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ABSTRACT KEYWORDS
Given a directed graph G, the directed densest subgraph directed graph, densest subgraph discovery
(DDS) problem refers to the finding of a subgraph from G, ACM Reference Format:

whose density is the highest among all the subgraphs of G.
The DDS problem is fundamental to a wide range of applica-
tions, such as fraud detection, community mining, and graph
compression. However, existing DDS solutions suffer from ef-
ficiency and scalability problems: on a three-thousand-edge
graph, it takes three days for one of the best exact algo-
rithms to complete. In this paper, we develop an efficient
and scalable DDS solution. We introduce the notion of [x,
y]-core, which is a dense subgraph for G, and show that the
densest subgraph can be accurately located through the [x,
y]-core with theoretical guarantees. Based on the [x, y]-core,
we develop exact and approximation algorithms. We have
performed an extensive evaluation of our approaches on
eight real large datasets. The results show that our proposed
solutions are up to six orders of magnitude faster than the
state-of-the-art.
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1 INTRODUCTION

In emerging systems that manage complex relationship among
objects, directed graphs are often used to model their rela-
tionships [3, 8, 30, 36]. For example, in online microblogging
services (e.g., Twitter and Weibo), the “following” relation-
ships between users can be captured as directed edges [30].
Figure 3a depicts a directed graph of the following relation-
ship for five users in a microblogging network. Here, Alice
has a link to David because she is a follower of David. As an-
other example, In Wikipedia, each article can be considered
as a vertex, and each link between two articles is represented
by a directed edge from one vertex to another [8]. As yet an-
other example, the Web can also be viewed as a huge directed

graph [3].

Figure 1: An example of fake follower detection.

In this paper, we study the problem of finding the densest
subgraph from a directed graph G, which was first proposed
in [31]. Conceptually, this directed densest subgraph (DDS)
problem aims to find two sets of vertices, S* and T, from
G, where (1) vertices in S$* have a large number of outgoing
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edges to those in T*, and (2) vertices in T™ receive a large
number of edges from those in S*. To understand DDS, let
us explain its usage in fake follower detection [26, 44] and
community mining [33]:

o Fake follower detection [26, 44] aims to identify fraud-
ulent actions in social networks [26]. Figure 1 illustrates a
microblogging network, with edges representing the “follow-
ing” relationship. By issuing a DDS query, two sets of users
S* and T*, are returned. Compared with other users, d (in
T*) has unusually a huge number of followers (a, e, f, g, h)
in $*. It may be worth to investigate whether d has bribed
the users in S* for following him/her.

Figure 2: An example of web community.

o Community mining [33]. In [33], Kleinberg proposed the
hub-authority concept for finding web communities, based
on a hypothesis that a web community is often comprised
of a set of hub pages and a set of authority pages. The hubs
are characterized by the presence of a large number of edges
to the authorities, while the authorities often receive a large
number of links from the hubs. A DDS query can be issued
on this network to find hubs and authorities. In Figure 2, for
example, websites in S* can be viewed as hubs providing
car rankings and recommendations, while websites in T*
play the roles of authorities, as the official websites for well-
known automakers.

DDS queries are also useful for graph compression, as dis-
cussed in [7]. Paricularly, Buehrer and Chellapilla [7] pro-
posed to reduce the number of edges by introducing virtual
nodes linking to S* and T* without sacrificing the connec-
tivity of G.

Now let us give more details about the DDS query [4, 10,
31,32][31]. Given a directed graph G = (V, E) and sets of (not
necesssarily disjoint) vertices S,T C V, the density of the
directed subgraph induced by (S, T) is the number |E(S, T)| of
edges linking vertices in S to the vertices in T over the square
LEG. DI Based

VISITI

on this definition, the DDS problem aims to find a pair of sets
of vertices, S* and T*, such that p(S*, T*) is the maximum
among all possible choices of S, T C V. For instance, for the
directed graph in Figure 3a, the DDS is the subgraph induced
by S*={a, b} and T*={c, d}, (see Figure 3b). Its density is p* =

root of the product of their sizes, i.e., p(S,T) =
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(Alice) (Bob)

(a) A directed graph

(b) Directed DS (c) Undirected DS

Figure 3: Illustrating the problem of densest subgraph
discovery (or DDS problem) on the directed graph.

4

V2x2

need.

In undirected graphs, the density of a graph G = (V,E) is
defined to be p(G) = % [24], which is different from that
in directed graphs. Hence, finding the densest subgraph in
undirected graphs (DS problem for short) amounts to find-
ing the subgraph with the highest average degree [24]. For
example, for the undirected graph G in Figure 3c, the DS
is G itself and its density is £, since there is no subgraph
with higher density. We can observe that when S = T, the
density of a directed graph reduces to the classical notion of
the density of undirected graphs. Thus, it naturally general-
izes the notion of the density of undirected graphs. On the
other hand, the DDS problem returns two sets, S* and T%,
which provide the advantage to distinguish different roles of
vertices in the above applications.

State-of-the-art. For a directed graph G=(V, E), we de-
note its number of vertices and edges by n and m respectively.
In the literature, both exact [10, 32] and approximation algo-
rithms [1, 4, 10, 31] have been studied. The state-of-the-art
exact algorithm is a flow-based algorithm [32], which mainly
involves two nested loops: the outer loop enumerates all the

% (1 < |SI,IT| < n), while the in-
ner loop computes the maximum density by using binary

= 2. The DDS is exactly what the above applications

n? possible values of

. . s
search on a flow network, regarding a specific value of H

The inner and outer loops take O(nm log n) and O(n?) time
respectively, so its overall time complexity is O(n*mlog n),
which is prohibitively expensive for large graphs.

To improve efficiency, approximation algorithms have
been developed, the most efficient one being the algorithm in
[32], which only costs O(n+m) time, since it iteratively peels
the vertex with the smallest in-degree or out-degree. How-
ever, it was misclaimed to achieve an approximation ratio of
2, as we will show in Section 4.2. Here, the approximation ra-
tio is defined as the ratio of the density of the DDS over that
of the subgraph returned. This makes the algorithm proposed
by Charikar in [10] be the best available 2-approximation
algorithm, and its time complexity is O(n?(n + m)). Clearly, it
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Table 1: Summary of exact algorithms.

Algorithm l Time complexity
LP-Exact [10] Q(n%)
Exact [32] O(n®mlogn)
DC-Exact (Ours) O(k - nmlogn)

Table 2: Summary of approximation algorithms.

Algorithm ‘ Approx. ratio ‘ Time complexity
KV-Approx [31] O(logn) O(sn)
PM-Approx [4] 25(1 + €) 0(}‘;% logy, . n(n + m))
KS-Approx [32] >2 O(n+m)
BS-Approx [10] 2 0(n? - (n+m))
Core-Approx (Ours) 2 O(Wm(n + m))

Note: s is the sample size; €, § are the error tolerance parameters.

is still very expensive, warranting more efficient algorithms.
Tables 1 and 2 summarize the properties of the exact and
approximation algorithms, respectively.

