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Abstract

Road network applications, such as navigation, incident de-
tection, and Point-of-Interest (POI) recommendation, make
extensive use of network edge weights (e.g., traveling times).
Some of these weights can be missing, especially in a road
network where traffic data may not be available for every
road. In this paper, we study the stochastic weight com-
pletion (SWC) problem, which computes the weight distri-
butions of missing road edges. This is difficult, due to the
intricate temporal and spatial correlations among neighbor-
ing edges. Moreover, the road network can be sparse, i.e.,
there is a lack of traveling information in a large portion
of the network. To tackle these challenges, we propose the
Contextual Graph Completion (ConGC). We propose to in-
corporate the contextual properties about the road network
(e.g., speed limits, number of lanes, road types) to provide
finer granularity of spatial correlations. Moreover, ConGC
incorporates temporal and periodic dimensions of the road
traffic. We evaluate ConGC against existing methods on
three real road network datasets. They show that ConGC is
more effective and efficient than state-of-the-art solutions.

1 Introduction

A road network enables Big Transportation Data ap-
plications (e.g., navigation, incident detection [28], 29],
and POI recommendation). The road network can be
treated as a graph with vertices and edges [24], 25| [26]
277,130, 31]. The edge weights of the road network are ex-
tensively used by these applications. A navigation app,
for instance, returns a path to a user with the smallest
sum of edge weights along the path.

However, it is common for a road network to have
edges whose weights are missing [10, [1T] 12} 13]. For
example, in a dataset that contains GPS of taxis in Hong
Kong during 2010, the taxi locations are concentrated in
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commercial and residential districts, covering only 1.4%
of all roads in Hong Kong. And roads in rural areas
are seldom visited by vehicles. During late nights, most
roads are traversed by few vehicles, making it difficult
to collect traffic data. To tackle this issue, a few weight
completion (WC) methods have been proposed.
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Figure 1: An example of stochastic edge weights.

In general, WC problems can be classified into two
types: deterministic and stochastic. Most WC methods
are targeted towards deterministic problems (e.g., [3]
Bl 22]). They learn deterministic, or non-probabilistic,
weights for edges (e.g., the average traveling time of
Nathan Road in Hong Kong between 10-10:30 am on
Sunday is 5 minutes on average). However, these
methods do not perform well in stochastic settings [1].
In addition, these methods often ignore the sparsity
of traffic data, which leads to inaccurate results. In
contrast, very few methods are targeting the stochastic
WC problem (e.g., A-GCWC [I]), and are optimized
towards learning the distributions of edge weights (e.g.,
the traveling time of Nathan Road during Sunday 10-
10:30 am is 5 minutes with 80% probability, and 10
minutes with 20% probability). Such methods, which
take into account the time-varying uncertainty of real-
time traffic conditions, give more precise weights than
their counterparts targeting only deterministic weights.

As shown in [7, 8 O] [I7], stochastic WC improves
the accuracy of path routing. To illustrate this, suppose
that a person departs from her home to catch a football
event in Figure She needs to arrive at the stadium
within 50 minutes. There are two possible paths: P;
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and P,. If average time is used, P» should be chosen,
since it requires a lower cost (43 minutes). However,
if the time distributions are considered, then P, is the
preferred choice, because there is a higher chance (95%)
for P; to be completed within 50 minutes (compared to
70% for P,). By using stochastic weights, the chance of
finding a better route can be improved.

Despite the benefits of using stochastic weights, it
has not been well studied. The best solution for stochas-
tic weight completion (SWC) so far is A-GCWC [I],
which uses a graph convolutional neural network to
propagate weights from edges whose traffic data is avail-
able to the edges with missing values. However, it does
not perform well on very sparse traffic data (e.g., the
Hong Kong dataset mentioned) in our experiments.
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Figure 2: (a) A road network; (b) a contextual graph.

In this paper, we propose a novel SWC solution
called Contextual Graph Completion (ConGC). We
utilize a contextual graph, which describes road informa-
tion such as speed limits, number of lanes, road types,
to provide finer granularity of spatial correlations. Fig-
ure [2| illustrates a contextual graph. The intuition is
that road properties depicted by a contextual graph pro-
vide informative contexts about road similarity among
neighbors. As we will show, it is helpful especially when
traffic data is sparse, because edge correlations captured
from contextual graph enhance the performance.

