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Abstract
Inmany real-world applications, the evolving relationships between

entities can be modeled as temporal graphs, where each edge has

a timestamp representing the interaction time. As a fundamen-

tal problem in graph analysis, community search (CS) in tempo-

ral graphs has received growing attention but exhibits two major

limitations: (1) Traditional methods typically require predefined

subgraph structures, which are not always known in advance. (2)

Learning-based methods struggle to capture temporal interaction

information. To fill this research gap, in this paper, we propose

an effective Unsupervised Temporal Community Search with pre-

training of temporal dynamics and subgraph knowledge model

(UTCS). UTCS contains two key stages: offline pre-training and

online search. In the first stage, we introduce multiple learning

objectives to facilitate the pre-training process in the unsupervised

learning setting. In the second stage, we identify a candidate sub-

graph and compute community scores using the pre-trained node

representations and a novel scoring mechanism to determine the

final community members. Experiments on five real-world datasets

demonstrate the effectiveness.

CCS Concepts
• Computing methodologies→ Neural networks; • Mathe-
matics of computing→ Graph algorithms.
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1 Introduction
Graphs are widely utilized in various real-life fields [22, 23, 35, 36],

such as social networks, biological graphs, and financial graphs.

Community Search (CS), as an important graph analytical problem,

has attracted significant attention recently [10]. Given a graph and

a set of query nodes, the community search problem aims to find a

cohesive and dense subgraph containing the query nodes [28]. CS

is widely used in applications like social recommendation, research

community detection, and fraud group identification, inspiring

numerous specialized approaches. Existing methods can be broadly

classified into two categories: traditional CS algorithms [1, 3, 9, 34,

39, 40] and learning-based CS models [11, 14, 17, 31, 32].

Traditional CS algorithms rely on predefined subgraph patterns,

such as 𝑘-core [4, 7, 28], 𝑘-truss [1, 16], and 𝑘-clique [6, 34, 41].

These models impose strict topological constraints on the commu-

nity, which may not always align with the structures of real-world

communities. For instance, the 𝑘-core-based models assume that

each node within the community has a degree of at least 𝑘 , which

may not always hold in reality. In contrast, learning-based CS mod-

els like QD-GNN [17] and TransZero [31] adapt flexibly to graph

structures without predefined patterns: QD-GNN separately models

queries and communities via GNNs, while TransZero uses Graph

Transformers to capture node-community proximity.

Despite the success of learning-based CS studies, most are de-

signed for static graphs and overlook crucial temporal interaction
information. In real-world temporal graphs [5], such as business

collaborations, two parties may establish relationships during spe-

cific periods. Identifying communities in such graphs is crucial for

many real-world applications and has garnered growing research

attention. While temporal graphs can be treated as static for in-

put into static models, this often leads to sub-optimal results. For

example, a recent learning-based work [14] considers the graph

within each time window as static, failing to capture temporal in-

teractions within the time window. Moreover, most learning-based

methods heavily rely on costly labeled data. This highlights the

urgent need for an unsupervised approach that captures temporal

information for effective community search. To date, there is no
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Figure 1: The architecture of our model.

existing learning-based approach for temporal community search

in the unsupervised setting.
Our solution. To address the aforementioned limitations, we

have developed an effective model, namelyUnsupervised Temporal

Community Search with pre-training of temporal dynamics and

subgraph knowledge (UTCS). UTCS incorporates temporal and

structural information at both local and global scales. As a learning-

based method, it operates without requiring a predefined subgraph

structure. Our model has two phases: offline pre-training and on-

line search. During pre-training, we introduce the multiple learning

objectives through three components: a temporal dynamics learner

based on the Hawkes process to model interaction patterns, a sub-

graph alignment mechanism leveraging Student’s t-distribution

and KL divergence to capture structural dependencies, and a batch-

wise embedding refinement to reconstruct adjacency relations. This

phase enables unsupervised and label-free training. In the online

search phase, we first locate candidate subgraphs, then leverage

learned node representations to compute community scores and

employ a dedicated matching mechanism to predict the final com-

munity structure. Our main contributions are as follows.

• We propose a learning-based model for the temporal CS problem

and, to the best of our knowledge, this is the first unsupervised

approach to tackle it.

• Our model follows a two-step framework with modules designed

to capture temporal, local, and global structural information.

Additionally, it employs a local search approach to significantly

reduce time and space complexity.

• Extensive experiments on five real-world datasets demonstrate

the effectiveness of themodel, achieving an average improvement

of 60.44% in F1-score compared to the latest competitors.