Our technical contributions. To improve the state-of-
the-art exact algorithm [32], we optimize its inner and outer
loops. Specifically, for the inner loop, we introduce a novel
dense subgraph model on directed graphs, namely [x, y]-core,
inspired by the k-core [47] on undirected graphs. That is,
given two sets of vertices S and T of a graph G, the subgraph
induced by S and T in G is the [x, y]-core, if each vertex in
S has at least x outgoing edges to vertices in T, and each
vertex in T has at least y incoming edges from vertices in S.
Theoretically, we show that DDS can be accurately located
through the [x, y]-cores, which are often much smaller than
the entire graph. As a result, we can build the flow networks
on some [x, y]-cores, rather than the entire graph, which
greatly improves the efficiency of computing the maximum
flow. For the outer loop, we propose a divide-and-conquer
strategy, which dramatically reduces the number of values of

S|

IT|
in practice. Based on the two optimization techniques above,

we develop an efficient exact algorithm DC-Exact.

We further show that theoretically, the [x*, y*]-core, where
x*y* is the maximum value among the values of x and y for
all the [x, y]-cores, is a 2-approximation solution to the DDS
problem. To compute the [x*, y*]-core, we propose an ef-
ficient algorithm, called Core-Approx, which completes in
O(ym - (n + m)) time. Therefore, compared to existing 2-
approximation algorithms, it has the lowest time complexity.

We have experimentally compared our proposed solutions
with the state-of-the-art solutions on eight real graphs, where
the largest one consists of around two billions edges. The
results show that for the exact algorithms, our proposed
DC-Exact is over six orders of magnitude faster than the

examined from n? to k. Theoretically, k < n?. But, k < n?,
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baseline algorithm on a graph with around 6,500 vertices
and 51,000 edges. Besides, for approximation algorithms,
our proposed Core-Approx can scale well on billion-scale
graphs, and is also up to six orders of magnitude faster than
the existing 2-approximation algorithm.

Outline. The rest of the paper is organized as follows. We
review the related work in Section 2. In Section 3, we formally
present the DDS problem. Section 4 reviews the state-of-the-
art algorithms and discusses their limitations. We present our
exact algorithms in Section 5 and approximation algorithm
in Section 6. Experimental results are presented in Section 7.
We conclude this paper in Section 8.

2 RELATED WORK

The densest subgraph can be regarded as one type of cohe-
sive subgraphs. Other related topics contain k-core [47, 52],
k-truss [12, 29], cliques and motifs [27, 37], as well as com-
munity search [13-19, 28, 51] based on k-core and k-truss.
In the following, we focus on two groups of work on densest
subgraph discovery on undirected graphs [24] and directed
graphs [31] respectively.

Densest subgraph discovery on undirected graphs.
In [24], Goldberg introduced the densest subgraph discov-
ery problem (DS problem), which aims to find the subgraph
whose edge-density is the highest among all the subgraphs
where the edge-density of a graph G=(V, E) is defined as

E|

771> and proposed a max-flow-based algorithm to compute
the exact densest subgraph. Tsourakakis [49] and Mitzen-
macher et al. [39] generalized the above edge-density as
clique-density and developed efficient exact algorithms for
finding the corresponding DS. Recently, Fang et al. [20] have
proposed efficient DS algorithms by exploiting k-cores which
are able to find the densest subgraphs for a wide range
of graph density definitions such as edge-density, clique-
density, and pattern-density. Generally, the exact DS algo-
rithms [20, 24, 49] work well on small or moderate-size
graphs, but they are inefficient for processing large graphs as
shown in [20]. To remedy this issue, several efficient approx-
imation algorithms have been developed. In [10], Charikar
developed a 2-approximation algorithm which takes linear
time cost. Fang et al. [20] improved the algorithm by exploit-
ing k-cores. In [4], Bahmani et al. designed a parameterized
approximation algorithm, which achives an approximation
of 2(1 + €) where € > 0. Besides, many variants of the DS
problem have been studied. In [6], Bhaskara et al. studied
the densest k-subgraph problem, where a k-subgraph means
a subgraph consisting of k vertices. Qin et al. [45] developed
solutions for finding the top-k locally densest subgraphs. In
[39], Mitzenmacher et al. studied the (p, q)-biclique densest
subgraph problem on bipartite graphs. Tsourakakis et al. [50]
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developed algorithms for discovering quasi-cliques with qual-
ity guarantees. Recently, Tatti and Gionis [48] and Danisch
et al. [11] have studied the topic of density-friendly graph
decomposition, which decomposes a graph into a chain of
subgraphs, where each subgraph is nested within the next
one and the inner one is denser than the outer ones.
Densest subgraph discovery on directed graphs. Kan-
nan and Vinay [31] were the first to introduce the notion of
density and the problem of the densest subgraph on directed
graphs (DDS problem). In [10], Charikar developed an exact
algorithm for this problem, which completes in polynomial
time cost by solving O(n?) linear programs. Later in [32],
Khuller and Saha proposed a flow-based algorithm, which
also takes polynomial time cost. Table 1 summarizes the
time complexities of these exact algorithms. Nevertheless,
all these exact algorithms are computationally expensive for
large graphs, so researchers have turned to develop efficient
approximation algorithms. In [31], Kannan and Vinay pro-
posed an O(log n)-approximation algorithm to compute the
densest subgraph. In [10], Charikar designed a 2-approximation
algorithm with a time complexity of O(n? - (n + m)). In [32],
Khuller and Saha presented a linear approximation algo-
rithm, and claimed that it achieves an approximation of 2.
Unfortunately, as we shall show in Section 4.2 (Example 4.1),
the claim is incorrect. In [4], Bahmani et al. developed a
2(1 + e)-approximation algorithm based on the streaming
model (e > 0). Table 2 summarizes the approximation ratios
and time complexities of these approximation algorithms.

3 PROBLEM DEFINITION

Let G=(V, E) be a directed graph, n = |V| and m = |E| be the
number of vertices and edges in G, respectively. Given two
sets S,T C V which are not necessarily disjoint, we use E(S,
T) to denote the set of all the edges linking their vertices, i.e.,
E(S, T)=E N (S X T). The subgraph induced by S, T, and E(S,
T) is called an (S, T)-induced subgraph, denoted by G[S, T].
For a vertex v € G, we use d;(v) and d/,(v) to denote its
outdegree and indegree in G respectively. Next, we formally
present the density of a directed graph [31] and the problem
of Directed Densest Subgraph discovery, or DDS problem.
Unless mentioned otherwise, all the graphs mentioned later
in this paper are directed graphs.

Definition 3.1 (Density of a directed graph). Given a di-
rected graph G=(V, E) and two sets of vertices S,T C V, the
density of the (S, T)-induced subgraph G[S, T] is
1ES, DI
VIS IT]

Definition 3.2 (DDS). Given a directed graph G=(V, E), a
directed densest subgraph (DDS) D is the (S*, T*)-induced

p(S.T) = (1)
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Table 3: Notations and meanings.

Notation ‘ Meaning
G=(V,E) a directed graph with vertex set V and edge set E
n,m n=|V|,m=|E|
H=G[S,T] | the subgraph induced by Sand T in G
E(S,T) the edges induced by Sand T in G
d;(v), df(v) | the outdegree and indegree of a vertex v € G resp.
p(S,T) the density of the (S, T)-induced subgraph
D = G[S*,T*] | the densest subgraph D in G
P p" = maxs rcv{p(S,T)} = p(S*,T")
D = G[S*,T*] | the approximate densest subgraph in G
p* = p(8*,T*) | the density of D
F = (Vg,Er) | aflow network with node set V¢ and edge set Er

subgraph, whose density is the highest among all the possible
(S, T)-induced subgraphs.

Problem 1 (DDS problem [4, 10, 23, 31, 32]): Given a di-
rected graph G=(V, E), return a DDS! D=G[S*, T*] of G.

