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Abstract
Motif counting is fundamental in graph analytic tasks (e.g., clus-

tering and recommendation) but #P-hard. Recent research has fo-

cused on exploring and applying deep learning-based solutions to

tackle this problem. However, these solutions assume a determinis-

tic graphwhere edge existence is certain, whichmay not hold due to

the measurement and statistical prediction errors. Meanwhile, exist-

ing methods for uncertain graphs still face considerable time costs.

To address the above issues, we proposeUnG-MoCha, a novel deep-
learning approach to efficiently count motifs in uncertain graphs.

UnG-MoCha extracts representative subgraphs via graph structure

learning and learns graph and motif representations using hierar-

chical and classic graph neural networks, respectively. Canonical

correlation analysis is used to exploit correlations between graph

and motif representations, boosting accuracy. Experiments on real-

world graphs demonstrate UnG-MoCha’s superior performance for

scalable motif counting on uncertain graphs.

CCS Concepts
• Computing methodologies→ Neural networks; • Informa-
tion systems→ Data mining.
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1 Introduction
Graphs are prevalent to model the complex relationships among

different objects in various domains, e.g. bioinformatics and social

science, and graph analytic tasks have attracted much attention.

Motif counting is a fundamental problem in graph analytic tasks.

Motif, or graphlet, is usually a small graph with a few nodes and

edges [44]. The motif counting task is to count the number of

motifs in a graph by subgraph isomorphism and provide an insight

to mine the complex graph. It has found various applications in a

wide range of fields, including biological network analysis [54, 55],

social network analysis [16, 23, 27, 70] and graph database query

optimization [38]. For instance, in graph databases, motif counts are

helpful for identifying efficient query execution plans to optimize

query performance [38].

Numerous algorithms have been devised to tackle the motif

counting problem effectively, falling broadly into two categories:

enumeration methods [6, 29] and analytical methods [4, 43, 48]. The

former often struggle with large graphs due to the NP-Complete na-

ture of checking motif existence through isomorphism [6] and the

#P-hardness of counting motif appearances via isomorphism [29].

In contrast, analytical methods, which decompose a motif into

smaller subgraphs and derive the motif’s count based on counts

from these subgraphs, often face limitations in motif sizes and gen-

eralisability. In general, exact counting solutions [4, 6, 43, 48] are

suitable for small graphs, but their performance declines for larger

graphs. Consequently, researchers have turned to approximation al-

gorithms [8, 12, 49] to enhance efficiency. Learning-based counting

algorithms [39, 58, 61, 67] have been proposed and attracted much

attention in recent years. These methods treat the counting task

as a regression problem, delivering impressive accuracy and faster

query processing compared to traditional approximate methods.

Uncertain Graphs. Predominantly, existing motif counting

methods concentrate on deterministic graphs, omitting considera-

tion for the uncertainty of edge existence. However, modeling the

data as deterministic graphs is not appropriate in some applica-

tions [19, 31, 34, 50]. In protein-protein interaction (PPI) networks,

the edge indicates the interaction between two proteins and the

node denotes the protein compound. Here, the edge existence is

uncertain because the evidence of protein interaction can be erro-

neous based on experimental results [5]. In user-item networks,

the edge existence probability can indicate the likelihood of a user
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(a) Uncertain graph 𝓖

(b) 𝑃 𝐺! = 0.25 (c) 𝑃 𝐺" = 0.25 (d) 𝑃 𝐺# = 0.25 (e) 𝑃 𝐺$ = 0.25
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Figure 1: Uncertain graph counting example.

making a purchase of an item. In PPI networks, motif counts can be

employed to analyze clustering coefficients and unveil functional

and topological characteristics, as highlighted in [60]. Similarly,

within uncertain user-item networks, motif counts, particularly

4-cycle counts, could be utilized to recommend items that enhance

the cohesion of strong communities, as discussed in [69].

As shown in Fig. 1(a), in uncertain graphs, edge existence, in-

fluenced by existential probability, necessitates a different ana-

lytical approach to avoid imprecise analyses for motif counting.

If we ignore the uncertainty, the triangle count would be 2, i.e.,

{𝑎, 𝑏, 𝑑} and {𝑎, 𝑐, 𝑑} are two triangles. However, with edge exis-

tential probability considered, the uncertain graph can have four

possible worlds [3] according to the edge existential statuses. The

lower part of Fig. 1 shows the possible worlds and their respective

probabilities. Based on the probability and the triangle count of

each possible world, we can compute the mean is 1 and the variance

is 0.5, which is quite different from what the count obtained by

ignoring uncertainty.

To solve the motif counting problem on uncertain graphs, several

approximate counting methods are proposed [18, 41, 54, 55]. These

methods explain the counting results on uncertain graphs from a

statistical view, where the mean and variance values of the motif

will be considered and used to analyze the uncertain graph. Among

these methods, LINC [41] shows better counting ability with rela-

tively low time complexity and better accuracy. Specifically, LINC

operates by first generating a specified number of “possible worlds"

from the uncertain graph. Within each of these possible worlds,

LINC counts the occurrences of motifs. Subsequently, using the

motif counts obtained from all the sampled worlds, LINC calculates

the mean and variance to estimate motif occurrences in the original

uncertain graph. Despite the fact that LINC’s time complexity is

lower than other counting methods that focus on uncertain graphs,

it still suffers from high sampling time to count the motifs with

relatively sparse structure (e.g., 2-star or 3-star), especially on large

graphs.