A salient feature of ConGC is that it incorporates
not just the spatial dimension of the traffic data, but
also two aspects of the temporal dimension — recency
and periodicity. The intuition is that recent and
periodic traffic has a high correlation with the target
time. By propagating traffic data along both space and
time dimensions, more data could be provided to learn
the stochastic weights for the edge concerned, which also
alleviates the data sparsity problem.

To summarize, our contributions are:

o We present the ConGC, which collectively lever-
ages contextual graph with traffic dynamics to provide
finer granularity of spatial correlations.

e ConGC incorporates topological traffics, recent
trends, and periodic patterns to effectively and effi-
ciently complete stochastic weights.

e We have performed substantial experiments

against exsiting methods. ConGC is more effective
than both deterministic WC methods and stochstic WC
methods. And it is efficient on million-scale road net-
works.

2 Related Work

There are two kinds of WC problems: deterministic and
stochastic. Most existing deterministic works target on
predicting traffic based on past data. They use location
data collected from static sensors installed along the
freeways. Because these data are regularly obtained,
they are “dense”. However, this assumption may not be
valid when road sensors are not available. In such cases,
we may still obtain vehicle location data by some other
means (e.g., GPS); however, the traffic data so obtained
is more sparse, making the WC more challenging.

Deterministic Weight Completion: Determin-
istic models focus on dense data. CNN based mod-
els [22] have been proposed to predict traffic speed or
crowd density. DSAE [23] utilizes denoising stacked
autoencoders to fill in weights. DCRNN [3] has been
proposed to forecast traffic data by capturing spatial-
temporal correlations. Spatial-temporal GCN [14] [T5]
191 201 2T] has been applied to forecast traffic data and
citywide passenger demand by incorporating spatial-
temporal correlation. Attention based spatial-temporal
graph convolutional networks [5] are further proposed
to pay different attention to nearby points in the graph.
Only fewer model [2] considers the sparsity, which has
been shown to perform worse than the existing stochas-
tic WC model in [I]. Since most work ignores the spar-
sity in traffic data, the performance on sparse data is
negatively affected.

Stochastic Weight Completion: A-GCWC [I]
uses spectral-domain-based GCN to complete stochastic
weights. It incorporates additional information, such as
the time interval flag, by a Bayesian inference model.
In terms of temporal dimension, the traffic behavior
is assumed to be conditionally dependent on the time
interval flag, which occurs periodically with a time
period p. Given two time intervals T} and T that are
p time units apart, the traffic conditions of them are
supposed to be the same in [I]. In fact, this is not always
the case due to dynamic factors, e.g., road construction
or incidents. Different from A-GCWC, our solution
can capture dynamic changes, and learn the difference
between T; and T5. Our solution also considers recency
and periodicity information, as well as contextual graph.

The research on GCN has two branches, which
are the spectral [I6] and node domains [6]. Most
traffic studies follow the spectral domain. However, the
model trained on one graph cannot be used to graphs
with different structures since it is based on Laplacian
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Eigenbasis [6]. Moreover, it requires high computation
cost, e.g., matrix inversion. Fewer studies [3] follow the
node domain. Although it has been shown its benefits
on many tasks [0], it has not been well studied in sparse
traffic. Therefore, we follow the node domain to study
the possibility of applying it to sparse traffic.

3 Problem Definition

DEFINITION 3.1. (ROAD NETWORK) A road network
is a graph where each vertex v € V represents a road
intersection. Edge e = (v1,v9) € E CV x V indicates
that intersections vy and v are directly connected.

DEFINITION 3.2. (STOCHASTIC WEIGHT) Let e € E
be a road, the stochastic weight of e at time interval
Ti, her, € RIBI, is its travel cost distribution. Each
stochastic weight consists of a set B of buckets which
describe the histogram of the distribution.

In Definition we capture each traveling direc-
tion of each road separately. However, we are not di-
rectly interested in the travelling direction but instead,
we are only interested in whether the road directions
allow a vehicle to travel from one road to the next road.
We are interested if two roads are spatial neighbors.

DEFINITION 3.3. (EDGE GRAPH) A directed road net-
work can be transformed to an undirected edge graph
G = (E,A), in which A is adjacency matriz that cap-
tures the connectivity of the edges in E. A, .,
Aeje; =1, e5,e5 € E, if and only if a vehicle can travel
from e; toe; or from e; to e; by passing through exactly
one intersection v € V, Aei,ej = Aej,ei = 0 otherwise.