Example 3.3. Consider the directed graph in Figure 3a. Its
DDS D=G[S*, T*] is the subgraph highlighted in Figure 3b,
where S*={a, b}and T*={c, d}, since its density p(S*, T*)= \/2472
=2 is higher than the density of any other (S, T)-induced sub-
graphs. For instance, if we let S=V and T=V, then we get
a (V, V)-induced subgraph H=G[V, V], and its density is
p(V, V)=\/%= %, which is less than 2. O

4 EXISTING ALGORITHMS

In this section, we review the state-of-the-art exact algo-
rithm [32] and approximation algorithms [10, 32] for the
DDS problem. We remark that for approximation algorithms,
both the algorithms in [32] and [10] were claimed to achieve
an approximation raito of 2, but the former one runs much
faster than the latter one. However, we found that the ap-
proximation ratio of the former one was misclaimed, which
will be illusrated by a counter-example. Note that in this
paper, the approximation ratio is defined as the ratio of the
maximum density over the density of the subgraph returned.

4.1 The Exact Algorithm

The state-of-the-art exact algorithm [32] computes the DDS
by solving a maximum flow problem, which generally follows
the same paradigm of the exact algorithm [24] of finding the
densest subgraphs on undirected graphs. We denote this
algorithm by Exact. A flow network [25] is a directed graph
F=(Vg, Er), where there is a source node? s, a sink node t,
and some intermediate nodes; each edge has a capacity and
the amount of flow on an edge cannot exceed the capacity of

IThere might be several directed densest subgraphs of a graph, and our
algorithm will find one of them.
2We use “node” to mean “flow network node” in this paper.
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the edge. The maximum flow of a flow network equals the
capacity of its minimum st-cut, (S, 77), which partitions the
node set Vg into two disjoint sets, S and 7, such that s € S
andt € 7.

Figure 4: Illustrating the flow network.

Algorithm 1 presents Exact. It first enumerates all the
possible values of a:% (line 2). Then, for each a, it guesses
the value g of the maximum density via a binary search
(lines 2-5). After that, for each pair of a and g, it builds a flow
network and runs the maximum flow algorithm to compute
the minimum st-cut (S, 7°) (lines 6-11). Note that if S\{s} #
0, then there must be an (S, T)-induced subgraph such that
its density is at least g. If such a subgraph exists and g is
larger than p*, we update the DDS D and its corresponding
density p* (line 11). Note A and B are two node sets contained
in Vg (cf. line 15 and Figure 4). To build the flow network,
it first creates a set Vg of nodes (lines 14-15), and then adds
directed edges with different capacities between these nodes
(lines 16-20). For example, for the direct graph depicted in
Figure 3a, we can build a flow network as shown in Figure 4.

Limitations. In Algorithm 1, the number of possible val-
ues of a is n?, and for each a, the while loop of binary search
will have O(log n) iterations. Computing the minimum st-cut
of a flow network takes O(nm) time [43]. Consequently, the
total time complexity of Exact is O(n*mlog n), which is thus
very inefficient on even small graphs. For example, our later
experiments show that Exact takes more than 2 days to find
the DDS on a graph with ~1,200 vertices and ~2,600 edges.
The sources of inefficiency are three-fold: First, it needs to
check all the n? values of a, which is very costly. Second,
the flow network F is always built on the entire graph in
each iteration, while the DDS is often a small subgraph of G.
Third, the initial lower and upper bounds of p* are not very
tight. Therefore, there is room for improving its efficiency.

4.2 Approximation Algorithms

The state-of-the-art approximation algorithm KS-Approx
[32] follows the peeling paradigm. Specifically, it works in n
rounds. In each round, it removes the vertex whose indegree
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Algorithm 1: Exact [32]
Input :G=(V,E)
Output :The exact DDS D=G[S*, T*]
1 p* «—0;
2 foreach a € {Z—: | 0 < ny,ny <=n}do
3 [ 0,7  max,ey{d;(w), d;(u)};
Vn-Vn-1
nvn-1 do

4 while r — [ >

s 9 — 45

6 F=(VE, Ep)« BuildFlowNetwok (G, a, ¢);

7 (S, T) « Min-ST-Cut(F);

8 if S={s} then r < g;

9 else

l g

if g > p*then D « G[SNASNB], p*=g;

11
return D;

Function BuildFlowNetwok(G = (V,E), a, g):
A—{aylueV}, B« {fyluecV},Ep «— 0;

Vg «— {s;UAUBU {t};

for a,, € Ado add (s, ay,) to Ep with capacity m;
for f, € Bdo add (s, f,) to Ep with capacity m;

for oy, € Ado add (ay, t) to Ep with capacity m + \/ia;

12
13
14
15
16
17
18
for 8, € B do add (B, t) to Ep with capacity

m + +ag — 2d5(w);
for (u,v) € E do add (B, ay,) to Ep with capacity 2;
return F = (Vg, EF)

19

20

21

or outdegree is the smallest, and recomputes the density of
the residual graph. Finally, the subgraph whose density is
the highest is returned. Algorithm 2 outlines these steps.

Algorithm 2: KS-Approx [32]
Input :G=(V,E)
Output: An approximate DDS D
1 E<—0,5e®,5<—V,T<—V;
2 while |E|>0 do

3 if p(S,T) > p* then

+ | | PP e p(S.T).D (8.7

5 U4 « argmin,, da(u), u- « argmin, dg(u);
6 if d,(u+) < d;(u-) then

7 ‘ E—E\{(v,uy)lveSHLT « T\ {us};
8 else

9 ‘ E—E\{(u-,v)lveT}, S« S\{u}

10 return D;

It was claimed in [32] that KS-Approx achieves an approx-
imation ratio of 2. Unfortunately, as shown in the following
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counter-example, their claim is incorrect ®. Specifically, Ex-
ample 4.1 shows that KS-Approx may report results whose
approximation ratios are larger (i.e., worse) than 2.

18 vertices

36 vertices

Figure 5: A counter-example for KS-Approx.

30

25

start

density

20
@@@@@@@"

Figure 6: Running steps by KS-Approx.

Example 4.1. In Figure 5, the graph has 3 sets of vertices,
ie., {a1}, {bi|]1 £i <18}, and {c;|1 < i < 36}. Note that a,
has 36 incoming edges from cy, ¢z, - - -, 3. For each vertex b;
(i € [1, 18]), it has 2 incoming edges from c;;_; and cy;. The
exact DDS is the subgraph induced by ay, c1, ¢z, - - -, 36, and
its density is 6.

Figure 6 provides a step-by-step breakdown for KS-Approx
on the graph in Figure 5. In the beginning, S = {¢;|1 < i <
36} and T = {a;} U {b;|1 < i < 18} (the vertices with no
outgoing edge in S and no incoming edge in T are eliminated
for simplicity). p(S, T) = 2.7530. Then, b, is removed from T
based on the condition in Line 6 of Algorithm 2, and p(S,T) =
2.7499.Next cq isremoved from S, and p(S, T') becomes 2.7490.
¢z is removed from S afterward, and p(S, T) becomes 2.7487.
Along with more vertices deleted, the density p(S, T) declines
gradually. After a; is removed from T, the algorithm ends
as T becomes empty, and no edge is left in the graph. Thus,
KS-Approx will return the whole graph as the approximate
DDS, whose density is 2.75. Hence, the actual approximation

3The authors of [32] have confirmed that the approximation ratio of
KS-Approx was misclaimed.
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> 2, which contradicts the claim that it is a
O

ratio is 7%=
2-approximation algorithm.

