compute α̂u,v , β̂v,u via Equation (8);

9 α (i ) ← (1 − γi ) · α (i−1) + γi · α̂ ;

10 β (i ) ← (1 − γi ) · β (i−1) + γi · β̂ ;

11 foreach u ∈ V do r (i )α (u) ← 2

√
c
∑
(u,v )∈E α

(i )
u,v ;

12 foreach v ∈ V do r (i )β (v) ←
2√
c

∑
(u,v )∈E β (i )v,u ;

13 return (®r (N ), α (N ), β (N ));

fixed. In Algorithm 1, for i > 16(
√
c + 1√

c
)
|E |max{

√
cd+

max
, 1√

c
d−
max
)}

ε2 ,

we have ∥®r (i)∥∞ − ρ∗c ≤ ε .

Proof. For lack of space, we present the detailed proof in the

technical report [36]. □

5 FAST LP SOLUTIONS FOR DDS
In Section 4, we transform the DDS problem into a set of LPs LP(c),
w.r.t. different values of c = |S |

|T | , and develop a Frank-Wolfe-based

algorithm to optimize LP(c) via solving its dual DP(c) when c is
fixed. However, the straightforward method to find the DDS needs

to solve all linear programs LP(c), w.r.t. O(n2) possible c values,

which is prohibitively expensive. To reduce the number of LPs to be

solved, we build the connection between the c-biased DDS and the

DDS and develop a convex-programming-based algorithm frame-

work according to the connection we establish in Section 5.1. Under

this framework, we design approximation and exact algorithms in

Sections 5.2 and 5.3, respectively.

5.1 Algorithm framework
Our proposed approximation and exact algorithms share the same

framework, as depicted in Figure 3. Specifically, given a fixed c ,
we first optimize the dual program DP(c) via the Frank-Wolfe-

based algorithm (Algorithm 1). Then, we extract the c-biased DDS

from the near-optimal solution of DP(c) (briefed in Section 4.3).

Afterward, we establish the connection between the c-biased DDS

and the DDS and use it to devise a divide-and-conquer strategy to

reduce the number of different c values to be examined.

To reduce the number of c values to be examined, we derive the

following lemmas to compute (co , cp ).

Lemma 5.1. For a fixed c , let G[S∗c ,T
∗
c ] be the c-biased DDS. Let

co =
|S∗c |
|T ∗c |

and cp = c2
co . For any (S,T )-induced subgraph G[S,T ] of

G, ifmin{co , cp } ≤
|S |
|T | ≤ max{co , cp }, we have ρ(S,T ) ≤ ρ(S∗c ,T

∗
c ).

Proof. The proof is similar to the proof of Lemma 4.7 in [37].

We prove the lemma by contradiction. Let hc (x) =
2

√
c
√
x

c+x , which

is a concave function, and its maximum value can be obtained by
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Figure 3: Our algorithm framework.

setting x to c . Assume that there exists an [Sx ,Tx ]-induced sub-

graph, which satisfies min{co , cp } ≤ x = |Sx |
|Tx |
≤ max{co , cp }, but

it has ρ(Sx ,Tx ) > ρ(S∗c ,T
∗
c ). Since hc (x) ≤ hc (co ) and ρ(Sx ,Tx ) >

ρ(S∗c ,T
∗
c ), we have hc (x)ρ(Sx ,Tx ) > hc (co )ρ(S

∗
c ,T
∗
c ). This gives a

contradiction to our assumption that S∗c ,T
∗
c are the two subsets

which maximize
2

√
c
√
c ′

c+c ′ ρ(S,T ), where c ′ = |S |
|T | . □

We illustrate Lemma 5.1 by Example 5.2.

Example 5.2. Reconsider Example 4.6. If we fix c = 2, co =
|S∗c |
|T ∗c |
=

1 and cp =
c2
co = 4, then for any (S,T )-induced subgraph G[S,T ]

satisfying 1 ≤
|S |
|T | ≤ 4, its density will be at most ρ(S∗c ,T

∗
c ). This

implies if we first compute the c-biased DDS for c = 2, then the

values of c in [1, 4] can be skipped safely by Lemma 5.1. □

According to Lemma 5.1, we can apply a divide-and-conquer

strategy to reduce the number of values of c to be checked. That is,

for a range of c values (cl , cr ) to be examined, we pick the middle

value c in the range, find the c-biased DDS, and compute (co , cp )
via Lemma 5.1. Then, all the values in (co , cp ) can be skipped safely,

and the remaining intervals of c can be processed recursively.

Before presenting the details of the algorithm, we introduce the

[x ,y]-core, a kind of cohesive subgraphs on directed graphs [37],

which is helpful to reduce the size of the graph to be processed by

Frank-Wolfe-DDS.

Definition 5.3 ( [x ,y]-core [37]). Given a directed graph G=(V ,
E), the [x , y]-core is the largest (S , T )-induced subgraph G[S,T ],
which satisfies:

(1) ∀u ∈ S,d+G[S,T ](u) ≥ x and ∀v ∈ T ,d−G[S,T ](v) ≥ y;

(2) ∄G[S ′,T ′] , G[S,T ], such that G[S,T ] is a subgraph of

G[S ′,T ′], i.e., S ⊆ S ′, T ⊆ T ′, and G[S ′,T ′] satisfies (1).

Theorem 5.4 ([37]). Given a graph G=(V , E), its DDS D=G[S∗,

T ∗] is contained in the
[
⌈
ρ∗

2

√
c
⌉, ⌈
√
cρ∗
2
⌉

]
-core, where c= |S

∗ |

|T ∗ | .