DEFINITION 3.4. (n-TH ORDER SPATIAL NEIGHBORS)
Given n € N, an edge graph G, two edges e;,e; € E,
the edges e; and e; are n-th order spatial neighbors
of each other if and only if a vehicle can travel from
e; to ej or from e; to e; by passing through exactly n
intersections. We denote with NZ,.; (e) the set of all
spatial neighbors of e with order less or equal to n.

DEFINITION 3.5. (n-TH ORDER RECENT NEIGHBORS)
Given an interval T; € T, the n-th order recent neighbor
for n < i of T; is the time interval T;_,,. We denote
with N{eyy, (T') the set of all recent neighbors of time
interval T with order less or equal to n.

DEFINITION 3.6. (n-TH ORDER PERIODIC NEIGHBORS) (4.1)

Given a period p € N and a time interval T; € T, the
n-th order periodic neighbor for n-p < i of T; s the
interval T;_y,.,. We denote with N:éfiod_
all periodic neighbors of T with order less or equal to n.

Problem Definition. Given |7 time intervals, |E|
roads, and bucket size |B| for the stochastic weight
tensor W € RIEIXITIXIBl we denote her € RIBI as the
stochastic weight vector for the edge e at time interval
T. Due to the sparsity issue, W might have many
missing values. Stochastic Weight Completion aims to
reconstruct a tensor W by filling missing values in W.

4 The ConGC Model

In this section, we first introduce the framework of
ConGC (Section . After that, we explain the de-
tailed steps in the model (Sections 7. Moreover,
we show the time complexity of ConGC (Section .

4.1 Framework Figure [3| shows the framework. It
follows the encoder-decoder structure, in which Topo-
logical Traffic Propagator (Step (D), Contextual Traffic
Diffusion (Step @), Recent Trend Aggregator (Step @),
Periodic Pattern Explorer (Step @), and Pooling (Step
®) form the encoder, and Fully Connected Layer (©)
forms the decoder. The idea is to encode the data by
extracting key information from transformation, then
reconstruct the actual one by decoding it.

4.2 Topological Traffic Propagator The spatial
neighbors play an important role on the target edge.

Challenges: The importances of different spatial
neighbors are not exactly the same. Besides, there
may be some neighbors without vehicles travelling at
the time interval T. Considering these neighbors with
missing data may degrade the performance.

Design: Topological Traffic Propagator learns the
importance scores of the edge’s informative spatial
neighbors, and updates the edge by aggregating these
neighbors. The intuition is that among the edge’s
spatial neighbors, there are some neighbors following
the similar traffic condition as the target edge, but some
may have different traffic conditions. For example, in
Figure 3| (a), road e; should pay more attention to road
ey since vehicles can turn right when the red light is on.
But road e3 and e4 have less correlation with road e
compared to road es. Inspired by attention mechanism
[6] which was originally proposed to learn attention for
neighbors in the standard graph, we propose to exploit
hidden correlations in sparse traffic data which contain
complex information with missing data in neighbors.

The stochastic weight h., 7 € RIBl is transformed
to latent embedding to allow deep expression:

He, 7 =U he, 1,

where U € RB'*IBl is the learnable parameter, and

(T) the set of He, 1 € R’ is the latent representation of edge e; at T

The importance of edge e; to edge e; at the time
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Figure 3: The overall framework of the ConGC model. Details of each step are in Sections [£.2] to [47]

interval T is:

t.
(42) P = ReLU(a"™ - [He, rl|H., 7)) |

where ReLU is the activation function, a' is the trans-
pose of the trainable parameter vector a, || is the con-
catenation operator, e; € NI\ (e;) is the at most n-th
order spatial neighbors of e;.

The spatial traffic attention can be calculated as:

spat.

spat.
(43) o = Pl 1)

)

spat.
ZekeMaskT(Nwat (e4)) P(”ei,ek,:r)

where Maskr(NJ.; (€:)) = {ej | he;r is valid,e; €
NZ ai.(ei)} is the masked set of spatial neighbors that
only contain edges with traffic data at time interval T'.

The spatial graph convolution is calculated as:

spat. _ 2 : spat.
(44) hei,T - aei,e_j,T ' Heij ’

EMa«kaNTLat (eq)

where hSpat € RB' is the updated embedding of ¢; at T
after Spatlal attentional graph convolution.