Why KS-Approx fails? KS-Approx is supported by Theo-
rem 2 in [32]. Theorem 2 requires that there is a iteration

that Vu € S,dg ¢ () > Ao = |E(S",T")| - (1 1= ﬁ)

s5,T]
and Vo € T,dfys 11(0) 2 4 =[BT - (1= 1 - ).
In Example 4.1, S* = {¢;|1 < i < 36} and T* = {ay}.
Thus, A, = 0.5035 and A; = 36. By reviewing the itera-

tions of KS-Approx over the counter-example, we can find
such condition cannot be guaranteed simultaneously. During
our recent communication, they have proposed a fix (called
FKS-Approx) which is a correct 2-approximation algorithm,
but costs O(n - (n + m)) time. The details about FKS-Approx
is provided in [1].

Since KS-Approx is not a 2-approximation algorithm, the
most accurate published approximation algorithm is BS-Approx
[10], which is able to correctly find a 2-approximation re-
sult. We outline its steps in Algorithm 3. Similar to Exact,
BS-Approx enumerates all the possible values of a:% (line 2),
and for each specific a, it iteratively removes the vertex with
the minimum degree from S or T based on a predefined
condition (line 8), and then updates S and T, as well as the
approximate DDS D (lines 4-9).

Algorithm 3: BS-Approx [10]
Input :G=(V,E)
Output: An approximate DDS D
1 p*—0,D « 0;

2 foreach a € {Z—;lO < ni,ng <=n}do

3 SV, TV,

while S#0AT # 0 do
if p(S,T) > p* then D — G[S, T}, p* — p(S,T);
u « argmingeg dg;(u);

7 U ¢ argminger dé(v);

if Va-dg(u) < \/LE ~df(v) then S « S\ {u};

elseT « T\ {v};

10 return 5;

9

Limitations. Clearly, the time complexity of BS-Approx
is O(n? - (n + m)), where the main overhead comes from
the loop of enumerating all the n? values of a. Although
it is much faster than Exact, it is still inefficient for large
graphs. As shown in our experiments later, on a graph with
about 3,000 vertices and 30,000 edges, it takes around 3 days
to compute the DDS. Therefore, it is imperative to develop
more efficient approximation algorithms.
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5 EXACT ALGORITHMS

In this section, we develop novel efficient exact algorithms
for the DDS problem. Our algorithms rely on a new con-
cept, namely [x, y]-core, which is an extension of the classic
k-core [47] for directed graphs. In the following, we first
introduce the [x, y]-core, then present our core-based exact
algorithm, and further optimize it by exploiting a divide-and-
conquer strategy.

5.1 k-core and [x, y]-core

We first review the definition of k-core on undirected graphs.

Definition 5.1 (k-core [5, 47]). Given an undirected graph
G and an integer k (k > 0), the k-core, denoted by Hy, is the
largest subgraph of G, such that Vo € Hy, degyy, (v) > k.

A k-core has some interesting properties [5]: (1) k-cores
are “nested”: given two nonnegative integers i and j, if i <
Jj, then H; C H;; (2) a k-core may not be connected; and
(3) computing all the k-cores of a graph, known as k-core
decomposition, can be done in linear time [5].

Definition 5.2 ([x,y]-core). Given a directed graph G=(V,
E), an (S, T)-induced subgraph H=G[S, T] is called an [x,
y]-core, if it satisfies:

(1) Vu e S,dy; > xand VYo € T, d};, > y;

(2) #H’, s.t. H ¢ H' and H’ satisfies (1).

We call [x, y] the core number pair of the [x, y]-core, ab-
breviated as cn-pair.

Example 5.3. The subgraph induced by (S*,T), i.e., D =
G[S*,T*] in Figure 3b is a [2,2]-core. H = G[{a,b,c,d},
{c,d,e}]is a[1,2]-core, and D is contained in H. O

Similar to the classic k-core, the [x, y]-core also has some
interesting properties, derived from Definition 5.2.

LEMMA 5.4 (NESTED PROPERTY). An [x, y]-core is contained
by an [x’, y’]-core, where x > x" > 0 andy > y’ > 0. In other
words, if H=G([S, T] is an [x, y]-core, there must exist an [x’
y’]-core H' =G[S’, T'], such that S € S" and T C T".

Given a pair of x and y, to compute the [x, y]-core, we
can borrow the idea of k-core decomposition [5]; that is,
we can first initialize an (S, T)-induced subgraph such that
S=T=V, then iteratively remove vertices whose indegrees
(resp., outdegrees) are less than x (resp., y) from S (resp., T),
and finally return the residual subgraph as the [x, y]-core.
Clearly, computing a specific [x, y]-core takes O(n + m) time
by using the bin-sort technique in [5].

Remark. In [22], Giatsidis et al. introduced another kind
of core model for a directed graph G=(V, E), called (k, [)-core,
which is the largest subgraph of G such that each vertex’s
indegree and outdegree are at least k and [ respectively. This
is different with our core model because our [x, y]-core is
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an (S, T)-induced subgraph such that each vertex of S has
an indegree of x and each vertex of T has an outdegree of y.
Moreover, S and T are not necessarily disjoint. When S =T,
our [x, y]-core is reduced to the (k, [)-core by letting k = x
and [ = y. Hence, the [x, y]-core naturally generalizes the (k,
I)-core.

5.2 A Core-based Exact Algorithm

We first introduce an interesting lemma, then establish the
relationship between the DDS and [x, y]-core, and finally
present a core-based exact algorithm.

LEmMA 5.5. Given a directed graph G=(V, E) and its DDS
D=G[S*, T*] with density p*, we have following conclusions:
(1) for any subset Us of S*, removmg Us from S* will result
72 < |Us| edges from D,
(2) for any subset Ur of T*, removmg Ur from T* will result
\/Ezp* X |Ur| edges from D,

in the removal of at least

in the removal of at least

*

|S
where a = .
[T

Proor. We prove the lemma by contradiction. For (1), we
assume that D is the DDS and removing Us from D results

in the removal of less than % X |Us| edges from D. This

implies that, after removing Us from S*, the density of the
residual graph, denoted by Dr=G[S™ \ Us, T*], will be

* 5 P
E(S*\ Us, T* P VISHIT* = 5= Us|
p(S*\Us,T*):l "\ Us, T 2va
VIS* \ Us||T*| V(S| = [UsDIT|
o _ 1Us]
R L
|S*1% = |S*[|Us|
N e
. L2
V(5] - Lebye - L
> p*.

However, this contradicts the assumption that D is the DDS,
so the conclusion of (1) holds. Similarly, we can prove that the
conclusion of (2) holds as well. Hence, the lemma holds. O

THEOREM 5.6. Given a graph G=(V, E), the DDS D=G[S",

p—*a'l, [@‘l]—core where a = ‘l l‘

T*] is contained in the

Proor. By Lemma 5.5, removing any single vertex u from

S* will result in the removal of [ ] edges from D, so we

dp(u) = [£=
for each vertex v € T*, we have dj,(v) > I'\FTP]. Thus, by
the deﬁnition of [x, y]-core, we conclude that the DDS is in
the |' ‘l |-\FP 1 [S*]

-core, where a = =

conclude that for each vertx u € S*, 1 Similarly,

O
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Since the value of p* may not be known in advance, we

181
IT]
g guessed, by exploiting the nested property of cores. For

example, given a specific a and a lower bound [ of p*, then
we can locate the DDS in the [|' L f@]]—core, since the

wal
[fbﬂ f‘@p*]]-core is nested within the [{#E-I’ f@]]_

core. Since the DDS is in some [x, y]-cores which are often
much smaller than G, we can build the flow network on these
cores, rather than the entire graph G, which will significantly
improve the overall efficiency.