2 Problem Formulation
In this paper, we consider an undirected temporal graph G(V, E),
whereV and E denote the sets of nodes and edges, respectively.

Let |V| = 𝑛 and |E | =𝑚. Each edge 𝑒 ∈ E is a triplet (𝑢, 𝑣, 𝑡) with
𝑢, 𝑣 ∈ V and 𝑡 ∈ N representing the interaction timestamp between

𝑢 and 𝑣 . Note that (𝑢, 𝑣, 𝑡1) and (𝑢, 𝑣, 𝑡2) are considered as two edges
when 𝑡1 ≠ 𝑡2. We introduce the concept of temporal neighbors

𝑁 (𝑢,𝑡 ) , where 𝑁 (𝑢,𝑡 ) = {𝑤 | (𝑢,𝑤, 𝑡𝑤) ∈ E and 𝑡𝑤 < 𝑡}. Figure 1

preliminaries illustrate a sample temporal graph G with 6 vertices

and 17 temporal edges. In addition, we define the concept of the de-

temporal graph, a version of the temporal graph G with timestamps

ignored as G′ (V′, E′), where E′ = {(𝑢, 𝑣) |∃(𝑢, 𝑣, 𝑡) ∈ E} and
|E′ | = 𝑚̄. Figure 1 preliminaries show a de-temporal graph G′.

Problem 1 (Temporal Community Search (TCS) [14]). Given a
temporal graph G and a set of query nodes Q ⊆ V , the TCS problem
aims to return a subgraph (i.e., community) TQ containing Q.

In this paper, we focus on the learning-based approach to solve

the TCS problem. For a set of query nodes Q ⊆ V , and its corre-

sponding community TQ , the nodes inV can be classified into two

categories based on the indicator function 𝑓 below, i.e., ∀𝑣 ∈ V:

𝑓 (𝑣) = 1 if 𝑣 ∈ TQ ; otherwise, 𝑓 (𝑣) = 0. Specifically, our objective is

to train a neural networkM to identify communities in a temporal

graph.

3 Our Methodology
3.1 Overview
In this section, we explain the details of UTCS. As depicted in

Figure 1, UTCS consists of two phases: offline pre-training and

online search.

3.2 Offline Pre-training
To better align with real-world communities, we address the TCS

problem by training a neural network to model both temporal

interaction information and structural relationships.

3.2.1 Temporal Dynamics Modeling. To establish a good start-

ing point, we initialize node representations using node2vec [12].

To incorporate temporal information, we model the temporal graph

as a chronological order of edge streams, as shown in Figure 1 pre-

liminaries. Then, we resort to the Hawkes process [15, 42], where

past interactions temporarily boost the likelihood of future events
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with exponentially decaying influence. Inspired by [21, 42], we

construct a temporal loss function based on the Hawkes process.

This approach allows us to capture the influence of past events on

current interactions, providing a comprehensive representation of

temporal information. The temporal loss term can be formulated

as:

𝐿𝑡𝑚𝑝 = − log𝜎 (𝜆(𝑢,𝑣,𝑡 ) ) −
𝑙∑︁

𝑖=1

E ¯ℎ𝑖∼𝑃𝑛 (𝑣) log𝜎 (−𝜆(𝑢, ¯ℎ𝑖 ,𝑡 ) ), (1)

where 𝜎 is the sigmoid activation function and 𝜆(𝑢,𝑣,𝑡 ) is the condi-
tional intensity function of 𝑣 joining source node 𝑢’s neighborhood.

We sample negative nodes
¯ℎ with probability proportional to their

degree 𝑃𝑛 (𝑣) ∝ 𝑑3/4
𝑣 [25], using a fixed sample size of 𝑙 .

3.2.2 Node-Leiden Subgraph Alignment. To capture the re-

lationship between nodes and communities, we apply the Leiden

algorithm [29] to obtain a set of Leiden subgraphs {L𝑖 }, and refine

the node representations by incorporating the community struc-

ture captured by these subgraphs. The probability 𝑞 (𝑣,𝑖,𝑡 ) of node
𝑣 belonging to a Leiden subgraph L𝑖 at time 𝑡 is computed using

Student’s t-distribution [30] based on embedding proximity. We de-

rive the target distribution 𝑝 (𝑣,𝑖,𝑡 ) by squaring and normalizing the

assignment probabilities to reinforce high-confidence predictions.