4.3 Contextual Traffic Diffusion Roads in the
road network have properties, e.g., speed limit, the num-
ber of lanes, length, road type, and one way flag. These
properties in the road network form a contextual graph
(Figure[3] (e)). The insight is that they can provide use-
ful information about road similarity in nature, which
is important especially under data sparsity scenarios.
Challenges: The dynamic graph depicted in Fig-
ure [3] (b) (Section contains missing values as there
exist edges having no vehicles traversed at some time

intervals. It makes weights update based on neighbor
pairs’ attention, i.e., Equations and inaccurate.
Take Figure|3| (a) as an example, edge e; contains miss-
ing values, then attention scores between e; and its
neighbors become imprecise. In contrast, contextual
graph is a static graph that provides properties of roads.
It is different from the dynamic graph, which models dy-
namic weights changing when traffic is updating. Hence,
contextual graph is essential since it contains road sim-
ilarity information to supplement imprecise attention
scores. However, the integration of static and dynamic
graphs is non-trivial.

Design: The ConGC updates based on road prop-
erties in contextual graph and traffic condition in dy-
namic graph collectively. The road properties can be
transformed as contextual embeddings. For categorical
features, e.g., the number of lanes nl, one way flag ow,
road type rt, we apply one-hot encoding to transform
them as f,;, fow and f.;. For continuous features, e.g.,
speed limit sl and road length rl, we use Binning strat-
egy to transform them into discrete ones as fq; and f.
Then we concatenate them as f. € RIZIxnf.

(4.5) Je=Fur |l fow |l Fre || fs Il fri,

where nf is the dimension of feature f. of edge e;.
We apply a transformation to obtain the latent
feature of graph contexts as:

(4.6) Fe., =R fe.,

where f., € R™f is the contextual embedding of edge e;,

R € RB'*"f s the learnable parameter, and F.., € R’
is the latent context representation of edge e;.
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The contextual importance of edge e; to edge e; is:

(4.7) nece;, = ReLU(d"™ - [F.,||F..,]) ,

where d is the trainable parameter vector. The contex-
tual similarity score acont € R can be calculated as:

cont. )

eXp(Ue e;
(4.8) Al = S ,
e Z%E(N"at (e1)) eXP(??S?%i)

We then diffuse the transformed stochastic weight
embedding H, v € RE" (Equation ) based on the
contextual s1m11ar1ty score ot as:

(4.9) E D D e

€j ENZLat. (ed)

Ej,T .

The embedding h .7 € R2B'Q of edge e; at the
time interval T after “contextual and spatial graph
convolution is updated as:

(410) e =l ReLU (R (APY)

To make the learning robust, we concatenate the learned
embedding @) € N times as the multi-head attention.

4.4 Recent Trend Aggregator Temporal neigh-
bors of edge e; have high correlations with the target
time interval Tj of e;.

Challenges: These correlations differ among tem-
poral neighbors. Moreover, traffic of temporal neighbors
with missing data propagates low quality information
via graph connections.

tre %

o 000 -~ 000 -
“ T, T, \f T3=2-p Ts-p T
(@ (b)
Figure 4: (a) Recent neighbors; (b) Periodic neighbors.

Design: Recent Trend Aggregator with a masked
operator aims to calculate the importance scores of the
edge’s masked recent neighbors, then update the edge
by aggregating its masked recent neighbors with impor-
tance scores. The intuition is that recent neighbors of
different orders follow different degrees of traffic corre-
lation with the target time interval 7;. For example, in
Figure [4] (a), road ey at T3 should pay more attention
to its second-order recent neighbor at 7T} since the traf-
fic lights are red at both 77 and T3. In contrast, the
first-order recent neighbor 75 has less correlation with
T3 compared to 17, since the traffic light is green at T.