Moreover, during the binary search, the lower bound [ of
p* is gradually enlarged, so we can further locate the DDS in
the [x, y]-cores with larger values of cn-pairs. As the values

can only locate the DDS in some cores based on a== and

of cn-pairs increase, the sizes of [x, y]-cores become smaller,
so the flow networks built become smaller gradually and the
cost of computing the minimum st-cut is greatly reduced.

Algorithm 4: Core-Exact
Input :G=(V,E)
Output: The exact DDS D=G[S*, T*]
1 /;* «<run a 2-approximation algorithm;
2 p* e p;
3 foreacha € {

|0 < ni,ng <=n}do

4 l<—p,r<—2p,

5 whiler—l>ﬁ_? Vil 4o .
s g B Ta=ly < 50

7 G, «Get-XY- Core(G x,Y);
F = (Vg, Ep) < BuildFlowNetwok (Gr,a,9);
(S,T) « Min-ST-Cut (F);
if S={s}then r «—g;
else
l—g;
if g> p* then D «— G[SNASNB], p*=g;

8

9

10

11

12

13

14 return D;

Based on the above core-based optimization techniques,
we develop a novel exact algorithm, called Core-Exact, which
follows the same framework of Exact, as shown in Algo-
rithm 4. Specifically, it first runs a 2-approximation algo-
rithm* and initializes p* as the density of the approximate
DDS (lines 1-2). Then, for each value of q, it sets the lower
and upper bounds of p* using p* (lines 3-4). After that, it
performs binary search to compute the DDS, where the flow
networks are built based on the [x, y]-cores (lines 5-13).

Analysis. To compute a specific [x, y]-core, we can com-
plete in O(n + m) time by using the idea of k-core decom-
position [5]. Besides, computing the minimum st-cut takes

4Note that any 2-approximation algorithm can be applied here; in this paper,
we use our core-based approximation algorithm developed in Section 6.
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O(nm) time. Thus, the time complexity of Core-Exact is
still O(n*mlog n). Nevertheless, since we locate the DDS in
some [x, y]-cores, the flow networks become smaller, so
Core-Exact performs much faster than Exact in practice.

5.3 A Divide-and-conquer Exact Algorithm

In Core-Exact, we mainly optimize the inner loop of Exact,
i.e., reducing cost of computing the minimum st-cut. A natu-
ral question comes: can we improve the outer loop of Exact
so that we can enuemrate fewer values of a= ||T|| ? In the fol-
lowing, we show that this is possible.

Our idea is based on a key observation that given a specific
value of a, the results of the binary search (lines 4-11 in
Algorithm 1) actually have provided insights for reducing
the number of tries of a. As shown in [32], essentially the
binary search solves the following optimization problem,
where a is a pre-given value.

sTev
ISI 1B, T)| T)| |E(S,T)| (2)
t. \/a(g ISI/\/' +|T|Va(g - T =)<

g is the maximum value the binary search can obtain when
a is fixed. Then, we can derive the following lemma.

LEMMA 5.7. Given a graph G=(V, E) and a specific a, assume
that S’ and T’ are the optimal choices for Equation (2). Let

b= ‘Ii andc— Then forany(S T)-induced subgraph G[S, T|

of G, ifmin{b, c} < |T| < max{b, c}, we have p(S, T)<p(S’, T').

Proor. We first introduce more details regarding Equa-
tion (2), and then prove the lemma by contradiction.

In Equation (2), given a specific a, let g*(a) be the optimal
value of g. Because S’ and T’ are the optimal choices for S
and T in Equation (2), §’, T’, and g*(a) have the following
relationship, according to [32]:

) )

o= S+ ey -
Vb ( p(S’, T ))
ST (@) -
VB /\a

VIS'IT| \/_( “(a) -

|ECS", T
T’ |Va

i)

p(S",T")
va/\b

V_ \/_ ’ ’
S/||T7| 2p(S", T | = 3
VISl ((\/- \/-)g(a) p( )) 3)
Then, g*(a) can be written as
. 2p(S".T")
v@=G @
vat
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Let hq(x) = % + :/L; Then, we have the derivative of
ha(x)>
R = —% x>0 )

2\/Ex3/z ’
It is easy to observe that when x=a, h/,(x)=0; when x €
(0,a), hj(x) < 0; when x € (a,+00), h)(x) > 0. Therefore,
h,(x)is a convex function, and we can get its minimum value
by setting x to a.
We now prove the lemma by contradiction. Assume that
there exists an [Sy, Ty]-induced subgraph, which satisfies

min{b,c} < x = % < max{b, c}, but it has p(Sy, T,) >
p(S’,T'). Since hq(x) < hq(b) and p(Sy, Ty) > p(S’,T'), we

2p }(ls,((;gx) > 2 h(s(,’bf/). However, this contradicts
the assumption that S’ and T’ are the optimal choice for

Equation (2). Hence, the lemma holds. O

can conclude

According to Lemma 5.7, after conducting the binary search
for a specific value of a, we can skip performing binary
search for all the possible values of a in the range (min{b, c},
max{b, c}), so the overall efficiency can be improved dramat-
ically. Note that since a®=bc, we always have a € (min{b, c},
max{b,c}).

To further illustrate the prunning effectiveness of Lemma
5.7, we conduct an experiment on a small real graph and
discuss the results in Example 5.8.

10 ;
NG
—~ 8 1
3 ot
~— 7 1 L .
* 1 ce..
> 6 T e,
5 L 1 L PR
a D A .
0 5 10 15 20 25
a

Figure 7: The prunning effectiveness of Lemma 5.7.

Example 5.8. We consider a small dataset MA [46] which
consists of 28 vertices and 217 edges; this implies that the
values of a are in the range [21—8, 28]. We plot the values of
g*(a) for a e[%, 28] in Figure 7. Let ami,,l:(z—l8 +28)/2. After
applying the binary search for a,,;4, we get a=14.02, b=3.125,
and ¢=62.88, by Lemma 5.7. Therefore, we can skip the binary
search for all the 78 values of a € (3.125, 62.88), which are
marked in red in Figure 7. O

Based on the discussions above, we develop a novel divide-
and-conquer algorithm, named DC-Exact, as shown in Al-
gorithm 5. First, it initialize a; to the smallest ratio %, a, to
the largest ratio n, p* to 0, and D to 0 (line 1).
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Algorithm 5: DC-Exact

Input :G=(V,E)

Output: The exact DDS D=G[S*, T*]
1 a1<—%,ar<—n,p*<—0,D<—0;
Divide-Conquer(ay, ar);
return D;

Function Divide-Conquer(ay, a,):
artar
Amid < — 73 >

run Lines 4-13 of Algorithm 4 (replace

1 .
x [l — rYaly with x — Bl
1

y — [55)

7 let G[S’, T’] be the DDS found by binary search;
157,

3 b« ‘Z"’
9 Cc — amid;

if b > ¢ then Swap(b,c);
if a; < b then Divide-Conquer(a;,b);
if ¢ < a, then Divide-Conquer(c, a,);

10

11

12

Then, it applies (line 2) the function Divide-Conquer to
check the possible values of a (Lines 4-12). Specifically, in
Divide-Conquer, it first picks the middle point a,,;4 in range
[as, a;] (line 5). Then, it uses the binary search process (sim-
ilar to the one in Core-Exact) to find the (S’, T’)-induced
subgraph G[S’, T’] which maximizes Equation (2) (line 6).
Afterwards, it computes b and ¢ according to Lemma 5.7
(lines 8-10). Finally, it skips the whole range (b, ¢) of the
value of a, and conducts search on the two interals which are
split by (b, ¢) recursively to compute the DDS. Note that to
exploit the [x, y]-cores for improving the efficiency, we build

the flow networks on the union of [x, y]-cores for all possible

vail
2

values of a in the range [a, a,], i.e., the [|'
(line 6).