Finally, we introduce the KL divergence [18] loss term to align the

real-time assignment distribution with the target distribution:

𝐿𝑛𝑜𝑑𝑒 =
∑︁
L𝑖

𝑝 (𝑣,𝑖,𝑡 ) log 𝑝 (𝑣,𝑖,𝑡 )/𝑞′(𝑣,𝑖,𝑡 ) . (2)

Probability 𝑞′(𝑣,𝑖,𝑡 ) is adjusted by updated node embeddings. This

loss ensures proper node alignment with their respective subgraphs.

3.2.3 Batch-Level Embedding Refinement. Existing temporal

graph methods often process edge streams in batches, overlooking

structural connectivity. Inspired by [2, 38], we propose a batch-level

refinement that reconstructs adjacency relationships via node em-

beddings. Specifically, similar to the computation of temporal condi-

tional intensity in Eq. (1), we retrieve the historical neighbors𝑁 (𝑢,𝑡 )
as positive nodes and sample some non-neighbors 𝑁 (𝑢,𝑡 ) ∼ 𝑃𝑛 (𝑢)
as negative nodes. By maximizing the cosine similarity between

positive pairs and minimizing it for negative pairs, we capture local

structural information. The loss term is thus defined as follows:

𝐿𝑢 = − log

exp

(
cos(𝒛𝑡𝑢 , 𝒛𝑡ℎ)/𝑇

)
exp

(
cos(𝒛𝑡𝑢 , 𝒛𝑡ℎ)/𝑇

)
+∑ ¯ℎ∈𝑁 (𝑢,𝑡 ) exp

(
cos(𝒛𝑡𝑢 , 𝒛𝑡¯ℎ)/𝑇

)
𝐿𝑏𝑎𝑡𝑐ℎ =

1

|𝑁 (𝑢,𝑡 ) | + 1

∑︁
ℎ∈𝑁 (𝑢,𝑡 )∪{𝑣}

𝐿𝑢 ,

(3)

where 𝒛𝑡𝑢 and 𝒛𝑡𝑣 are the temporal embeddings of source node 𝑢 and

target node 𝑣 at current time 𝑡 , respectively. cos(𝒛𝑡𝑢 , 𝒛𝑡ℎ) measures

the cosine similarity between the anchor 𝒛𝑡𝑢 and a positive sample

𝒛𝑡
ℎ
, with temperature𝑇 = 0.5 controlling the distribution sharpness.

By integrating the three modules, the complete community

search loss function is formulated as: 𝐿 = 𝐿𝑡𝑚𝑝 + 𝐿𝑛𝑜𝑑𝑒 + 𝐿𝑏𝑎𝑡𝑐ℎ .

3.3 Online Search Phase
After offline pre-training, we move to an online search phase where

nodes are embedded into a shared space, and proximity indicates

similarity. A candidate 𝑣 ’s community score 𝑠𝑣 reflects its likelihood

of belonging to the target community based on its distance to

the query nodes Q. The Expected Community Score Gain (ECSG)

measures the gap between the scores of community nodes and

the expected scores of random nodes [31]. To avoid costly global

scoring, we adopt a local search strategy that reduces computation

while maintaining comparable performance.

Algorithm 1: Online Search
Input: The query nodes Q, de-temporal graph G′ and offline pre-training

network 𝑓 ( ·) .
Output: The predicted community TQ .

1 Initialize D ← Q, {C𝑖 } ← Leiden(G′ ) ;
2 foreach C𝑖 with C𝑖 ∩ Q ≠ ∅ do
3 {C𝑖,𝑗 |1 ≤ 𝑗 ≤ 𝑘 } ← TopKSimC(Ci ) ;
4 D = D ∪ C𝑖 ∪ C𝑖,1 ∪ · · · ∪ C𝑖,𝑘
5 𝑧Q ←

∑
𝑞∈Q 𝑓 (𝑞)
|Q| ;

6 for 𝑣 ∈ D do 𝑠𝑣 ←
𝑧Q ·𝑓 (𝑣)
∥𝑧Q ∥·∥𝑓 (𝑣) ∥

;

7 Initialize TQ ← Q,𝑚𝑎𝑥_𝑠𝑐𝑜𝑟𝑒 ← −∞;
8 S = {𝑠𝑣 |𝑣 ∈ D};
9 while | TQ | < |D | do
10 𝑢 ← arg max𝑣∈D\TQ 𝑠𝑣 ;

11 if ECSG(S, TQ ∪ {𝑢}, G′ ) >𝑚𝑎𝑥_𝑠𝑐𝑜𝑟𝑒 then
12 𝑚𝑎𝑥_𝑠𝑐𝑜𝑟𝑒 ← ECSG(S, TQ ∪ {𝑢}, G′ ) ;
13 TQ = TQ ∪ {𝑢}
14 else Break ;