By Theorem 5.4, we only need to run the Frank-Wolfe-DDS

algorithm on the

[
ρ̃∗

2

√
cr
,
√
cl ρ̃∗

2

]
-core, where (cl , cr ) is the interval

of c values to be examined and ρ̃∗ is the density of the densest

subgraph found so far.

Based on Frank-Wolfe-DDS and the divide-and-conquer strat-

egy, we design an algorithm framework, as shown in Algorithm 2.

Given the range (cl , cr ) of c to be checked, we first assign the mid-

dle value of cl and cr to c (line 2), and prune the graph via the

[x ,y]-core (line 3).

Algorithm 2: Our algorithm framework.

1 Function CP-DDS(G , cl , cr , ε , N ):
2 c ← cl +cr

2
;

3 G ← prune G via [x, y]-core; // Theorem 5.4

4 repeat
5 (®r, α, β ) ← Frank-Wolfe-DDS(G , N , c);
6 if ε > 0 then (Sc , Tc , co, cp, f) ← App-cDDS(G , r , ε , c);
7 else (Sc , Tc , co, cp, f) ← Exact-cDDS(G , r , α , β , c);
8 until f = True;
9 if ρ(Sc , Tc ) > ρ̃∗ then ρ̃∗ ← ρ(Sc , Tc ), D̃ ← G[Sc , Tc ];

10 if cl ≤ co then
11 (S, T ) ← CP-DDS(G , cl , co , ε);
12 if ρ(S, T ) > ρ̃∗ then ρ̃∗ ← ρ(S, T ), D̃ ← G[S, T ];

13 if cp ≤ cr then
14 (S, T ) ← CP-DDS(G , co , cr , ε);
15 if ρ(S, T ) > ρ̃∗ then ρ̃∗ ← ρ(S, T ), D̃ ← G[S, T ];

16 return D̃ ;

Then, the function repeats calling Frank-Wolfe-DDS with N it-

erations (line 5) and extracting the approximate (resp. exact) DDS

candidate as well as the c value range to be skipped via App-cDDS
(resp. Exact-cDDS) in line 6 (resp. line 7) until the accuracy require-

ment (noted as f) is fulfilled (lines 4-8). Next, we check whether

the current DDS needs to be updated; if so, update the DDS (line 9).

Finally, the whole range (co , cp ) is skipped and we conduct search

on the two intervals which are split by (co , cp ) to compute the

approximate DDS (lines 10-15).

The detailed functions of extracting the approximate and ex-

act DDS’s and skipping the range of c values, i.e., App-cDDS and

Exact-cDDS, will be discussed extensively in Sections 5.2 and 5.3

respectively.

Under the convex-programming-based framework (Algorithm 2),

to compute the (1+ε)-approximation DDS, we can directly invoke

CP-DDS(G, 1

n , n, ε , N) and term it as CP-Approx. Similarly, to com-

pute the exact DDS, we can directly invoke CP-DDS(G, 1

n , n, 0, N)
and call it CP-Exact.

5.2 The (1+ε)-approximation algorithm
We begin with an interesting Lemma:

Lemma 5.5. Given a directed graph G = (V ,E), a positive real
value ε , and c∗ = |S

∗ |

|T ∗ | , if c satisfies that
√
c∗ · 1

1+ε ≤
√
c ≤
√
c∗ ·(1+ε),

we have
ρ∗

ρ∗c
≤ 1 + ε, (9)

where the DDS of G is G[S∗,T ∗] and c∗= |S
∗ |

|T ∗ | .

Proof. According to the definition of the c-biased DDS, we have

ρ∗c ≥
2

√
c
√
c∗
+
√
c∗√
c

ρ(S∗,T ∗). Since c satisfies
√
c
√
c∗
≤ 1+ε and

√
c∗
√
c
≤ 1+ε ,

we can easily conclude that ρ∗c ≥
2

√
c
√
c∗
+
√
c∗√
c

ρ(S∗,T ∗) ≥ 1

1+ε ρ
∗.

Hence, Lemma 5.5 holds. □

Clearly, Lemma 5.5 states that if the value of c is close to c∗, then
the c-biased DDS provides a good approximation solution with
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theoretical approximation guarantee. However, the value of c∗ is
unknown in advance, so a straightforward approximation algorithm

needs to split the whole range of c , i.e., [ 1n ,n], into a list consecutive

intervals, i.e., [ 1n ,
1

n (1+ ε)
2], [ 1n (1+ ε)

2, 1n (1+ ε)
4], · · · , [ 1

(1+ε )2n,n],

then compute the exact c-biased DDS for a value of c from each

interval, and return the one with the highest density. This algorithm

needs to compute the exact c-biased DDS for a c selected from each

interval, which is very costly, and examine many such intervals. We

introduce two corollaries to tackle these issues, which allow us to

compute the approximate c-biased DDS and prune some intervals

of the c values.

Corollary 5.6. For a fixed c , let (α , β, ®r ) be a feasible solution of
DP(c). For G[Sc ,Tc ] satisfying

∥®r ∥∞
ρc (Sc ,Tc )

≤ 1 + ε , let co =
|Sc |
|Tc |

and

cp =
c2
co . For any (S,T )-induced subgraph G[S,T ], if min{co , cp } ≤

|S |
|T | ≤ max{co , cp }, then ρ(S,T ) ≤ (1 + ε) · ρ(Sc ,Tc ), where ε ∈ R+.

Proof. As ∥®r ∥∞ is the upper bound of ρ∗c , ρ
∗
c ≤ (1+ε)ρc (Sc ,Tc ).