Complexity. The time complexity of DC-Exact is O(k -
nmlog n), where k denotes the number of times invoking the
binary search, which is at most n? since the binary search
is invoked at most n? times in the worst case. Nevertheless,
in practice we have k < n?. As shown by our experiments
later, k is often orders of magnitude smaller than ne.

2\laﬁ-|’|— 1|{-core

6 A CORE-BASED APPROXIMATION
ALGORITHM

While our exact algorithm, DC-Exact, is significantly faster
than the state-of-the-art algorithm Exact, we can further
speed it up by trading accuracy: we develop an efficient ap-
proximation algorithm, called Core-Approx, which achieves
an approximation ratio of 2, within O(y/m(m + n)) time. In
the following, we first show the lower bound of density of
an [x, y]-core.
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LEMMA 6.1 (LOWER BOUND OF DENSITY OF [X,y]-CORE).
Given a graph G and an [x, y]-core, denoted by H=G[S, T], in
G, the density of H is

p(S,T) > Vxy. (6)

Proor. For each vertex u € S, since it participates at least
x edges in H, we have |E(S,T)| > x|S|. Similarly, we can
obtain |E(S, T)| > y|T|. Thus, we conclude

R N N ECI
PED ="~ N IsI Z\/ s - VY

Thus, Lemma 6.1 holds. |

Next, we derive an upper bound of p*. Before showing this,
we introduce a novel concept called the maximum cn-pair.

Definition 6.2 (Maximum cn-pair). Given a graph G=(V,
E), a cn-pair [x, y] is called the maximum cn-pair, if x - y
achieves the maximum value among all the possible [x, y]-
cores. We denote the maximum cn-pair by [x*, y*].

LEmMA 6.3 (UPPER BOUND OF p*). Given a graph G=(V, E)
and its maximum cn-pair [x*, y*|, the density p* of the DDS is

p* < 24/xFy . (7)

Proor. We prove the lemma by contradiction. Assume
that p* > 2+/x*y*. Let a*= :;ll Then, by Theorem 5.6, we
conclude that the DDS is in the [x’, y’]-core, where x’ >

—‘Jﬂ andy’ > Va*x* 7, so x’y’ > x*y*, which contradicts

a
the fact that [x*, y*] is the maximum cn-pair of G. Therefore,

p* is at most 24/x*y*. O

THEOREM 6.4. Given a graph G=(V, E), the core whose
cn-pair is the maximum cn-pair, ie., [x*, y*]-core, is a 2-
approximation solution to the DDS problem.

Proor. Let the [x*, y*]-core be an (S, T)-induced sub-
graph. By Lemma 6.1, we have p(S,T) > +/x*y*. According
to Lemma 6.3, we have p* < 24/x*y*, so we conclude

P VXY
p(S,T) = Xy

Hence, the theorem holds.

2.

)
o

To compute the [x*, y*]-core, a straightforward method is
to compute all the cores of G and then return the one with
maximum core number pair. It is easy to observe that this
method takes O(n(n + m)) time, because for each specific x,
it costs O(n + m) time to compute all the [x, y]-cores where
y ranges from 0 to its maximum value. This, however, is
costly and unnecessary because we only need to find the [x*,
y*]-core. To boost the efficiency, we propose a more efficient
algorithm which takes only O(v/m(n + m)) time. Next, we
introduce two concepts to facilitate the elaboration.
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Definition 6.5 (Maximum equal cn-pair). Given a graph
G=(V, E), a cn-pair [x, x] is the maximum equal cn-pair,
if x achives the maximum value among all the possible [x,
x]-cores. We denote the maximum equal cn-pair by [y, y].

Remarks. The approximation algorithm KS-Approx [32]
actually returns the [y, y]-core in the graph. However, the
[y, y]-core may not be necessarily the [x*, y*]-core; hence,
it is not guaranteed to be the 2-approximation DDS.

LEMMA 6.6. Given a graph G=(V, E) and its maximum equal
cn-pair [y, yl, for any cn-pair [x, y], we have either x <y or
y <y, or both of them.

Proor. We prove this lemma by contradiction. Assume
there is a cn-pair [x, y] where x > y and y > y. Then, let
Y’ = min{x, y} > y, so there exists a [y’, y’]-core in G, which
contradicts [y, y] is the maximum equal cn-pair. ]

Definition 6.7 (Key cn-pair). Given a graph G=(V, E) and
its maximum equal cn-pair [y, y], the cn-pair of an [x, y]-
core is a key cn-pair, if one of the following conditions is
satisfied:

(1) if x < y, there does not exist any [x, y’]-core in G,
such that y’ > y;

(2) ify < y, there does not exist any [x’, y]-core in G, such
that x” > x.

Clearly, the maximum cn-pair is also a key cn-pair. We
illustrate these concepts by Example 6.8.

Example 6.8. Suppose that we have a graph whose cn-
pairs are presented in Figure 8, where each colored cell (x, y)
denotes the cn-pair of the [x, y]-core. Note that the blank
cells do not correspond any [x, y]-cores. Then, the cn-pairs
of the blue cells are key cn-pairs, in which the one with a
star is the maximum cn-pair. The cn-pair of the black cell,
i.e., [3, 3], is the maximum equal cn-pair.

. key cn-pair

. maximum equal cn-pair

.—l . maximum cn-pair

123 4567 8 x

D WA G N e

Figure 8: Illustrating the concepts of cn-pairs.

LEMMA 6.9. Given a graph G=(V, E) and its maximum equal
cn-pair [y, y], we havey < \/m.
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Algorithm 6: Core-Approx

Input :G=(V,E)

Output: An approximate DDS D, i.e., the [x*, y*]-core
1 x5 — 0,y «0;

[y, y] < compute the [y, y]-core by iteratively peeling
vertices which have the minimum indegrees or outdegrees;

for x «— 1toy do

y «—GetMaxY (G, x);

5 if xy > x*y* then x* « x,y* «—y;

fory <« 1toy do

7 x «—GetMaxX(G, y);

if xy > x*y* then x* «— x,y* «—y;

return compute the [x*, y*]-core;

Function GetMaxY (G, x):

S—V, TV, ymax < 0,y < L¥J+l;

10
11
12 if y > max, er{d},(u)} then return ymay;
while |E| > 0 do
while Ju € T,d(u) < y do
E—E\{(v,u)lve S}, T« T\ {u};
while 3o € S,d;(v) < x do
‘ E—E\{(v,u)|lueT},S«S\{v}h

if |E| > 0 then ymax < y;

13
14
15
16
17
18
19 y—y+1;
20 return ymax;

Function GetMaxX(G, y):

reuse lines 11-20 by interchanging u with v, S with T, x

21

22

with y, and changing ymax to xmax;

Proor. A [y, y]-core contains at least y vertices whose
out-degrees are at least y. Meanwhile, there are at most m
edges in the [y, y]-core. Hence, y - y < m. O

By combining Lemmas 6.9 and 6.6, we get Lemma 6.10.