15 return TQ ;

The details are outlined in Algorithm 1. Given query nodesQ, the
de-temporal graph G′, and the pre-trained neural network, it out-

puts the predicted community TQ containing Q. We first partition

G′ via the Leiden algorithm to identify subgraphs C𝑖 containing Q
(lines 1-2), retrieve 𝑘 similar subgraphs with TopKSimC, and merge

them into the search space D (lines 3-4). Next, the community

scores are computed for nodes in D based on cosine similarity

with 𝒛Q (lines 5-6). Starting with TQ as Q and𝑚𝑎𝑥_𝑠𝑐𝑜𝑟𝑒 as nega-

tive infinity, we iteratively add the node with the highest score in

D \ TQ that increases the ECSG (lines 7-13). The search concludes

by returning the final community TQ .

4 Experiments
4.1 Setup
Datasets.We use five real-world temporal graphs across various

Table 1: Datasets statistics.
Datasets |V | | E | | E′ | 𝑡𝑚𝑎𝑥 #C

School [24] 327 188,508 5,802 7,375 9

Brain [26] 5,000 1,955,488 1,751,910 12 10

Patent [13] 12,214 41,916 41,915 891 6

arXivAI [33] 69,854 699,206 699,198 27 5

arXivCS [33] 169,343 1,166,243 1,166,237 29 40

domains [21], each with ground-truth communities, e.g., academic

collaboration networks and biological networks. The datasets sta-

tistics are summarized in Table 1. |V| is the number of nodes, and

|E | denotes the number of temporal edges, |E′ | represents the num-

ber of edges in the de-temporal graph by ignoring the temporal

information, and 𝑡𝑚𝑎𝑥 denotes the number of different timestamps.

#C denotes the number of communities for each graph. Our code

is available at https://github.com/zyxxxx2/UTCS.

Baselines. Existing CS methods are categorized into traditional

and learning-based. We compare two traditional methods, MPC [27]

and QTCS [20]. For the learning-based approaches, we compared
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Table 2: Temporal Community Search. (The best and second best results are marked in bold and underlined respectively; “OOM”
denotes the cases out-of-memory; “-” denotes the result is not available; “< 0.01” denotes the value is less than 0.01).

Algorithms

School Brain Patent arXivAI arXivCS

Rank

Jaccard F1-Score NMI Jaccard F1-Score NMI Jaccard F1-Score NMI Jaccard F1-Score NMI Jaccard F1-Score NMI

MPC 0.0676 0.1267 0.0602 - - - - - - - - - - - - 7/7/7

QTCS 0.7118 0.8316 0.6198 0.1590 0.2743 0.0529 0.0205 0.0402 0.0108 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 5/5/4

QD-GNN 0.75 ± 0.31 0.80 ± 0.29 0.68 ± 0.34 0.20 ± 0.07 0.33 ± 0.08 0.06 ± 0.05 0.24 ± 0.01 0.38 ± 0.02 0.05 ± 0.01 OOM OOM OOM OOM OOM OOM 3/3/3

COCLEP 0.90 ± 0.02 0.94 ± 0.01 0.87 ± 0.02 0.14 ± 0.04 0.24 ± 0.05 0.05 ± 0.04 0.19 ± 0.00 0.30 ± 0.00 0.07 ± 0.00 0.12 ± 0.00 0.19 ± 0.00 0.04 ± 0.00 0.06 ± 0.00 0.10 ± 0.00 0.04 ± 0.00 2/2/2

TransZero 0.14 ± 0.00 0.25 ± 0.00 0.01 ± 0.00 0.24 ± 0.00 0.38 ± 0.00 0.11 ± 0.00 0.14 ± 0.00 0.24 ± 0.00 < 0.01 0.09 ± 0.00 0.17 ± 0.00 < 0.01 0.02 ± 0.00 0.03 ± 0.00 < 0.01 4/4/5

CS-TGN 0.69 ± 0.01 0.78 ± 0.01 0.63 ± 0.01 0.12 ± 0.01 0.21 ± 0.01 0.04 ± 0.01 0.08 ± 0.02 0.14 ± 0.04 0.04 ± 0.01 OOM OOM OOM OOM OOM OOM 6/6/6

UTCS 0.93 ± 0.01 0.95 ± 0.01 0.83 ± 0.00 0.32 ± 0.00 0.49 ± 0.00 0.18 ± 0.00 0.18 ± 0.01 0.31 ± 0.00 0.06 ± 0.00 0.20 ± 0.00 0.33 ± 0.00 0.10 ± 0.00 0.12 ± 0.00 0.22 ± 0.00 0.07 ± 0.00 1/1/1

three representative static CSmethods and one temporal CSmethod,

i.e., TransZero [31], COCLEP [19], QD-GNN [17] and CS-TGN [14].