For any G[S,T ] satisfying min{co , cp } ≤
|S |
|T | ≤ max{co , cp }, we

have ρ(S,T ) ≤ c+co
2

√
c
√
co
ρ∗c ≤ (1 + ε) · ρ(Sc ,Tc ). □

Corollary 5.7. For a fixed c , let (α , β , ®r ) be a feasible solution
of DP(c). Suppose G[Sc ,Tc ] satisfies

∥®r ∥∞
ρc (Sc ,Tc )

≤
√
1 + ε . For any

(S,T )-induced subgraph G[S,T ], if c
1+ε ≤

|S |
|T | ≤ c · (1 + ε), then

ρ(S,T ) ≤ (1 + ε) · ρ(Sc ,Tc ).

Proof. According to Lemma 5.5, we have
ρ(S,T )
ρ∗c

≤
√
1 + ε ,

where
c

1+ε ≤
|S |
|T | ≤ c · (1 + ε). Further, we have

ρ∗c
ρ(Sc ,Tc )

≤

∥r ∥∞
ρc (Sc ,Tc )

≤
√
1 + ε . Multiplying the two inequalities, we have

ρ(S,T )
ρ∗c
·

ρ∗c
ρ(Sc ,Tc )

≤ 1 + ε . Hence, the corollary holds. □

Based on Corollaries 5.6 and 5.7, we propose a strategy for reduc-

ing the number of c values to be examined. We use Figure 4 to illus-

trate the strategy: When the interval [co , cp ] covers [
c

1+ε , c · (1+ ε)],
we can skip the c values by using both Corollary 5.6 and Corol-

lary 5.7. When the interval [ c
1+ε , c · (1 + ε)] covers [co , cp ], then

only Corollary 5.7 will be used. Note that these two intervals never

partially intersect with each other, since cocp = c
2 = c

1+ε c(1+ε). In
other words, the intervals fulfill that either co ≤

c
1+ε ≤ c(1+ε) ≤ cp

or
c

1+ε ≤ co ≤ cp ≤ c(1+ε). In the two cases, the number of trials of

c is bounded by O(log
1+ε n), since the size of the interval increases

exponentially with (1+ε).
After approximately solving the DP(c) and getting ®r , we can get

the approximate c-biased DDS by slightly modifying the construc-

tion method in Section 4.3. That is, we sort the vertices of ®r and
then construct the approximate c-biased DDS using vertices with

higher incoming weights and outgoing weights.

App-cDDS (Algorithm 3) presents the detailed steps of comput-

ing an approximate c-biased DDS. It first initializes ρ∗c to 0, S∗c ,T
∗
c

to ∅, and Sc ,Tc to ∅ (line 1). Then, the vertices of ®r are sorted in

descending order to their corresponding values (line 2). We put

vertices with outgoing weight rα (u) into set L and vertices with

incoming weight rβ (v) into set R (line 4). Afterwards, each vertex is

inserted into Sc (resp.Tc ) if its corresponding vertex is contained in
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Figure 4: The strategy of reducing the number of c values.

L (resp. R) (in lines 6-7). Once Sc orTc is updated, App-cDDS checks
whether ρ∗c can be updated by ρc (Sc ,Tc ) (line 9); if yes, updates ρ

∗
c ,

S∗c , andT
∗
c (line 10). Next, it computes co and cp according to Corol-

lary 5.6 (lines 11-12). Finally, it checks whether the approximate

DDS candidate satisfies the conditions in Corollaries 5.6 and 5.7 and

returns the DDS candidate as well as the range of c to be skipped

(lines 14-16).

Algorithm 3: Extract approximate c-biased DDS.

1 Function App-cDDS(G = (V , E), r , ε , c):
2 ρ∗c ← 0, S∗c , T

∗
c ← ∅, Sc , Tc ← ∅;

3 sort the nodes according to ®r : r (u1) ≥ r (u2) ≥ · · · ≥ r (u2n );
4 L ← {u |rα (u) ∈ ®r }, R ← {v |rβ (v) ∈ ®r };
5 for i = 1, . . . , 2n do
6 if ui ∈ L then Sc ← Sc ∪ {ui };
7 else Tc ← Tc ∪ {ui };
8 if Sc = ∅ or Tc = ∅ then continue;
9 if ρc (Sc , Tc ) > ρ∗c then
10 ρ∗c ← ρc (Sc , Tc ), S∗c ← Sc , T ∗c ← Tc ;

11 co ←
|S∗c |
|T ∗c |

, cp ← c2
co ; // Corollary 5.6

12 if co > cp then Swap(co , cp);

13 δ ←
r
uI
1

ρ∗c
;

14 if δ ≤
√
1 + ε then return

(S∗c , T
∗
c , min{co, c

1+ε }, max{cp, c · (1 + ε )}, True);
15 else if δ ≤ 1 + ε ∧ co < c

1+ε ∧ c · (1 + ε ) < cp then return
(S∗c , T

∗
c , co, cp, False);

16 else return (S∗c , T ∗c , co, cp, False);

Complexity. The time complexity of CP-Approx isO(log
1+ε n ·

tFW). tFW denotes the complexity of Frank-Wolfe-DDS, and its

convergence rate is provided by Theorem 4.12.