To alleviate the limitations above, a straightforward solution

is to directly adapt the existing learning-based methods for mo-

tif counting on the deterministic graph, given their demonstrated

efficacy [39, 58, 61, 67]. Specifically, we can use ALSS [67], a state-

of-the-art solution among them, to count the number of motifs

over uncertain graphs. In ALSS, it first decomposes the given query

graph into smaller substructures by 𝑙-hop breadth-first search (BFS)

search, and then learns their representations using a Graph Neu-

ral Network(GNN) model. In addition, a self-attention network is

applied to aggregate all the substructure representations. Finally,

an active learner is utilized to enhance the training data and boost

the estimation accuracy. However, ALSS has poor accuracy on un-

certain graphs. ALSS primarily relies on pre-trained task-irrelevant

models, such as Node2Vec [22], to analyze the target graph, which

can not well capture the important local structural information of

the target graph and neglects the uncertainty associated with its

edges.

Our Solution. Addressing the protracted computation time of

LINC and limitation of ALSS, we present the Uncertain Graph

Motif Counter byHierarchical Architecture (UnG-MoCha), a novel
learning-based motif counting model. The source code and datasets

of UnG-MoCha are released publicly
1
. UnG-MoCha consists of

four steps: subgraph extraction, uncertain subgraph structure learn-

ing, representation learning, and count estimation: (1) In subgraph
extraction, the uncertain graph is decomposed into a collection of

smaller subgraphs. (2) During uncertain subgraph structure learning
(USSL), the extracted subgraphs are refined to obtain the represen-

tative possible world for each of them by effectively capturing edge

uncertainty. (3) The representation learning step encompasses two

parallel processes. On one hand, the obtained possible worlds are

fed into our hierarchical target graph neural network to learn the

representation of the uncertain graph, scaling the receptive field

from the entire graph to the subgraph level. On the other hand, our

motif neural network employs the GNN model to effectively capture

the motif’s structural information, obtaining the motif representa-

tion. (4) Lastly, the counting unit, leveraging canonical correlation

analysis, efficiently mines the correlation between the graph and

motif representations, computing high-quality estimated results.

Compared with LINC, the subgraph extraction and USSLmodules

enable our model to avoid mass time cost on possible world sam-

pling as LINC. Compared with ALSS, which applies the pre-trained

embedding model to obtain the target graph representation, our

target graph neural network can learn the representation of input un-
certain graphs through the obtained possible worlds and preserve

the edge uncertainty, hence improving the estimation accuracy on

uncertain graphs.

Contributions.We summarize our main contributions as fol-

lows:

• We present UnG-MoCha, a novel learning-based motif count-

ing method for uncertain graphs. To our knowledge, UnG-

MoCha stands out as the first DL-based method developed

for motif counting in uncertain graphs.

• We formulate Uncertain Subgraph Structure Learning (USSL),

a downstream-task-relevant graph refinement strategy to

leverage the edge uncertainty and find the most representa-

tive possible worlds for each uncertain subgraph.

• We incorporate canonical correlation analysis to uncover

the correlation between motifs and the uncertain graph, ul-

timately enhancing the accuracy of our approach.

1
https://github.com/banrichard/UnG-MoCha
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• Experiments conducted on five real-world datasets under-

score the effectiveness and efficiency of UnG-MoCha. The

experimental results show our method is capable of handling

motif counting tasks over uncertain graphs with reducing

up to 90% of the errors compared with ALSS and up to six

orders of magnitude less time than LINC.

2 Preliminaries
In this section, we first provide a formal definition of uncertain

graphs, followed by an articulation of the motif counting problem

within the context of uncertain graphs.

2.1 Uncertain Graph
Definition 2.1 (Uncertain Graph [41]). An uncertain graph,

denoted as G, is defined as a triplet (𝑉 , 𝐸, 𝑃), where:
• 𝑉 represents the set of nodes in the uncertain graph,
• 𝐸 ⊆ 𝑉 ×𝑉 constitutes the edge set,
• 𝑃 : 𝐸 → (0, 1] is a function that assigns to each edge 𝑒 ∈ 𝐸 a
probability 𝑃 (𝑒), indicating the likelihood of the existence of
edge 𝑒 .