The h;i’Tj € R2B'Q ig mapped to latent represen-

tation H;Z_Tj € RB to allow sufficient expression as:

(4.11) Hy,z, =0 he 1,
where O € RB'*2B'Q ig the learnable parameter.
The importance of T}, for T} at e; is defined as:

(4.12) W, = ReLU"™ - [Hy, 1, ||He, 7,])

where p is the trainable parameter vector, the time
interval T}, € Ny, (1)), and j —n < k < j, n is the
maximum order of recent neighbors.
The recent attention coefficient is defined as:
temp.
exp(nr, 7, ;)
(4.13) ofY = 5T, ,

emp.
ZTleMask N (T)exp(nT Ty e )

temp

where Mask., Nt (T5) = {1} | he, 7, is valid, T; €

Niemp. (T5)} is the set of masked recent neighbors of Tj

at e; that filters out neighbors with missing traffic data.
The embedding h;,n € RP'Q is calculated as:

(4.14)

temp. !
he@, Hq 1 ReLU E aTj,Tk,etHﬁiaTk )

Ty €Maske, Nitmp. (T5)

4.5 Periodic Pattern Explorer Periodic Pattern
Explorer with masked neighbors learns importance
scores for informative periodic neighbors of the target
edge e; at time interval 7', then integrates these peri-
odic neighbors. The intuition is that periodic neighbors
usually follow a similar correlation as the target one.
However, there may be some divergence among them.
For example, in Figure [4] (b), there is an incident hap-
pened at time interval T35 — p at edge e;, where p is the
period. Consequently, the correlation between 73 and
T3 — p is lower than that between T5 and 75 —2-p. The
period p could be 1-day or 1-week.

The h;’TJ_ € RP'Q is transformed to latent embed-

ding by parameter P € RB'*B'Q ag:

"

(415) Hei,Tj =P heivT;’ )

where H .1, € R is the latent representation.

The 1mportance of temporal periodic neighbor T}
for time interval T} of edge e; is defined as:

3 d. " "

(416) n?"ff’;"(;,eb = ReLU(utr : [Hei,Tj HHei,Tk]) 3
where u is the parameter vector, the time interval
Ty € NJGioa(Ty), and j —n-p < k < j, nis the
maximum order of periodic neighbors, p is the period.

Copyright © 2022 by SIAM
Unauthorized reproduction of this article is prohibited

68



Downloaded 07/01/24 to 103.188.234.202 . Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/terms-privacy

The periodic traffic attention can be calculated as:

period.
(117) aberiod _ PO 1)
' Tj,Tk,eq — period. \ ’
ZTZEMaSk SNEE a (T) eXp(nT Tl,e7)
where Mask, Ngcflod( 5) =A{T1 | he,ry, is valid, T; €

Njotoa (T;)} is masked periodic neighbors of Tj at e;
that only contains periodic neighbors with traffic data.
The periodic graph convolution is calculated as:

(4.18)

updated Q period. ”
el, _H =1 ReLU E : aTj,Tk,eiHeiaTk
T eMask., N a.(Ty)

7 perlo

where hZi‘;f;ted € RB'Q is the updated embedding after
periodic graph convolution.

4.6 Pooling The h“pdated of all edges at all time

intervals form the tensor Wupdated. Then, Pooling is
applied to extract key information from Wupdated hy o
pooling size of k; and k., where k; is designed to extract
temporal key information, and k. is used for pooling
important spatial information. Under traffic sparsity,
there may still exist missing values in TWuPdated eyen
after the operations we applied. Pooling is necessary
since it only keeps key information from J/updated
instead of missing values. After pooling, we obtain the
encoded WP with a smaller size compared to W pdated,
Take the max Pooling on Wupdated ¢ RIEI*[T[xB'Q
in the spatial and temporal dimensions as an example:

ke (e+1)—1 kg (t4+1)—1
(4.19) WEPtLb = “max max }lpdawd,
10q i—kese  je—kywt i,5,bq

where WL € RFe R X L XBQ is the tensor after Pooling.

4.7 FC The Fully Connected Layers (FCs) are ap-
plied to decode key information which is encoded in
WPL and restore the tensor to the original shape
|E| x |T| x |B|. After that, softmax is applied to make
sure the sum of each stochastic weight equals one. Fi-
nally, the completed stochastic weight tensor W is ob-
tained.

4.8 Optimization After the encoder-decoder struc-
ture, we finally obtain the completed stochastic weight
tensor W € RIEIXITIXIBI The goal is that W is as close
as the actual ground truth stochastic weight tensor Wg
as possible, where W € RIFIXITIXIBIl i5 set according
to the label of model functionalities (see Section [5.1.3).
Therefore, the loss function is formulated as:

|TI |E|

=2 D tr.

i=1 =1

(420) LW, We) (he, ml\he, 7i)

where KL(-||-) measures the KL-divergence between the
completed stochastic weight and the ground truth, and
17, ., isan indicator function that is 0 if data is missing
in T; at e;, and 1 otherwise. The reason is that we can
only establish the quality of the completed stochastic
weight if the actual one is available as ground truth.