Comparisonwith the state-of-the-art. VW-Approx [50] is the
state-of-the-art (1 + ε)-approximation algorithm. VW-Approx trans-

forms the DDS problem intoO(log
1+ε ) vertex-weighted undirected

densest subgraph problems, where the vertex weights are set ac-

cording to O(log
1+ε ) different guesses of

|S |
|T | . We summarize the

reasons on why CP-Approx is more efficient than VW-Approx:
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(1) Less values of |S |
|T | to be examined. Both algorithms need to select

several different values of
|S |
|T | for inner-loop computation, but the

strategies of choosing values of
|S |
|T | are different, which can explain

the efficiency improvement. VW-Approx select O(log
1+ε n) values,

i.e., the powers of 1+ε over the range [ 1n ,n], while CP-Approx uses

the divide-and-conquer strategy to prune the values of
|S |
|T | based

on the optimization result in the inner-loop (Corollary 5.6). The

worst case of the number of values of
|S |
|T | examined in CP-Approx

is also O(log
1+ε n) (Corollary 5.7), but Corollary 5.6 allows more

values to be skipped.

(2) Tighter error estimation in the inner loop. When transforming

the DDS problem to a set of vertex weighted undirected densest

subgraph problems, VW-Approx applies a relaxation of AM-GM

inequality. In contrast, in CP-Approx, we build the equivalence

between the optimal solution of LP(c) and the c-biased DDS (Theo-

rem 4.10). We conjecture that the relaxation of AM-GM inequality

causes extra overhead to satisfy the approximation guarantee for

VW-Approx, especially when ε is small.

(3) Smaller size of the graph to be processed. The [x ,y]-core-based
pruning strategy (Theorem 5.4) helps prune the vertices, which

are certainly not contained in the DDS, and further reduce the size

of the graph to be processed by the Frank-Wolfe computation in

CP-Approx, while VW-Approx needs to process the whole graph

each time.

5.3 The exact algorithm
To obtain the exact c-biased DDS, a straightforward method is to

compute the optimal solution ofDP(c) using the Frank-Wolfe-based

algorithm, and then compute the c-biased DDS using the construc-

tion method in Algorithm 1. However, this method is very costly

since the Frank-Wolfe-based algorithm needs many iterations to

derive the optimal solution of DP(c) as shown by Theorem 4.12. To

reduce the number of such iterations, we introduce some novel tech-

niques such that the Frank-Wolfe-based algorithm can be stopped

earlier, but it can still output the optimal solution.

In the following, we first introduce a novel concept called sta-
ble (S,T )-induced subgraph inspired by [11], and then present the

necessary and sufficient conditions of verifying whether a stable

(S , T )-induced subgraph is the exact c-biased DDS.

Definition 5.8 (Stable (S,T )-induced subgraph). Given a directed

graph G and a fixed c , an (S,T )-induced subgraph G[S,T ] of G is a

stable (S,T )-induced subgraph with respect to a feasible solution

(®r ,α , β) to DP(c), if the following conditions hold:

(1) min

{
minu ∈S {rα (u)},minv ∈T {rβ (v)}

}
> max

{
maxu ∈V \S {rα (u)},maxv ∈V \T {rβ (v)}

}
;

(2) for each (u,v) ∈ E \ E(S,T ) such that αu,v = 0 if u ∈ S , or
βv,u = 0 if v ∈ T .

Essentially, in Definition 5.8, the first condition requires that ver-

tices in the stable (S,T )-induced subgraph are with higher incoming

weights or outgoing weights, while the second one states that the

edges of the stable (S,T )-induced subgraph are denser because the

incoming weights or outgoing weights received by vertices in the

Algorithm 4: Verify c-biased DDS.

1 Function Is-cDDS(G[S, T ], c):
2 L ← {uL |u ∈ S }, R ← {uR |u ∈ T };
3 VF ← {s } ∪ L ∪ R ∪ {t };
4 for uR ∈ R do add (s, uR ) to EF with capacity d+G [S,T ](u);

5 for uL ∈ L do add (uL, t ) to EF with capacity
ρc (S,T )
2

√
c

;

6 for uR ∈ R do add (uR, t ) to EF with capacity

√
cρc (S,T )

2
;

7 for (u, v) ∈ E(S, T ) do add (uR, uL ) to EF with capacity 2;

8 f ← maximum flow from s to t ;
9 return f = |E(S, T ) |;

subgraph only come from the edges in the subgraph. Then, we give

an example to explain further the stable (S,T )-induced subgraph.

Example 5.9. Reconsider the graph G in Figure 2a. Given c=2,
G[S = {u1,u2},T = {u3,u4}] is stable with respect to the feasible so-
lution (α , β, ®r ) to DP(c), where ∀(u,v) ∈ E(S,T ),αu,v = 1

3
, βu,v =

2

3
, and ∀(u,v) ∈ E \E(S,T ),αu,v = βu,v =

1

2
. The first condition in

Definition 5.8 is fulfilled since rα (u1) = rα (u2) = rβ (u3) = rβ (u4) =

4

√
2

3
is the highest value in ®r . The second condition is also fulfilled

as ∀(u,v) ∈ E \ E(S,T ) satisfies u < S and v < T .

We now theoretically show that for a fixed c , the c-biased DDS

must be contained in some stable (S,T )-induced subgraphs:

Lemma 5.10. For a fixed c , suppose an (S,T )-induced subgraph
G[S,T ] is stable with respect to some feasible solution (®r ,α , β) to
DP(c), and G[S∗c ,T

∗
c ] is the c-biased DDS. Then, G[S∗c ,T

∗
c ] is con-

tained in G[S,T ], i.e., S∗c ⊆ S and T ∗c ⊆ T .