When the edge existence probabilities are disregarded, the un-

certain graph reduces to a deterministic graph 𝐺 = (𝑉 , 𝐸). This
deterministic graph is referred to as the backbone graph [13] of the

original uncertain graph G.
According to the Possible World Semantics (PWS) framework [3],

an uncertain graph G can be represented as a set {𝐺𝑖 = (𝑉 , 𝐸𝐺𝑖
)}

of size 2
|𝐸 |

. Each𝐺𝑖 within this set represents a possible world, cor-

responding to a specific realization where edges from the backbone

graph are either present or absent based on a random selection

process. Prior work typically establishes that the existence proba-

bilities of the edges are independent [7, 13, 41, 46]. The probability

P(𝐺𝑖 ) of a given possible world 𝐺𝑖 can be calculated using (1):

P(𝐺𝑖 ) =
∏
𝑒∈𝐸𝐺𝑖

𝑃 (𝑒)
∏

𝑒∈𝐸\𝐸𝐺𝑖

(1 − 𝑃 (𝑒)) (1)

For illustration, Figure 1 (b), (c), and (d) show the probabilities of

three distinct possible worlds derived from the uncertain graph

G, respectively. Their corresponding existence probabilities can be

computed using Equation (1).

2.2 Motif Counting
Motif counting in deterministic graphs is anchored in the concept

of subgraph isomorphism. Here, a motifM = (𝑉M , 𝐸M ) is usually
a connected graph with a few vertices [44].

Definition 2.2 (Subgraph Isomorphism [41]). Given a motif
M = (𝑉M , 𝐸M ) and a deterministic graph 𝐺 = (𝑉 , 𝐸), a subgraph
isomorphism is an injective function 𝑓 mapping 𝑉M to 𝑉 such
that for every edge 𝑒 (𝑢, 𝑣) ∈ 𝐸M , there exists a corresponding edge
𝑒 (𝑓 (𝑢), 𝑓 (𝑣)) ∈ 𝐸.

Given a motifM and a deterministic graph 𝐺 , the task of motif

counting is to ascertain the number of subgraph isomorphisms

fromM to 𝐺 . In contrast, when counting motifs in an uncertain

graph G, the motif count becomes a random variable, stemming

from the fact that each possible world 𝐺𝑖 exists with an associated

probability [41].

Problem Definition: For a given motifM and uncertain graph

G, the objective is to estimate both the mean and variance of the
motif counts fromM to G.

Attempting a direct enumeration of all mappings fromM to G
is considered #P-hard [41]. This complexity arises from the need to

count motifM across an exponentially large set of deterministic

graphs that represent all possible worlds of G. Even though prior

research [41, 54, 55] has proposed several methods to pare down

the computational time complexity, these approaches remain com-

putationally intensive, particularly when applied to large graphs.

In the context of this paper, we characterize a motif as an induced
subgraph in the backbone graph𝐺𝑏𝑏 of the uncertain graph G. The
induced subgraph is defined as:

Definition 2.3 (Induced Subgraph [41]). Given a deterministic
graph 𝐺 = (𝑉 , 𝐸) and a vertex set 𝑉 ′ ⊆ 𝑉 , an induced subgraph
𝐺𝑠𝑢𝑏 = (𝑉 ′, 𝐸′) is the graph whose vertex set is 𝑉 ′ and whose edge
set 𝐸′ consists of all the edges in 𝐸 that have both endpoints in 𝑉 ′.

Regarding non-induced motifs, they can be derived from induced

motifs via a transformation, as elaborated in [30]. While our pro-

posed methodology is capable of managing motif homomorphism

counting, we predominantly focus on isomorphism counting. Con-

sistent with traditional uncertain graph motif counting methods

[41, 54], our experiments center on undirected uncertain graphs,

emphasizing the structural nuances shaped by edge probabilities.

3 Subgraph Extraction and Refinement
In motif counting, the structural intricacies of both the motif and

the target graph are crucial. However, given the often vast disparity

between the target graph and the motifs, accurately correlating

their representations becomes challenging.

ALSS [67] uses pre-trained models such as Node2Vec [22] or

ProNE [64] to embed the topological information of the graph.

However, this approach has two drawbacks. First, the embedding

remains static throughout the training process. Second, these pre-

trained models tend to capture broader global features, often ne-

glecting the more relevant local topological information vital for

motif counting.

Addressing these challenges, our model incorporates a subgraph

extraction module, emphasizing local structures. Subgraphs are

primarily extracted by centering on each node or edge (Section 3.1),

followed by a learning-driven refinement to optimize these sub-

graphs for the most representative possible worlds (Section 3.2).

The edge existence probability, denoted as 𝑃 , is treated as the edge

feature and plays an integral role in the subsequent refinement

processes.

3.1 Subgraph Extraction
To extract subgraphs, a straightforward solution is to extract the

ego net for each node.

Definition 3.1 (𝑘-hop Ego Net [17]). Given a graph𝐺 = (𝑉 , 𝐸),
the 𝑘-hop ego net𝐺𝑘𝑒𝑔𝑜 [𝑣] = (𝑉𝑘𝑒𝑔𝑜 [𝑣], 𝐸𝑘𝑒𝑔𝑜 [𝑣]) centered at node 𝑣 is
a subgraph of 𝐺 whose vertex set 𝑉𝑘𝑒𝑔𝑜 [𝑣] includes 𝑣 and all nodes
reachable from 𝑣 within 𝑘 hops in 𝐺 , and edge set 𝐸𝑘𝑒𝑔𝑜 [𝑣] includes
all edges between nodes in 𝑉𝑘𝑒𝑔𝑜 [𝑣].
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Based on Definition 3.1, we can easily extract |𝑉 | 𝑘-hop ego nets

and pass them to the refinement module. Here, the hop number

𝑘 is an important parameter to control the structure information

within the subgraph. However, 𝑘 + 1-hop ego nets may contain

redundant structure information, while 𝑘-hop ego nets could miss

crucial information, according to our experiments in Section 5.2.