4.9 Complexity Analysis The time complexity of
ConGC is O(Q-[T|-|E|- |B|- B+ (2 INDE | +| Nt | +
|Nge,11r)10d ‘))7 where ‘ S%Zﬂ | temp‘ and |Np(;flod| are
the maximal number of spatial neighbors, the number
of recent, and periodic neighbors, respectively. After
removing constants, the complexity is dominated by
O(|T| - |E|). Hence, ConGC has a polynomial time

complexity, and is efficient as shown in Section

5 Experiments
5.1 Experimental setup

5.1.1 Datasets We evaluate on three real datasets.

e The HK is a taxi GPS data set E| in Hong Kong
in 2010. It contains 35 gigabytes trajectories.

e The XN is an open GPS data set EI in Xi’an in
2016 , which contains 137 gigabytes trajectories.

e The CD is an open GPS data set 2, which contains
196 gigabytes of GPS data in Chengdu in 2016.

We set the histogram with eight 5-m/s buckets
ranging from Om/s to 40m/s, and partition a day into
96 15-min intervals as [I].

5.1.2 Preprocessing After map matching [4], the
two preprocessing steps are conducted.

Edge Graph Transformation. We choose the
largest connected subgraph as [1]. In the HK, XN, and
CD datasets, the numbers of selected edges are 1158, 64,
and 175, respectively. We then transform the directed
road network into an undirected edge graph.

Input Data Preparation. We construct ground
truth stochastic weight W from GPS data. For input
weight W, we construct it by randomly removing edge
weights in W¢ with removal ratio rm. Then we evaluate
the quality of completed W by comparing with Wg.
Since W may contain missing values due to sparsity,
we only use available data of W as ground truth.

5.1.3 Model functionalities Our method is flexible
to support two model functionalities.

Estimation. The input is stochastic weight WQT;
at T; with missing values. The output is the completed
WQT; at T;. The label is the ground truth Wa@QT;.

TThe dataset HK is a confidential dataset.
2 http://outreach.didichuxing.com/research/opendata/
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Prediction. The input is WQT; at T; with missing
values. The output is the predicted W@QT;; at the next
T;+1. The label is the ground truth WgQT; 4.

5.1.4 Competitors We compare with 8 methods.
Deterministic weight completion methods:
There are two kinds of deterministic methods. The first
kind contains Random Forest (RF'), Convolutional Neu-
ral Network (CNIN) and DSAE [23], which only con-
sider spatial data. Another kind incorporates temporal
data. They are DCRNN [3], ASTGCN [5] and ST-
ResNet [22]. We complete weights of each bucket in
the histogram separately for RF as [I] for stochastic set-
ting. For other learning based methods, we adapt them
by changing their output size to |B|. The differences be-
tween ASTGCN and ours are three folds. First, they are
designed on dense data. They ignore missing values in
the model, which negatively affects performance. Sec-
ond, they are designed for deterministic weights. Third,
they follow the spectral GCN. We follow the node do-
main, which enables propagation of correlations based
on structure. The first two differences hold for DCRNN.
Stochastic weight completion methods: A-
GCWC [1] is the state-of-the-art model (GCN) for
stochastic weight completion. We denote GC as the
basic version of ConGC that does not involve contexts.

5.1.5 Hyperparameter tuning We partition
datasets into 5 folds as [I], where 4 folds for training
and validation, and 1 fold for testing. We run 10
times in total, and report the average. We conduct
hyper-parameter tuning by Bayesian optimizer. The
scopes are learning rate [0.0001, 0.1], number of spatial,
recent, periodic neighbors {2, 3, 4, 5}, p {“1 day”, “1
week”}, @Q {4, 8, 16, 32}, ki, ke {2, 4, 8}, kernel number
{8, 16, 32}, B’ {200, 400, 600}, kernel size {8, 16, 32}.

5.1.6 Performance metrics We evaluate by Mean
Kullback-Leibler divergence Ratio (MKLR) and Frac-
tion of Likelihood Ratio (FLR) as [I]. Historical Aver-
age (HA) is the average of training data. The smaller
the MKLR is, the better the quality is.