Proof sketch. We prove the lemma by contradiction via assum-

ing G[S∗c ,T
∗
c ] is not contained the stable subgraph G[S,T ]. Then,

we derive the contradiction by considering two cases according to

whetherG[S∗c ,T
∗
c ] andG[S,T ] overlap with each other. The detailed

proof can be found in our technical report [36]. □

Lemma 5.10 implies that for a fixed c , the constraint thatG[S,T ]
is a stable (S,T )-induced subgraph is the necessary condition of

that G[S,T ] is the c-biased DDS, so the c-biased DDS verification

process can be stopped earlier by checking this condition.

Next, we introduce the verification procedure for checkingwhether

a stable (S,T )-induced subgraph is the c-biased DDS, inspired by

[37, 51], which is based on the max-flow algorithm, as shown in

Algorithm 4. To build the flow network, it first creates two sets L
and R of nodes (lines 2), initializes the flow network with node set

{s}∪L∪R∪{t} (line 3), and then adds directed edges with different

capacities between these nodes (lines 4-7). Afterward, it computes

the max-flow (line 8) and uses the value of the max-flow to verify

the optimality (line 9).

The correctness of Algorithm 4 is guaranteed by Theorem 5.11.

Theorem 5.11 (Optimality test by max-flow). Given a di-
rected graphG, a stable (S,T )-induced subgraphG[S,T ] ofG, a fixed
c , the max-flow f in Algorithm 4 equals the edge number |E(S,T )| ,
if and only if G[S,T ] is the c-biased DDS.

Before proving the theorem, we introduce a support lemma,

which gives the upper bound of |E(S,T )|.
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Lemma 5.12. Given a feasible vector ®r in DP(c) with rα (u1) ≥
rα (u2) ≥ · · · ≥ rα (un ) and rβ (u1) ≥ rβ (u2) ≥ · · · ≥ vβ (un ), any
(S,T )-induced subgraph in G satisfies

|E(S,T )| ≤


1

2

√
c

|S |∑
i=1

rα (ui ) +

√
c

2

|T |∑
i=1

rβ (ui )

 . (10)

Proof. For each edge (u,v), αu,v and βv,u can be considered

as the weights distributed from the edge to its two endpoints. As a

result, |E(S,T )| ≤
⌊

1

2

√
c
∑
v ∈S rα (v) +

√
c
2

∑
v ∈T rβ (v)

⌋
≤⌊

1

2

√
c
∑ |S |
i=1 rα (ui ) +

√
c
2

∑ |T |
i=1 rβ (ui )

⌋
, where the last inequality holds

because of the fact thatu1,u2, . . . ,u |S | are the |S | nodes with largest
rα values and u1,u2, . . . ,u |T | are the |T | nodes with largest rβ val-

ues. □

Proof of Theorem 5.11. Suppose f equals to |E(S,T )|, i.e., there
exists a feasible flow with value |E(S,T )| in the constructed net-

work. The feasible flow induces (α , β) ∈ DP(c) for G[S,T ]: for
each edge (u,v) ∈ E(S,T ), αu,v is the flow on the edge (vR ,uL)
(i.e., fvR,uL ) and βv,u = 1 − fvR,uL . This (α , β) induces ®r where
rα (u) = ρc (S,T ),∀u ∈ S and rβ (v) = ρc (S,T ),∀v ∈ T . In other

words, each item in ®r is equal to ρc (S,T ). Then, Lemma 5.12 shows

that there is no subgraph in G[S,T ] with strictly higher c-biased
density, because for any subgraph G[X ,Y ] ⊂ G[S,T ] we have

ρc (X ,Y ) ≤
2

√
c ·c ′

c+c ′

|X |
2

√
c
+
√
c |Y |
2

√
|X | · |Y |

ρc (S,T ) = ρc (S,T ), where c
′ =

|X |
|Y | .

By Lemma 5.10, the c-biased DDS is within G[S,T ]. Hence, G[S,T ]
is the c-biased DDS.

Conversely, if G[S,T ] is the c-biased DDS, there is a feasible

(α , β , ®r ) ∈ DP(c) for G[S,T ] such that rα (u) = ρc (S,T ),∀u ∈ S and

rβ (v) = ρc (S,T ),∀v ∈ T , following Lemma 4.7 and its proof. From

α , we can construct a feasible flow with value |EH | by setting the

flow on the edge (vR ,uL) to αu,v , for each (u,v) ∈ E(S,T ). □

Example 5.13. Following Example 5.9, we can validate that given

c = 2, the flow network generated based on the stable subgraph

G[S = {u1,u2},T = {u3,u4}] has the maximum flow with value

of 2 = |E(S,T )| by assigning the flows fuR
3
,uL

1

, fuR
3
,uL

2

, fuR
4
,uL

1

and

fuR
4
,uL

2

to
1

3
. Hence, the stable subgraph is a c-biased DDS.

Based on the above discussions, we develop the whole algorithm

of extracting and verifying the exact c-biased DDS in Algorithm 5.

Precisely, we first extract a tentative c-biased DDS following the

method used in App-cDDS (line 2). Then, we compute co and cp
according to Lemma 5.1 (lines 3-4). Afterward, we check whether

the extracted subgraph is a stable (S , T )-induced subgraph via Defi-

nition 5.8 (line 5). If yes, we will continue to check its optimality

by Algorithm 4 (line 6). If yes, the c-biased DDS is found (line

7). If the subgraph is stable but not the c-biased DDS, we use the

subgraph to replace the graph G. For the current c , the following
Frank-Wolfe-DDS computation will be conducted on the updated

G, as the c-biased DDS is contained in the subgraph according to

Lemma 5.10 (line 8). If the subgraph is not the c-biased DDS, the

algorithm returns False, meaning that Frank-Wolfe-DDS needs to

be invoked again (line 9).