To provide finer granularity, we propose the 𝑘-hop edge-ego net.

Definition 3.2 (𝑘-hop Edge-Ego Net). Given a graph 𝐺 =

(𝑉 , 𝐸), the𝑘-hop edge-ego net centered at edge (𝑣,𝑢), termed𝐺𝑘𝑒𝑔𝑜 [𝑣,𝑢] =
(𝑉𝑘𝑒𝑔𝑜 [𝑣,𝑢], 𝐸𝑘𝑒𝑔𝑜 [𝑣,𝑢]), is a subgraph of𝐺 whose vertex set𝑉𝑘𝑒𝑔𝑜 [𝑣,𝑢]
includes 𝑣 and 𝑢, as well as all nodes reachable from 𝑣 or 𝑢 within 𝑘
hops in 𝐺 , and edge set 𝐸𝑘𝑒𝑔𝑜 [𝑣,𝑢] includes all edges between nodes
in 𝑉𝑘𝑒𝑔𝑜 [𝑣,𝑢].

Examining Definitions 3.1 and 3.2, we can find that 𝑉𝑘𝑒𝑔𝑜 [𝑣] ⊆
𝑉𝑘𝑒𝑔𝑜 [𝑣,𝑢] ⊆ 𝑉𝑘+1𝑒𝑔𝑜 [𝑣] for any edge (𝑣,𝑢), which is further illustrated
in Fig. 2.

(a) Graph 𝐺 (b) Edge-Ego Subgraph 𝐺!"#$ [𝑑, 𝑔] (c) Ego Subgraph 𝐺!"#$ [𝑑]

a
c

b

g

fd

e

c

g

fd

e

c

g

d

e

Figure 2: Subgraph examples extracted by different methods.

Example 3.1. As shown in Figure 2, the (edge) ego nets have nested
relationships, i.e., 𝑉 1

𝑒𝑔𝑜 [𝑑] ⊆ 𝑉 1

𝑒𝑔𝑜 [𝑑,𝑔] ⊆ 𝑉 2

𝑒𝑔𝑜 [𝑑]. Compared to
𝐺1

𝑒𝑔𝑜 [𝑑], 𝐺1

𝑒𝑔𝑜 [𝑑,𝑔] can capture the 2-hop neighbor relationship be-
tween vertex 𝑑 and 𝑓 . Note thatv𝑉 2

𝑒𝑔𝑜 [𝑑] = 𝑉𝐺 . Broadening the scope,
𝐺2

𝑒𝑔𝑜 [𝑑] introduces more vertices than 𝐺1

𝑒𝑔𝑜 [𝑑,𝑔], including 𝑎 and 𝑏.

Collectively, ego nets and edge-ego nets offer fine-grained scopes

of structural information for extracted subgraphs. In our algorithm,

we consider the selection of the subgraph scope as a hyperparameter.

Empirical results from our experiments reveal that 1-hop edge-ego

nets deliver the most effective performance in motif counting tasks.

When dealing with graphs with high density, ego net extraction

may produce graphs with high similarity, but it preserves the most

important edges in the backbone graph compared with random

walk-based subgraph extraction. The empirical evaluation in Sec-

tion 5.3 demonstrates the superiority of our extraction method to

random walk.

3.2 Uncertain Subgraph Structure Learning
In the previous step, the extracted subgraphs originate from the

backbone graph, and they do not account for edge probabilities.

The goal of this phase is to pinpoint the most representative possi-

ble world for each subgraph. When collectively considered, these

selected possible worlds should reflect the intrinsic uncertainty of

the entire uncertain graph, given that the same edge can exhibit

varied statuses across different possible worlds depending on the

associated subgraphs.

To this end, we introduce the Uncertain Subgraph Structure
Learning (USSL) method. USSL is a learning-driven approach de-

signed to emphasize vital edges while filtering out superfluous,

“noisy” edges. This optimizes the representation of the uncertain

subgraph, G𝑒𝑔𝑜 . As a structure learning layer, USSL can be refined

based on counting errors during back propagation.

To extract representative possible worlds via USSL, a key problem

is which information should be included to gauge the importance

of an edge. First, edge existence probability 𝑃 (·) should be included,
as it has an impact on the local structure. Second, the frequency of

the edge 𝑓 𝑟𝑒𝑞(·), i.e., the number of extracted subgraphs containing

the edge, is also important. A high frequency of edge occurrence

signifies a large number of subgraphs requiring this edge for their

construction, representing the edge is important to capture the

correlation among different subgraphs and possible worlds.