. -
TS E Ly o) - KL(RE, 1| e, ;)
[T] "E‘1 1y, -KL(heG_,.,Ti |[HA.;)

1=1 Jj=

(5.21) MKLR =

|71 |E|
i=1 2uj=1 ]lTivej |LRej’Ti > 1|

[T |E| ’
Zi:l j=1 ‘ﬂTi,Ej

WL (P (on))

i1 (Phaon))
number of ground truth records, P;(ox) and Ppa (o)

(5.22) FLR =

where LR, 1, = lo] is the total

are the probabilities of observing o from h and HA.The
higher the FLR value is, the better the method is.

5.2 Effectiveness evaluation We set rm as 0.5 —
0.8 for XN and CD datasets as [I]. In HK, we do not
remove any data and only evaluate prediction as the
sparsity is already 90% (None for rm in Tables |1 [2).

Estimation: In Tables [T} [2| the MKLR values on
estimation task in the XN and CD datasets increase—
recall that a low MKLR value is better—as rm in-
creases. The reason is that when more edges are re-
moved, less information can be used when propagating
the correlation among edges and time intervals. And the
FLR values in the XN and CD datasets decrease—recall
that a high FLR value is better—as rm increases. The
reason is the same as for MKLR since fewer data provide
less information. ConGC achieves the best performance
on all datasets. For example, its average improvements
of MKLR and FLR values over state-of-the-art model
A-GCWC on estimation are 6% and 7%.

Prediction: In Tables ConGC beats other
methods as well on the prediction task. And the average
improvements of MKLR and FLR values over state-of-
the-art model A-GCWC are 5% and 8%.

Moreover, ConGC is clearly better than A-GCWC
when rm is large. For the largest m 0.8 on XN and CD
datasets, the average improvement of ConGC is 6.12%
more accurate than A-GCWC. As for HK, its average
improvement is 4% more accurate than A-GCWC.

5.3 Efficiency evaluation We use GeForce GTX
1080 Ti 11 GB GPU for evaluation.

Efficiency comparison: Figure [o| (g) and (h)
show the average training and testing time for a single
instance (i.e., a weight matrix at one time interval for
all edges). Firstly, RF, DSAE and CNN are faster than
others since they only consider spatial data. Second,
DCRNN, A-GCWC, GC (One basic variant ignores
contexts) and ConGC have comparable performance,
while ASTGCN, ST-ResNet are much slower. Note that
ST-ResNet, ASTGCN, GC and ConGC consider more
data, i.e., spatial, temporal and periodic data, while
DCRNN only considers spatial and temporal data. It
means that ConGC have comparable performance even
considering more data than other methods.

Scalability w.r.t. the number of roads: We
manually enlarge the dataset as [I], since large road net-
works with dense data are unavailable. The maximum
number of edges that one GPU can process with a batch
size 8 is 1600 for ConGC. We manually enlarge the road
network of XN to 1536 for Figure [5| (a-b), and enlarge
it to 1 million for Figure [5[ (c-d), and measure the aver-
age running time for an instance (i.e., a weight matrix
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Table 1: MKLR (lower is better) on three datasets. For each method, we report average results over 10 runs.

Datasets | Functionalities | rm RF | CNN | DSAE | DCRNN | ASTGCN | ST-ResNet || AGCWC || GC | ConGC

05 | 091 | 049 | 0.37 1.07 0.47 0.72 0.22 021 | 0.14

o 0.6 | 1.00 | 0.54 | 0.58 1.29 0.57 0.76 0.27 024 | 0.23
Estimation 0.7 | 095| 054 | 1.13 1.16 0.52 0.60 0.39 0.37 | 0.26

N 0.8 | 0.95| 0.60 | 1.93 1.16 0.61 0.65 0.59 0.59 | 0.59
05 | 091 | 0.71 | 1.17 1.02 0.74 0.74 0.66 0.65 | 0.65

o 0.6 | 1.04| 071 | 1.30 1.25 0.74 0.73 0.66 0.65 | 0.65

Prediction 0.7 | 094 | 071 | 1.42 1.10 0.71 0.72 0.69 0.63 | 0.62

0.8 | 095| 071 | 1.63 1.07 0.70 0.75 0.69 0.62 | 0.61

05 | 098 | 0.70 | 0.74 0.87 0.77 0.62 0.53 0.44 | 0.40

o 0.6 | 091 | 073 | 0.94 0.88 0.68 0.64 0.56 0.57 | 0.54
Estimation 07 1099 | 077 | 1.19 0.89 0.70 0.64 0.72 0.65 | 0.64