Algorithm 5: Extract exact c-biased DDS.

1 Function Exact-cDDS(G = (V , E), r , α , β , c):
2 run lines 2-9 in Algorithm 3 to get G[S∗c , T

∗
c ];

3 co ←
|S∗c |
|T ∗c |

, cp ← c2
co ;

4 if co > cp then Swap(co , cp);
5 if Is-Stable(G , S∗c , T

∗
c , α , β) then // Definition 5.8

6 if Is-cDDS(G[S∗c , T ∗c ], c) then // Theorem 5.11
7 return (S∗c , T ∗c , co, cp, True);

8 update G as G[S∗c , T
∗
c ]; // Lemma 5.10

9 return (S∗c , T ∗c , co, cp, False);

Complexity. The time complexity of CP-Exact is O(h · tFW). h
is the number of LPs to solve. Theoretically, h ≤ n2, but h ≪ n2 in
practice. tFW denotes the complexity of Frank-Wolfe-DDS, and its

convergence rate is provided by Theorem 4.12.

Comparison with the state-of-the-art. DC-Exact [37] is the
state-of-the-art exact DDS algorithm enhanced with the divide-and-

conquer strategy and elegant core-based pruning techniques. Both

CP-Exact and DC-Exact adopt the divide-and-conquer strategy to

reduce the number of different c values to be examined, but they are

derived based on different paradigms. The one in [37] is based on

the output of the max-flow-based algorithm, and it needs to finish

the max-flow-based binary search to skip the c values. In contrast,

the one in our algorithm is based on the optimal value of the LP/DP

formulation. The feasible solutions of DP(c) and LP(c) provide the
upper and lower bound for the optimal value, respectively. Hence,

our divide-and-conquer strategy also works for our approximation

algorithm via the bounds. We further summarize the reasons why

CP-Exact is more efficient than DC-Exact:

(1) Avoiding the repeatedmax-flow computation. CP-Exact uses the
iterative Frank-Wolfe-DDS algorithm to avoid the heavy time cost

of computing the max-flow many times, where computing the max-

flow on a flow network takes at least O(nm) [45]. Instead, it only
uses the max-flow algorithm for the optimal validation on a small

subgraph.

(2) Early stop of the inner loop. The stable subgraph (Lemma 5.10)

and the optimality test by max-flow (Theorem 5.11) can help termi-

nate the inner loop iterations early.

(3) Smaller size of the graph to be processed. First, we borrow the

[x ,y]-core (line 3 of Algorithm 2) from [37] to keep the graph to

be computed as small as possible before the Frank-Wolfe iterations.

Next, our proposed stable subgraph (line 8 of Algorithm 5) helps

shrink the graph size further to be processed during the Frank-Wolfe

iterations.

6 EXPERIMENTS
In this section, we first introduce the experimental setup in Section

6.1, and then present the experimental results of approximation

algorithms and exact algorithms in Sections 6.2 and 6.3 respectively.
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Table 1: Directed graphs used in our experiments.

Dataset Full name Category |V | |E |

MO [15] moreno-oz Human Social 217 2,672

TC [1] maayan-faa Infrastructure 1,226 2,615

OF [44] openflights Infrastructure 2,939 30.5K

AD [40] advogato Social 6,541 51K

AM [33] amazon E-commerce 403K 3.38M

AR [42] amazon-ratings E-commerce 3.38M 5.84M

BA [43] baidu-zhishi Hyperlink 2.14M 17.6M

SK [48] web-sk-2005-all Web 50.6M 1.95B

6.1 Setup
We use eight real datasets [32] which are publicly available

2
. These

graphs cover various domains, including social networks (e.g., Twit-

ter and Advogato), e-commerce (e.g., Amazon), and infrastructures

(e.g., flight networks). Table 1 summarizes their statistics.

We compare the following approximation DDS algorithms:

• CP-Approx is our proposed approximation algorithm (Section 5.2).

• Core-Approx [37] is the state-of-the-art 2-approximation algo-

rithm.

• VW-Approx [50] is the state-of-the-art (1 + ε)-approximation al-

gorithm (briefed in Section 5.2).

We also compare the following exact DDS algorithms:

• CP-Exact is our proposed exact algorithm (Section 5.3).

• DC-Exact [37] is the state-of-the-art exact algorithm enhanced

with the divide-and-conquer strategy and elegant core-based

pruning techniques.

• Core-Exact [37] is simplified version of DC-Exactwithout using
the divide-and-conquer strategy.

• Flow-Exact [30] is the first max-flow-based exact algorithm.

• LP-Exact [10] is the LP-based exact algorithm.

Note that the parameter N of Frank-Wolfe-DDS is set to 100

in CP-Exact and CP-Approx. All the algorithms above are imple-

mented in C++with STL used. Our source code is publicly available
3
.

We run all the experiments on a machine having an Intel(R) Xeon(R)

Silver 4110 CPU @ 2.10GHz processor and 256GB memory, with

Ubuntu installed.

6.2 Approximation algorithms
In this section, we mainly compare our approximation algorithm

CP-Approx with the state-of-the-art (1 + ε)-approximation algo-

rithm VW-Approx [50] and the state-of-the-art 2-approximation

algorithm Core-Approx [37].

6.2.1 Efficiency comparison. In this experiment, we evaluate the

efficiency of CP-Approx, VW-Approx, and Core-Approx, with ε = 1.