Based on the above discussion, for each edge-ego net 𝐺𝑒𝑔𝑜 =

(𝑉𝑒𝑔𝑜 , 𝐸𝑒𝑔𝑜 ), with a multi-layer perceptron, the edge (𝑖, 𝑗)’s score
can be calculated as:

Z(𝑖, 𝑗) = 𝑀𝐿𝑃 ( [𝑓 𝑟𝑒𝑞(𝑖, 𝑗) | |𝑃 (𝑖, 𝑗)]), (2)

where [·| |·] denotes the concatenation operation. To make the edge

score comparable easily, the softmax function is applied for nor-

malization:

Z(𝑖, 𝑗) = 𝑒𝑥𝑝 (Z(𝑖, 𝑗))∑𝑛
𝑚=1 𝑒𝑥𝑝 (Z(𝑖,𝑚))

. (3)

Leveraging the edge scores obtained from Equation (3), we can

select edges with high scores to construct the refined subgraph

𝐺𝑒𝑔𝑜 as the selected possible world. In other words, USSL does not

enumerate all the possible worlds for each subgraph, but constructs

one representative possible world with the selected edges for each

subgraph.

We suggest two edge-selection strategies: a ratio-centric ap-

proach and a score threshold method. In the former, USSL sorts

edge scores in descending order, preserving the top 𝜌% edges. Con-

versely, the threshold approach retains edges with scores at least

equal to the designated threshold𝜓 .

4 Representation Learning and Count
Estimation

Upon deriving the possible worlds for the extracted subgraphs, we

propose a hierarchical model tailored to capture the representation

of the input uncertain graph G. Meanwhile, we utilize our Motif

Neural Network to extract the representation of the input motifM.

Armed with these dual representations, a specialized counting unit

is integrated to adeptly estimate the motif counts.

4.1 Target Graph Neural Network
To learn the representation of the uncertain graph G from the re-

fined subgraphs, we employ a hierarchical graph neural network.

Our model for the target graph is demonstrated in Fig. 3. For each

subgraph, our model learns the vertex representation obtained from

USSL via component GNN and then aggregates the vertex repre-

sentation by a subgraph pooling layer to readout the subgraph

representation. In line with prior research [65], we incorporate a

graph pooling layer into our methodology. This layer plays a cru-

cial role in aggregating the representations of all the subgraphs,
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ultimately allowing us to derive a comprehensive representation

of the entire graph. As shown in Fig. 3, the component GNN, sub-

graph readout, and graph readout collectively form the hierarchical

structure of our target graph neural network.

Uncertain Subgraph 
Structure Learning

Component GNN

Conv
Conv

Readout

Readout

𝒉𝒢

Readout

Subgraph 
Readout

Graph 
Readout

Figure 3: The architecture of target graph neural network.

Component GNN. The primary objective of the Component

GNN is to acquire the initial representations for individual vertices

within a given subgraph through iterative message passing [20].

Subsequently, these vertex representations are summarized and

aggregated using a pooling layer to derive the overall subgraph

representation. This mechanism allows us to capture and encode the

structural and contextual information of the subgraph efficiently.

Component GNN is not limited to a specific GNN model. Taking

vertex 𝑖 as example, to calculate its hidden state h(𝑘 )
𝑖
∈ R𝑑 at the

time step 𝑘 , the component GNN can be expressed as:

h(𝑘 )
𝑖

= 𝜁 (𝑘 ) (h(𝑘−1)
𝑖

,m(𝑘 )
𝑖
), (4)

m(𝑘 )
𝑖

= 𝐴𝑔𝑔 𝑗∈𝑁 (𝑖 ) (𝜂 (𝑘 ) (h
(𝑘−1)
𝑖

, h(𝑘−1)
𝑗

, E𝑖 𝑗 )), (5)

where 𝜁 (𝑘 ) (·) denotes the update function and 𝜂 (𝑘 ) (·) denotes the
message function. The feature vector x𝑖 obtained from USSL serves

as the initial state h0
𝑖
. Hidden state h(𝑘 )

𝑖
is updated by previous state

h(𝑘 )
𝑖

at time step 𝑘 and the message m(𝑘 )
𝑖

from its neighbors. The

message m(𝑘 )
𝑖

at time step 𝑘 is calculated by (5) where E𝑖 𝑗 denotes
the edge features of edge (𝑖, 𝑗) and 𝐴𝑔𝑔(·) denotes the permutation

invariant aggregation function such as 𝑆𝑢𝑚(·),𝑀𝑒𝑎𝑛(·) or𝑀𝑎𝑥 (·).
It is worth noticing that the component GNN shares the parameters

and it is applied on each subgraph in subgraph set 𝑆𝑠𝑢𝑏 .

Readout. After 𝐾 time steps, we get 𝐾 hidden states of each

vertex. To fully explore the structure information in different fea-

ture spaces, the hidden states of each time step 𝑘 ∈ [1, 𝐾] are
concatenated together as the final vertex representation:

h𝑖 = [h(1)𝑖 | | . . . | |h
(𝐾 )
𝑖
] . (6)

A pooling layer is applied to aggregate the vertex representation

within the subgraph and obtain the subgraph representation h𝐺𝑒𝑔𝑜
,

which can be expressed as:

h𝐺𝑒𝑔𝑜
= 𝑅𝑒𝑎𝑑𝑜𝑢𝑡0 (h𝑖 | 𝑖 ∈ 𝑉𝑒𝑔𝑜 ), (7)

where 𝑅𝑒𝑎𝑑𝑜𝑢𝑡0 (·) is the subgraph pooling layer to summarize the

vertex representations in each subgraph.