D 08 | 092 0.80 | 1.36 0.94 0.79 0.77 0.79 0.80 | 0.77
05 | 099 | 0.74 | 1.12 0.90 0.71 0.69 0.72 0.69 | 0.68

o 0.6 | 091 074 | 1.18 0.91 0.71 0.70 0.73 0.70 | 0.69

Prediction 0.7 | 099 075 | 1.24 0.91 0.72 0.70 0.75 0.70 | 0.69

0.8 | 093] 076 | 1.30 0.92 0.72 0.70 0.76 0.71 | 0.70

HK Prediction | None | 0.92 | 0.82 | 1.14 1.27 0.88 0.77 0.80 0.80 | 0.74

Table 2: FLR (higher is better) on three datasets. For each method, we report average results over 10 runs.

Datasets | Functionalities | rm RF | CNN | DSAE | DCRNN | ASTGCN | ST-ResNet || AGCWC || GC | ConGC

0.5 | 027 | 0.53 0.77 0.48 0.53 0.45 0.76 0.80 0.90

. . 0.6 | 0.31 | 0.53 0.74 0.40 0.51 0.43 0.76 0.78 0.82

Estimation 0.7 | 0.25 | 0.54 0.64 0.44 0.54 0.47 0.71 0.76 0.82

<N 0.8 | 0.21 | 0.49 0.47 0.43 0.50 0.46 0.47 0.52 0.54
0.5 | 027 0.43 0.42 0.50 0.41 0.42 0.44 0.51 0.52

o 0.6 | 030 | 0.43 0.40 0.42 0.41 0.44 0.44 0.51 0.52

Prediction 0.7 | 0.25| 0.40 0.38 0.44 0.39 0.41 0.36 0.49 0.50

0.8 | 0.22 | 0.40 0.34 0.45 0.39 0.37 0.36 0.49 0.50

0.5 | 0.17 | 0.47 0.61 0.56 0.48 0.53 0.60 0.62 0.67

. . 0.6 | 0.15 | 0.46 0.52 0.56 0.50 0.52 0.57 0.56 0.60

Estimation 0.7 | 012 | 0.44 0.43 0.40 0.49 0.50 0.47 0.51 0.51

cD 0.8 | 0.09 | 0.42 0.35 0.36 0.44 0.47 0.43 0.46 0.48
0.5 | 017 | 0.44 0.40 0.51 0.49 0.54 0.49 0.54 0.55

o 0.6 | 0.14 | 0.44 0.36 0.50 0.49 0.54 0.48 0.54 0.55

Prediction 0.7 | 012 | 0.43 0.33 0.49 0.48 0.54 0.47 0.54 0.54

0.8 | 0.08 | 0.42 0.31 0.50 0.48 0.53 0.46 0.52 0.53

HK Prediction None | 0.19 | 0.37 0.44 0.37 0.30 0.43 0.43 0.43 0.45

at one time interval for all edges). We follow the two
settings in [I] and evaluate (1) the scalability of moder-
ate road networks that fit into one GPU (Figure[] (a-b))
and (2) the scalability of very large road networks which
have to be partitioned into multiple small road networks
that can be trained in sequence by batches in one GPU
(Figure [5| (c-d)). We adapt methods with the state-of-
the-art partitioning-based approach [I8] to render very
large road networks feasible. Figure [5| (a~d) shows that
ConGC is scalable on moderate and vast road networks.

Scalability w.r.t. the number of time inter-
vals: Similarly, we manually enlarge the dataset w.r.t.
|7 from 1131 to 452,400, and measure the average
training time for one epoch and the testing time for
all testing data. Here, |7| = 452,400 time intervals
represent 12.9 years of data with 15-min intervals. The
number of edges is set to 64. Figure [5| (e-f) shows that
the ConGC is scalable on the time dimension.

71

6 Conclusions

We study the stochastic weight completion problem un-
der data sparsity. We propose ConGC to utilize con-
textual graph for learning weights. The ConGC prop-
agates correlations in spatial and temporal dimensions
from edges with weights to edges with missing weights.
Our evaluation results show that ConGC is more effec-
tive, and can scale to large road networks.
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Figure 5: Scalability on (a-b) moderate and (c-d) large road networks; (e-f) time dimension. (g-
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