Note that Core-Approx only provides the 2-approximation DDS,

and the efficiency result of CP-Approx and VW-Approx w.r.t. differ-

ent values of ε will be presented later. Figure 5 reports the efficiency

result of the three algorithms. The datasets are ordered by graph size

on the x-axis. Notice that for some datasets, the bars of VW-Approx
touch the solid upper line, which means VW-Approx cannot finish
within one week on those datasets. From Figure 5, we can make

2
http://konect.uni-koblenz.de/networks/

3
https://github.com/chenhao-ma/DDS-convex-code
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the following observations: First, CP-Approx is slightly slower than
Core-Approx. On average, the running time of CP-Approx is 2.68×
of that of Core-Approx over all datasets. Second, CP-Approx is at
least 10× and up to five orders of magnitude faster than VW-Approx.
We have listed three reasons on why CP-Approx is faster than

VW-Approx at the end of Section 5.2: fewer trials of different
|S |
|T | ,

tighter error estimation, and the smaller size of graph to be pro-

cessed.

6.2.2 Accuracy comparison. We present the actual approximation

ratios of all the three approximation algorithms in Figure 6 with

ε = 1. Specifically, for each dataset, we first obtain the exact DDS

via CP-Exact, then compute the approximate DDS’s using those ap-

proximation algorithms and get the actual approximation ratio (i.e.,

the density of the exact DDS over those of approximate DDS’s). For

VW-Approx, some bars are missing, as they cannot finish within one

week on those datasets. From Figure 6, we can observe that actual

approximation ratios are quite close to each other on most datasets,

except that on the AD dataset, the ratio of CP-Approx are slightly
larger than that of VW-Approx. Besides, most ratios of CP-Approx
are smaller than those of Core-Approx (except SK dataset), and

CP-Approx offers more flexibility on the approximation guarantee
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Table 2: Statistics of DDS’s w.r.t. different ε values on AD.

ε Density |S | |T | Similarity w.r.t. G[S∗, T ∗]
0 31.6811 453 195 1

0.1 31.6299 443 197 0.98

1 29.0183 913 2 0.43

2 28.0357 1 786 0.16

since ϵ can be any positive real values. The flexibility further helps

explore DDS of higher or lower density.

6.2.3 Effect of ε . We evaluate the effect of ε on the efficiency and ac-

curacy of the two (1+ε)-algorithms, i.e., CP-Approx and VW-Approx.
Figure 7 presents the running time and the densities of the sub-

graphs returned by the algorithms over different ε values from 0.1

to 6 on the two datasets. We also add the plot of
ρ∗
1+ε to gauge

how well the two algorithms satisfy the accuracy requirement.

When ε is larger, CP-Approx can provide less dense subgraphs,

which shows that CP-Approx can provide subgraphs with higher

or lower density via smaller or larger ε . Note the running time plot

of VW-Approx touches the solid upper line when ε = 0.1 on dataset

BA, which means VW-Approx cannot finish within one week on that
case. Hence, the density plot of VW-Approx is also missing in that

case. From Figure 7, we can observe: First, for both CP-Approx and

VW-Approx, their running time decreases along with the growth of

ε . This is reasonable since computing a more accurate result often

takes a longer time cost. Second, the improvement of CP-Approx
over VW-Approx is more significant when ε is set smaller. One rea-

son is that CP-Approx examines fewer LPs with different c val-

ues. Another reason is that the relaxation via AM-GM inequality

in VW-Approx causes extra overhead to satisfy the approximation

guarantee, especially when ε is small.

Hence, we conclude that our CP-Approx makes better use of the

error tolerance to gain the efficiency speedup over VW-Approx.
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6.2.4 A case study: parameter selection of ε . In this case study, we

investigate the approximate DDS’s returned by CP-Approx under
different ε values compared to the exact DDS. Table 2 reports the

statistics of the exact DDS and three approximate DDS’s (with

ε = 0.1, 1 and 2, respectively) on the AD dataset. In terms of the

density, we observe that all the three approximate DDS’s have

relatively high densities, but the approximate DDS with ε = 0.1

tends to have higher overlap than the subgraphs with ε = 1 and 2

since the former one’s vertices and structures are very close to the

exact DDS while the latter subgraphs look quite different from the

exact DDS. Furthermore, we have computed the similarity between

the approximate DDS’s and the exact DDS w.r.t. the sets of vertices

in the subgraphs. The similarity of the approximate DDS with

ε = 0.1 is 0.98 while the one with ε = 1 is 0.43. Hence, we can

conclude that if the users want to find a dense subgraph quickly,

they can choose larger ε values (e.g., ε = 1). On the other hand, if

the users want to find denser subgraphs that are highly overlapped

with and similar to the exact DDS, it is better to set ε to smaller

values (e.g., ε = 0.1). Further, users can also explore the DDS’s

returned with different values of ε in downstream applications (e.g.,

fake follower detection), as our CP-Approx is quite efficient.

6.3 Exact algorithms
6.3.1 Efficiency comparison. In Figure 8, we report the running

time of exact algorithms on all eight datasets scaling from thousands

to billions (ordered by the graph size on the x-axis). We can observe

that CP-Exact is at least 10× and up to 5000× faster than the state-

of-the-art exact algorithm DC-Exact. We have summarized three

reasons why CP-Exact is more efficient than DC-Exact at the end

of Section 5.3: avoiding the repeated max-flow computation; early

stop in the inner loop; the smaller size of the graph to be processed.