To obtain the whole graph representation, we apply another

graph pooling layer to summarize all the subgraph representations:

hG = 𝑅𝑒𝑎𝑑𝑜𝑢𝑡1 (h𝐺𝑒𝑔𝑜
| 𝐺𝑒𝑔𝑜 ∈ 𝑆𝑠𝑢𝑏 ), (8)

where 𝑅𝑒𝑎𝑑𝑜𝑢𝑡1 (·) is the graph pooling layer to aggregate the sub-

graph representation to the whole uncertain graph representation.

Comparison with MPNN. Compared with vanilla message-

passing neural networks such as GCN [33], GAT [57] and GIN

[59], our model focuses on learning vertex representations within

individual subgraphs rather than at the whole graph level. This

approach effectively scales down the receptive field from the entire

graph to the subgraph level. Subsequently, we obtain the overall

graph representation through a hierarchical process involving two

pooling layers. When coupled with USSL, which teases out possible

worlds from ego nets, our hierarchical approach adeptly integrates

insights at both subgraph and graph levels, maintaining the uncer-

tain nature of the target graph. Crucially, in different subgraphs,

the vertex 𝑖 will have different hidden states and messages during

message passing.

4.2 Motif Neural Network
In Section 4.1, we detailed a strategy to represent the uncertain

graph G. For motifs, i.e., small connected graphs [44], this strategy

is overkill. Classic GNNs can aptly represent the structural nuances

of motifs.

While GCN [33], GAT [57], and GraphSAGE [24] are prominent

GNNs with efficiency in node-centric tasks, they are limited in

preserving graph structures, especially when confronted with the

expressiveness challenges of the 1-Weisfeiler-Lehman (1-WL) test

[59]. GIN [59] and its variant GINE [26], on the other hand, effec-

tively address this limitation using multi-layer perceptrons𝑀𝐿𝑃 (·).
Notably, GINE factors in edge features for enhanced performance.

Empirical results from our experiments reveal that GINE per-

forms best among the classic GNNmodels. Hence, we employ GINE

as the motif neural network to learn the representation of motif.

GINE involves edge features E into aggregation to update the

hidden state h(𝑘 )
𝑖

at time step 𝑘 and applies 𝑅𝑒𝑙𝑢 (·) as activation
function:

h(𝑘 )
𝑖

= 𝑀𝐿𝑃 ((1 + 𝜖 (𝑘 ) )h(𝑘−1)
𝑖

+
∑︁

𝑗∈𝑁 (𝑖 )
𝑅𝑒𝑙𝑢 (h(𝑘−1)

𝑗
+ E𝑖 𝑗 )) (9)

For the holistic representation, GINE employs a summation read-

out function, proven injective in [59], culminating in the final rep-

resentation:

h(𝑘 )M = 𝑆𝑢𝑚({h(𝑘 )
𝑖
| 𝑖 ∈ 𝑉M }), (10)

hM = [h(1)M | | . . . | |h
(𝐾 )
M ] (11)

4.3 Counting Unit
Leveraging the representations of motifs (hM ) and the uncertain

graph (hG ), our goal is to estimate the mean and variance of motif

𝑀 within graph G. A straightforward strategy concatenates the rep-

resentations and utilizes a multi-layer perceptron (MLP) to predict

the mean and variance:

𝑚̂, 𝑣 = 𝑀𝐿𝑃 ( [hM | |hG]), (12)

The objective function for optimizing model parameters is defined

as:

LΘ = 𝛼L(𝑚,𝑚̂) + (1 − 𝛼)L(𝑣, 𝑣), (13)

where 𝛼 balances the weight betweenmean and variance,Θ denotes

model parameters, and Huber Loss [28] is employed as the loss
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function L(·, ·), balancing robustness and penalization of large

errors.

Nonetheless, this method cannot fully capture the intricate cor-

relation between motif representations and graph representations.

In motif counting, our objective is to infer and leverage the inherent

correlations between motifs and the underlying graph structure.

When a motif aligns with a portion of the input graph, we aim

to extract and analyze the latent relationships by exploring the

correlation between their respective representation vectors. In [61],

Feature-wise Linear Modulation (FiLM) [47] is applied to fine-tune

the graph representation only by a linear transformation to exploit

the correlation between query graph and input graph, which can

limit its capacity to capture more complex relationships in certain

scenarios.