LEMMA 6.10. Given a graph G=(V, E), there are at most
2+/m key cn-pairs in G.

ProoF. According to Lemma 6.6 and Definition 6.7, there
are at most 2y key cn-pairs in G. Since we have y < 4/m by
Lemma 6.9, there are at most 2y/m key cn-pairs in G. i

Based on the above discussions, we develop Core-Approx,
which returns the [x*, y*]-core as an approximate DDS. Specif-
ically, we first compute the maximum equal cn-pair, then enu-
merate all the key cn-pairs, and finally return the core with
the maximum cn-pair. Algorithm 6 presents Core-Approx.
First, it obtains the maximum equal cn-pair (line 2). Then, it
enumerates x and y from 1 to y to search all the key cn-pairs
(lines 3-8). Finally, the [x*, y*]-core is returned.

Given an input x, the function GetMaxY computes the
key cn-pair whose first element is x. In GetMaxY, we first
initialize S, T, Ymax, and y, where y is set to L%J + 1. Then,
in the loop, if there is a vertex u € T with in-degree less than
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y, we remove it (lines 14-15); this may make some vertices’
out-degrees become less than x, so we have to remove these
vertices as well (lines 16-17). After that, we update ymax and
increase y by 1 (lines 18-19). Finally, we get the maximum
value of y. Similarly, we have a function GetMaxX to get the
key cn-pair whose second element is a given y.

We further illustrate Core-Approx by Example 6.11.

Example 6.11. Reconsider the graph and its cn-pairs in
Example 6.8. Core-Approx will run steps as follows: (1) finds
the maximum equal cn-pair [3, 3]; (2) iterates x from 1 to 3
to compute the key cn-pairs whose first elements are x, i.e.,
[1,8],[2,7], and [3, 5]; (3) iterates y from 1 to 3 to search the
key cn-pairs whose second elements are y, i.e., [8, 1], 8, 2]
and [6, 3]; and (4) returns the [x*, y*]-core, i.e., [6, 3]-core. O

Complexity. Computing the [y, y]-core takes O(m + n)
time as it iteratively peels vertices with the minimum in-
degrees or outdegrees. Similarly, functions GetMaxY and
GetMaxX also complete in O(m + n) time. Since there are
at most 24/m key cn-pairs by Lemma 6.10, the total time cost
of Core-Approx is bounded by O(v/m(n + m)).

7 EXPERIMENTS

We now present the experimental results. We first discuss
the setup in Section 7.1, then describe the results of exact
and approximation algorithms in Sections 7.2-7.4.

7.1 Setup

Datasets. We use eight real datasets® [34], and report the
numbers of vertices and edges of each dataset in Table 4.
These graphs cover various domains, including social net-
work (e.g., Twitter and Advogato), e-commerce (e.g., Ama-
zon), and infrastructures (e.g., flight network).

Table 4: Datasets used in our experiments.

Dataset \ Category \ V| \ |E|
MO [21] | Human Social 217 2,672
TC [2] Infrastructure 1,226 2,615
OF [42] | Infrastructure 2,939 30,501
AD [38] | Social 6,541 51,127
AM [35] | E-commerce 403,394 3,387,388
AR [40] | E-commerce 3,376,972 5,838,041
BA [41] Hyperlink 2,141,300 17,794,839
TW [9] Social 52,579,682 | 1,963,263,821

Algorithms. In the experiments, we used our newly pro-
posed exact algorithms Core-Exact and DC-Exact, and ap-
proximation algorithm Core-Approx to compute the DDS.

Besides, we tested the following existing algorithms:

5The datasets are available online at http://konect.uni-koblenz.de/networks/
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Exact [32] is the state-of-the-art exact algorithm, which
is also recapped in Section 4.1.
KS-Approx [32] is an approximation algorithm whose
appproximation ratio was misclaimed, which is also
recapped in Section 4.2.
FKS-Approx [1] is the fixed version provided by the
authors of [32]. Its time complexity is O(n - (n + m)),
with an approximation ratio of 2.
PM-Approx [4] is a parameterized approximation algo-
rithm. Note that we use its default parameters in [4]
in our experiments (6=2, e=1).

e BS-Approx [10] is a 2-approximation algorithm.

All the algorithms above are implemented in C++ with STL
support. We run all the experiments on a machine having an
Intel(R) Xeon(R) Silver 4110 CPU @ 2.10GHz processor, and
256GB memory, with Ubuntu installed.

7.2 Exact Algorithms

Inf.
~_~
(5]
$ _
& 10°
p ] |
£
H 3
on 10
=)
B=
=
=
= 1
&g 10
-
T T T T T
MO TC OF AD AM
dataset

O DC-Exact OCore-Exact @EExact

Figure 9: Efficiency of exact algorithms.

In Figure 9, we report the efficiency results of exact algo-
rithms on the first five datasets (i.e., MO, TC, OF, AD, and
AM). As these solutions cannot finish in a reasonable time on
larger datasets, we do not report their results here. Note that
Exact and Core-Exact cannot compute the DDS within 600
hours on OF, AD, and AM.

We can observe that Core-Exact is at least 2x and up to
100x faster than the state-of-the-art exact algorithm Exact.
This is mainly because Core-Exact locates the DDS in some
[x, y]-cores, which are often much smaller than the entire
graph, so the flow networks built on these cores become
much smaller, resulting in less time cost on computing the
minimum st-cut of the flow networks. We further investigate
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how the flow network size (number of edges) changes in the
first ten iterations of the binary search in exact algorithms.
Figure 10 reports the flow network size of these three algo-
rithms on two datasets, i.e., AD and AM. Clearly, we can
observe that the size of the flow network in Core-Exact
is reduced significantly as the iteration goes on, while the
flow network size of Exact does not change during these
iterations. Thus, we conclude that the [x, y]-cores are indeed
effectivce for locating the DDS in some smaller subgraphs,
allowing the exact DDS to be computed more efficiently.
The sizes of flow networks created in DC-Exact are larger
than those in Core-Exact because, in DC-Exact, the flow
network is built based on the union of [x, y]-cores for all
possible values of a in the range of [a;, a,].

AD AM
Q
N 2 |-
»® 104 1064
ﬁ 106.2 -
© 10t .
£ | 100 =
g 1033 1058 £
3 s 1056 +
Q 10 L
a T T T T T T T T 17T T T T T T T T T T1TT
012345678910 0123456780910
iteration
® Core-Exact # DC-Exact ™ Exact

Figure 10: Flow network sizes in exact algorithms.

Meanwhile, from Figure 9, we can see that DC-Exact is
up to six and five orders of magnitude faster than Exact and
Core-Exact, respectively. The main reason is that DC-Exact
exploits a divide-and-conquer strategy, which dramatically
IS]

reduces the number of a= 7]
Figure 7. To further analyze the speedup of DC-Exact over
Exact, we report the numbers of values of a examined in
DC-Exact and Exact, which equal to the numbers of times
of inovking the loop of binary search. As discussed in Section
5, the total numbers of values of a examined in Exact and
DC-Exact are n® and k, respectively. The values of n2, k, and

examined, as illustrated in

%2 on the first five datasets are reported in Table 5. Clearly,
n® is much larger than k. For example, on the dataset AM, n®
is over 10 orders of magnitude larger than k. Thus, DC-Exact

runs much faster than Exact.