Effectiveness Metrics and Implementation Details. In this

paper, we mainly focus on the F1-score, Normalized Mutual Infor-

mation (NMI) [8], and Jaccard similarity (JAC) [37], with higher

values indicating better results. Models are trained for 200 epochs

with embedding dimension 128, 𝑇 = 0.5, historical neighbors ℎ = 3,

negative samples
¯ℎ = 3, learning rate 0.01, 𝑘 = 2, and batch size

1024. The final results are averaged over five runs. The baseline hy-

perparameters are set according to their respective original papers.

4.2 Detailed Analysis of UTCS
• Effectiveness Evaluation. We compare UTCS with baselines

across five datasets by generating 100 random queries per dataset,

averaging F1, JAC, and NMI over five runs. As shown in Table 2: (1)

Traditional CSmethods strugglewith temporal communities. Specif-

ically, MPC often returns empty results, and QTCS performs poorly

on large datasets like arXivAI and arXivCS; (2) Learning-based

methods generally outperform traditional ones, suggesting real-

world communities differ from predefined structures; (3) Among

learning-based models, UTCS consistently achieves the best results,

improving F1-score by 60.44% over the second-best model, COCLEP.
•OnlineQuery Time. Figure 2 compares the running time of all

QTCS QD-GNN COCLEP

TransZero CS-TGN UTCS

School Brain Patent arXivAI arXivCS
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Figure 2: Efficiency results of CS methods.
methods in the search phase, with OOM denoting out-of-memory.

Our model outperforms the baselines in terms of efficiency on

most datasets, achieving over 100× speedup on the School dataset

compared to QTCS due to our local search design. While CS-TGN is

slightly more efficient than ours on the Brain and Patent datasets,

it faces effectiveness issues and struggles to scale on large graphs.

• Ablation Study. In this experiment, we evaluate the effect of

three key modules by F1-score: Temporal Dynamics Modeling (TM),

Node-Leiden Subgraph Alignment (NA), and Batch-Level Embed-

ding Refinement (BR). We develop three variants by removing these

modules from UTCS, denoted as UTCS-NA, UTCS-TM, and UTCS-BR-TM.
Table 3 shows the results: (1) The Temporal Dynamics Modeling

module is crucial, as it captures temporal interaction information,

which is vital for community search in temporal graphs. (2) The

Node-Leiden Subgraph Alignment module is also important for

effectively grouping similar nodes into the same community.

• Case Study. We demonstrate the effectiveness of our method

Table 3: Ablation study.
Models School Brain Patent arXivAI arXivCS +/-

UTCS-BR-TM 0.9347 0.4497 0.2754 0.1851 0.2133 -13.66%

UTCS-TM 0.9289 0.4530 0.2812 0.1789 0.2203 -13.01%

UTCS-NA 0.9282 0.4892 0.2971 0.3266 0.2156 -1.93%

UTCS 0.9476 0.4894 0.3108 0.3285 0.2213 -

(a) COCLEP (b) QTCS (c) UTCS (d) Ground-truth

Figure 3: A case study on arXivAI dataset.

on the arXivAI dataset, where QD-GNN and CS-TGN encountered

OOM issues. In Figure 3, the query node (red) is visualized alongside

ground-truth community nodes (black) and non-community nodes

(yellow). COCLEP misses several ground-truth nodes and includes

many from other communities because it overlooks the temporal

characteristics of the dataset. QTCS captures the temporal nature of

the dataset but imposes strict constraints on temporal dimensions,

missing nodes with weaker temporal associations. In contrast, our

UTCS precisely identifies the ground-truth community.

5 Conclusion and Future Work
In this paper, we propose UTCS, the first unsupervised learning-

based approach for the temporal CS problem. UTCS consists of

two phases. In the pre-training phase, temporal information is

captured via the Hawkes process, while structural relationships are

learned through the node-Leiden subgraph alignment and batch-

level refinement modules. In the online phase, some subgraphs

are extracted to narrow the search scope, and communities are

predicted based on a new scoring mechanism. Experiments on five

public datasets validate the method’s effectiveness.

Future work includes integrating traditional and learning-based

methods to balance efficiency and accuracy, developing newmetrics

for unlabeled temporal graphs, and designing distributed algorithms

to scale to massive temporal graphs.
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