Inspired by FiLM, our model adopts Soft Canonical Correlation

Analysis (Soft CCA) [11] to exploit the underlying correlations by

non-linear transformation between input representations of motif

and graph. Soft CCA [11] leverages Lagrangian Relaxation [36]

to remove the hard decorrelation constraint in original CCA [53],

which can be expressed as:

L𝑑𝑖𝑠𝑡 (𝑀𝐿𝑃 (hM ), 𝑀𝐿𝑃 (hG))
+𝜆(L𝑑𝑙 (𝑀𝐿𝑃 (hM )) + L𝑑𝑙 (𝑀𝐿𝑃 (hG)))

(14)

where 𝜆 ≥ 0 is a trade-off hyper-parameter. L𝑑𝑖𝑠𝑡 denotes the
correlation between two embedding vectors, which is calculated by

L𝑑𝑖𝑠𝑡 =
1

2

∥𝑀𝐿𝑃 (hM ) −𝑀𝐿𝑃 (hG)∥2𝐹 . (15)

L𝑑𝑙 denotes decorrelation loss. Following [63], the decorrelation

loss is performed on normalized representation vector to constrain

off-diagonal elements of covariance matrix close to 0:

L𝑑𝑙 (𝑈 ) = ∥𝑈𝑇𝑈 − 𝐼 ∥2𝐹 , (16)

where𝑈 is the normalized representation vector and 𝐼 is the identity

matrix.

With the CCA Loss as the regularizer, our objective function can

be expressed as:

LΘ (M) = 𝛼L(𝑚,𝑚̂) + (1 − 𝛼)L(𝑣, 𝑣) + 𝛾L𝐶𝐶𝐴 (17)

where CCA loss L𝐶𝐶𝐴 is calculated by (14) and 𝛾 is a hyperparame-

ter to adjust the importance of CCA loss. The theorem below gives

the upper bound of estimated mean and variance value:

Theorem 1. Assume that all the operations in MLP are locally
Lipschitz-continuous and that their partial derivatives of non-linear
activation function can be computed and efficiently maximized. The
predicted mean and variance value’s bounds are

𝑚 − 2𝜏 ≤ 𝑚̂ ≤ 𝜏 (18)

𝑣 − 2𝜏 ≤ 𝑣 ≤ 𝜏 (19)

where 𝜏 ≤ ∏𝐾
𝑘=1
∥𝑊𝑘 ∥2, and𝑊𝑘 is the weight matrix of MLP.

The proof of Theorem 1 is given in the full version of this paper.

5 Experimental Studies
In this section, we present our experimental setting and experimen-

tal results. Due to page limit, dataset description, implementation

details and several supplementary experiments are in the full ver-

sion.

5.1 Experimental Setup
Dataset.We evaluate our method alongside state-of-the-art solu-

tions using five real-world datasets, including one sensor informa-

tion transition dataset(ITL [42]), one Protein-Protein Interaction

(PPI) dataset (KRC [34]), one citation network (DBLP [1]) and two

road networks (BJ [14] and CAL [37]). The dataset statistics are

presented in Table 1, and the details of motifs are in Table 2.

Table 1: Statistics of datasets.

Dataset |V| |E| Min/max/avg P(e)
ITL 55 1,342 0.01/0.83/0.17

KRC 2,708 7,123 0.27/0.99/0.68

DBLP 26,985 38,117 0.39/0.99/0.51

BJ 75,958 109,741 0.90/0.99/0.95

CAL 1,965,206 2,766,607 0.01/0.99/0.50

Table 2: Details of motifs.

Dataset ITL KRC DBLP BJ CAL

#Motifs 543 833 807 607 653

Motif Sizes {3,4} {3,4,5,6} {3,4,5,6} {3,4} {3,4}

LINC [41] is applied to generate the ground-truth labels for each

motif as it proposes the latest solution for uncertain graph counting.

LINC failed to give the ground truth pairs for some 5-node and

6-node motifs over ITL, BJ, and CAL datasets because either LINC

cannot give the result in a reasonable time or the corresponding

motif cannot be found from possible worlds. Therefore, only 3-

node and 4-node motifs are selected in our experiment on the three

datasets. The motifs are randomly sampled from the datasets. The

details of query motifs are in Table 2.

Baseline Methods. To evaluate the accuracy of our proposed

method, we compare it with the state-of-the-art learning-based

method ALSS [67], EGNN [21], NeurSC [58] and heuristic method

BMA [54]. For ALSS, We select ProNE [64] as the label embedding

model and select the active learning strategy as consist according to
the default setting in its implementation. We also combined LINC

with ALSS (Sampler-ALSS): we use LINC to sample 100 possible

worlds for the uncertain graph, run ALSS on sampled possible

worlds and obtain the average results. To achieve the best results

on our dataset, we adjust ALSS’s parameters referring to the tuning

range in [67]. The source code of EGNN is obtained from the author,

and the best parameters on each dataset are obtained by cross-

validation. For efficiency, we further compare our solution with

LINC [41] and BMA [54].

Evaluation Metrics. In our experiments, we evaluate the meth-

ods by both effectiveness and efficiency. For effectiveness evalua-

tion, we employ mean absolute percentage error (MAPE) [15] and

Q-error [45]. Mean absolute percentage error is defined as:

MAPE =
1

𝑛

𝑛∑︁
𝑖=1

����𝑦𝑖 − 𝑦𝑖𝑦𝑖

���� , (20)
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where 𝑦𝑖 denotes the predicted value and 𝑦𝑖 denotes the ground-

truth value obtained from LINC. Q-error is defined as:

Q-error = max

(
𝑦𝑖

𝑦𝑖
,
𝑦𝑖

𝑦𝑖

)
(21)

Both metrics exhibit better performance as their values decrease. To

evaluate the efficiency, we compared the average query processing

time with ALSS [67] and LINC [41]. For tables reporting accuracy

results (e.g., Tables 5 and 6), mean absolute percentage errors are in

percentages, with the optimal results bolded and the second-best

results underlined.