To further investigate the performance improvement of CP-Exact,
we collect some statistics of CP-Exact in Table 3, including the

number of LPs with different c values examined (noted as “#c”),
the average number of iterations that Frank-Wolfe-DDS runs for
#c LPs (noted as “Avg #iterations”), the average number of edges

that Frank-Wolfe-DDS processes for #c LPs after pruned via the

techniques in Section 5.1 (noted as “Avg #edges”), and the product
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Table 3: Statistics of CP-Exact over different datasets.

Datasets #c Avg #iterations Avg #edges Product

MO 17 158.82 1707.35 4.61 × 106

TC 18 177.78 588.72 1.88 × 106

OF 39 300 9146.62 1.07 × 108

AD 49 542.86 11687.8 3.11 × 108

AM 9 144.44 6982 9.08 × 106

AR 20 70 12426.5 1.74 × 107

BA 18 61.11 288142 3.17 × 108

SK 23 121.74 407 × 107 1.14 × 1011

Table 4: The running time of CP-Exact and CP-Exact-ab

Dataset CP-Exact CP-Exact-ab Speedup

MO 0.17s 22.26s 131.95

TC 0.08s 1.15s 15.29

OF 3.40s 439.06s 128.99

AD 13.12s 1208.11s 92.09

AM 6.13s 505.47s 82.46

AR 47.78s 321.27s 6.72

BA 242.66s 114709.50s 472.71

SK 10687.5s NA NA

for the three items (noted as “Product”). We can see that the num-

ber of c values examined on each dataset is much smaller than the

possible values of c (O(n2)), which demonstrates that the divide-and-

conquer strategy is indeed effective. Besides, as Frank-Wolfe-DDS
consumes the major running time of CP-Exact, the product ex-

plains why its time cost on AM is less than that on AD, although

AM is larger than AD. Similarly, its time cost on TC is less than

that on MO due to the same reason.

6.3.2 Ablation study of Is-Stable and Is-cDDS. Here, we con-

duct an ablation study on CP-Exact to understand the effectiveness
of the early stop strategies (Is-Stable and Is-cDDS). We name

the variant without Is-Stable and Is-cDDS as CP-Exact-ab (ab-
lation). In this variant, the Frank-Wolfe-DDS computation needs

to keep running until the optimal value reaches. Table 4 reports

the running time of CP-Exact and CP-Exact-ab over different

datasets. Note that CP-Exact-ab cannot finish reasonably on SK,

and its running time is marked as “NA” in the table. We can ob-

serve the speedup provided by Is-cDDS and Is-Stable is from

6× to 472×. Hence, the early stop strategies based on the stable

(S,T )-induced subgraph and the max-flow are effective to reduce

the Frank-Wolfe-DDS iterations.

6.4 Memory usage
We evaluate the memory usage of all algorithms. We observe that

the memory costs of all algorithms are around the same scale be-

cause all algorithms take linear memory usage w.r.t. the graph size.

The details are ommited here.

6.5 Comparing CP-Exact and CP-Approx
In Table 5, we report the average speedup of CP-Approx com-

pared to CP-Exact with respect to different values of ε over all

Table 5: Average speedup of CP-Approx compared to CP-Exact

ε 0.001 0.005 0.007 0.01 0.05 0.07

Avg Speedup 0.45 0.90 1.03 1.24 2.82 3.67

ε 0.1 0.5 1 1.5 2 2.5

Avg Speedup 4.67 9.37 25.13 26.87 37.39 38.26

datasets. We can observe that the speedup provided by CP-Approx
increases along with the increase of ε , because CP-Approx can tol-

erate larger errors when ε is larger. Besides, when ε = 0.001/0.005,

the speedup is less than 1, which means CP-Approx is slower than

CP-Exact. The reason is that the number of iterations for Frank-

Wolfe is proportional to ε−2 according to Theorem 4.12. Further,

for CP-Exact, we introduced effective early stop strategies via sta-

ble subgraphs and optimality test by max-flow. To summarize, for

small-to-moderate-sized graphs (e.g., AM), CP-Exact is the best

choice, as it computes an exact DDS in a reasonable time. For large-

scale graphs (e.g., SK), CP-Approx allows the users to efficiently

explore the different approximate DDS’s via different ε .

7 CONCLUSION
This paper studies efficient solutions of the directed densest sub-

graph (DDS) problem via convex programming. We first review

and discuss the limitations of existing algorithms. To efficiently

find the DDS, we formulate the DDS problem as a set of linear pro-

grams and derive their dual programs. We use a Frank-Wolfe-based

algorithm to iteratively solve the dual program and construct the

DDS candidates based on their duality. Next, we apply a divide-and-

conquer strategy to reduce the number of linear programs to be

solved and develop both efficient exact and (1 + ε)-approximation

algorithms, respectively, where ε is an arbitrary positive value. Fi-

nally, we perform extensive experiments on eight real datasets (up

to 2 billion edges) to evaluate the proposed algorithms. The ex-

perimental results show that our exact and approximation DDS

algorithms are up to three and five orders of magnitude faster than

their state-of-the-art competitors, respectively.

The excellent performance of applying the Frank-Wolfe-based

algorithm on the DDS problem (this work), the densest subgraph

problem on undirected graphs [11], and the k-clique-based densest

subgraph problem [51], inspires the possibility that the convex

programming theory and Frank-Wolfe-based algorithms may also

bring improvement to other graph optimization problems, e.g., the

max-flow problem [23]. Furthermore, it is worth investigating how

to define and study the top-k DDS’s problem, because users might

be interested in finding more than one densest subgraph.
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