7.3 Approximation Algorithms

In Figure 11, we show the running time of approximation
algorithms on all the eight datasets, where bars touching the
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Table 5: The total numbers of values of ad examined in
DC-Exact and Exact.

n2

Dataset ‘ n? (Exact) ‘ k (DC-Exact) ‘

k
MO 4.71 x 104 16 2.94 x 103
TC 1.50 X 10° 23 6.54 X 10*
OF 8.64 x 10° 35 2.47 X 10°
AD 4.28 x 107 81 5.28 X 10°
AM 1.63 x 101! 13 1.25 x 1010
E Inf.
“ 108
g |
Q
E 5
i: 10
o0
g
=
z 2
5 10
&~
T T T T T T T T
MO TC OF AD AM AR BA TW
dataset
] - O PM- B BS-
B Ronrbr BR RReea | o heerex

Figure 11: Efficiency of approximation algorithms.

upper boundaries mean that the corresponding algorithms
cannot finish within 200 hours. We can make the following
observations: (1) BS-Approx and FKS-Approx are the two
most inefficient algorithms, because their time complexities,
i.e., O(n*(n + m)) and O(n(n + m)), are higher than those of
other algorithms. (2) KS-Approx is the most efficient one
almost on all the datsets, since it takes only linear time cost,
ie., O(n + m). However, its approximation ratio could be
larger than 2, as analyzed in Section 4. (3) Core-Approx
is the second most efficient one on almost all the datasets,
followed by PM-Approx. (4) Among all the 2-approximation
algorithms, Core-Approx is the fastest one, since it is up to
six orders of magnitude faster than BS-Approx, and three
orders of magnitude faster than FKS-Approx. Moreover, it
can process billion-scale graphs. Thus, it not only obtains
high quality results, but also achieves high efficiency.

Next, we focus on the 2-approximation algorithms and per-
form a deeper investigation on why Core-Approx is signifi-
cantly faster than others. Recall that the time complexities of
BS-Approx, FKS-Approx, and Core-Approx are O(n?(n+m)),
O(n-(n+m)), and O(8(n+m)), respectively, so we can roughly
use %2 and ¥ to explain the speedup of Core-Approx over
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BS-Approx and FKS-Approx, respectivecly. In Table 6, we re-
and %Z on all the eight datasets. Clearly,

n

5
on the first four datasets, the values of %Z and % are roughly
the same as the times of speedup in Figure 11. Based on
this observation, we conjecture that for other larger datasets
(e.g., AR), Core-Approx could be up to ten and five orders of
magnitude faster than BS-Approx and FKS-Approx respec-
tively, although we did not get the actual running time of
BS-Approx and FKS-Approx in our experiments.

Besides, we compare the actual approximation ratios of
all the five approximation algorithms. Specifically, for each
graph, we first obtain the exact DDS using DC-Exact, then
compute the approximate DDS’s using these approximation
algorithms, and get the actual approximation ratios (i.e., the
density of the exact DDS over those of approximate DDS’s).
Note that a smaller actual approximation ratio indicates that
the corresponding approximate DDS has higher accuracy. We
report the actual approximation ratios of each algorithm on
the first five datasets in Figure 12. Clearly, the actual approxi-
mation ratios of Core-Approx, BS-Approx, and FKS-Approx
are indeed smaller than their theoretial approximation ratios
(i.e., 2). Besides, we can clearly see that KS-Approx cannot
provide 2-approximation results on some datasets (e.g., AM).
This well confirms our finding that KS-Approx may fail to
report a 2-approximation result in some cases, as discussed
in Section 4.2. In addition, the actual approximation ratios of
PM-Approx could be larger than 2 but less than 5, since its
theoretical approximation ratio is 25(1 + €)=8.

port the values of

5]
& 3
X 1 1
g 2
(=9
<
ik
0 z z
T T T T T
MO TC OF AD AM
dataset

[l Core-Approx []PM-Approx [l BS-Approx
[ KS-Approx [ FKS-Approx

Figure 12: The actual approximation ratios of all the
five approximation algorithms.

To further analyze why KS-Approx leads to very high ap-
proximation ratios, we revisit its algorithm steps and find
that actually, it restricts the search on the subgraph, in which
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Table 6: Analyzing 2-approximation algorithms.

SIGMOD °20, June 14-19, 2020, Portland, OR, USA

Dataset | MO [ TC [ OF | AD | AM | AR | BA ™™
n 217 1,226 2,939 6,541 4.03%x10° | 3.38x10% | 2.14%x10° | 5.26 x 10
n’ 4.71x10% | 1.50 x 10° | 8.64 x 10° | 4.28 x 107 | 1.63x 10T | 1.14 x 1073 | 4.59 x 1072 | 2.76 x 107
5 3 3 27 18 10 26 60 2221
z 27 408 108 363 4.03%x 10%* | 1.30x10° | 3.57x 10* | 2.37x 10%
%2 5.89 x 103 | 5.01 x 10° | 3.20 x 10° | 2.38 x 10° | 1.63 x 1010 | 4.39 x 101! | 7.64 x 1010 | 1.24 x 1012

Table 7: The values of % on the first five datasets.

Dataset l MO l AM

ST
[T]

TC [ OF [ AD |
‘ 1.04 ‘ 5.67x10~2 ‘ 1.01 ‘ 2.32 ‘ 2.47x103

the mininum out-degree and minimum in-degree of all ver-
tices are close to each other. In other words, when I‘;*ll =1,
KS-Approx tends to find an approximate DDS with higher
accuracy. In Table 7, we report the ratio of |S*| over |T*| on
the first five datasets. We can observe that on most of the
datasets, when IS’il is close to 1, KS-Approx tends to find

1T
DDS’s with higher accuracy than Core-Approx, while when
5™

[T

largely deviates from 1, it will perform worse.

7.4 Comparing DC-Exact and Core-Approx
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Figure 13: Efficiency of Core-Approx and DC-Exact.

In Figure 13, we report the running time of Core-Approx
and DC-Exact on the first five datasets. Clearly, we can ob-
serve that Core-Approx is up to four orders of magnitude
than DC-Exact. This is because DC-Exact computes the ex-
act DDS by enumerating all the possible values of a=% and
solving a maximum flow problem for each of them, which are
very computationally expensive, while Core-Approx only
needs to extract the [x*, y*]-core from the graph.

In summary, for small-to-moderate-sized graphs (e.g., AD),
DC-Exact is the best choice, because it computes an exact
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result in a reasonable time. For large-scale graphs (e.g., TW),
Core-Approx is a much better option, since it achieves both
high accuracy and high efficiency.

8 CONCLUSION

In this paper, we study the problem of densest subgraph
discovery on directed graphs (DDS problem for short). We
first review existing algorithms and discuss their limitations.
We show that a previous algorithm [32], which was claimed
to achieve an approximation of 2, fails to satisfy the ap-
proximation guarantee. To boost the efficiency of finding
DDS, we introduce a novel dense subgraph model, namely
[x, y]-core, on directed graphs, and estalish bounds on the
density of the [x, y]-core. We then propose a core-based
exact algorithm, and further optimize it by incorporating a
divide-and-conquer strategy. Besides, we find that the [x*,
y*]-core, where x*y* is the maximum value of xy for all the
[x, y]-cores, is a good approximation solution to the DDS
problem, with theoretical guarantee. To compute the [x*,
y*]-core, we develop an efficient algorithm, which is more
efficient than all the existing 2-approximation algorithms.
Extensive experiments on eight real large datasets show that
both our exact and approximation algorithms are up to six
orders of magnitude faster than state-of-the-art approaches.

In the future, we will investigate how to efficiently find
the DDS with size constraints on directed graphs.
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