5.2 Accuracy Comparison
In this subsection, we compare the motif counting accuracy of our

proposed model, UnG-MoCha, against the baselines. Furthermore,

ablation studies are conducted to investigate the influence of various

UnG-MoCha modules on its overall performance.

The comparison results between baselines and our UnG-MoCha

are illustrated in Fig. 4 by box-plot. Due to limited space, we report

the results based on MAPE. The results based on Q-Error is similar

to the performance based on MAPE. The results indicate that UnG-

MoCha generally outperforms the baselines across various datasets

and motif sizes. Despite ALSS showing a smaller MAPE in counting

4-node motifs on the BJ dataset and a smaller MAPE on the CAL

dataset for 4-node motifs in variance value prediction, UnG-MoCha

consistently exhibits lower median MAPE, suggesting superior and

stable performance across diverse instances. Although the results

produced by BMA show smaller lower bounds when counting 3-

node motifs on DBLP and BJ datasets in mean value prediction, the

median value is almost the same as it of UnG-MoCha and BMA

shows a quite large difference between the upper and lower bounds.

To further investigate why baselines perform slightly better

on BJ and CAL, we observe that these datasets, which symbol-

ize real-world road networks, rarely contain dense 4-node motifs

like 4-cliques. This unique characteristic somewhat mitigates the

limitation of ALSS: its query graph decomposition strategy con-

structs 𝑙-hop BFS trees to extract substructures from each vertex in

query graphs, which may miss dense substructures when 𝑙 is small.

Additionally, ALSS focuses solely on learning query graph repre-

sentations, potentially overlooking valuable information present in

the target graph. EGNN treats edge probabilities as normal features

instead of existence probability and cannot capture the semantics of

possible worlds well, which are captured by USSL in our model. Fur-

ther, it focuses on global topological information, and its embedding

contains less local topological information than our hierarchical

solution, resulting in poor accuracy. Sampler-ALSS has the same

drawbacks as ALSS, and it also suffers from high time complexity

because it needs to perform on all the sampled possible worlds.

In contrast, UnG-MoCha proficiently learns representations of

both target graphs and motifs, while employing USSL to refine the

subgraphs extracted from the target graph. The experimental results

attest to our method’s enhanced capability to adeptly navigate motif

counting tasks over uncertain graphs.

5.3 Ablation Studies
Subgraph Refinement Strategy Comparison. To demonstrate

the effectiveness of our subgraph refinement strategy USSL, Table 3

reports the performance comparison between leveraging USSL and

directly using the subgraphs extracted from 1-hop edge-ego net

extraction. As shown in Table 3, with USSL, UnG-MoCha achieves

a much more accurate result than directly performing on the ex-

tracted subgraphs. The results indicate that the USSL improves the

prediction performance on most datasets.

Subgraph Extraction Comparison. Table 5 presents the per-
formance comparison between ego net extraction, edge-ego net

extraction (Section 3.1) and random walk. The random walk-based

method first simulates 20 independent random walkers taking 20

steps for each vertex 𝑖 in the subgraph to generate 20 possible

worlds. Among the 20 possible worlds, the one with the highest

probability will be selected as the representative subgraph. The

findings demonstrate the effectiveness of both extraction strategies

in motif counting tasks involving uncertain graphs. Furthermore,

edge-ego net extraction surpasses ego net extraction in terms of

effectiveness. The results also indicate that even when dealing with

graphs with high density, ego net extraction can preserve the most

important edges and improve performance with the help of USSL on

high-density datasets. As discussed in Section 3.1, with consistent

trends observed across other datasets, 1-hop edge-ego nets excel

in capturing edges not present in 1-hop ego nets while avoiding

redundancy found in 2-hop or larger 𝑘-hop ego nets. Hence, the

1-hop edge-ego net is chosen as the default subgraph extraction

strategy.

Motif Neural Network Comparison. We evaluate various

GNNs for motif representation learning, highlighting results from

the KRC dataset in Table 6, with consistent trends observed across

other datasets. GINE excels in predicting both mean and variance

values, outperforming other GNN models. The enhanced perfor-

mance of GIN and GINE, utilizing𝑀𝐿𝑃 (·) for aggregation and com-

bination, underscores their elevated expressive capability, where

GINE further incorporates edge features.

Counting Unit Comparison.We explore the impact of differ-

ent counting units by comparing CCANet with DIAMNet [39] and

FilMNet [61], as shown in Table 4. CCANet predominates in both

mean and variance value prediction across most datasets. DIAMNet

struggles with larger graphs because it depends on the dynamic

intermedium attention memory mechanism to preserve the graph

information, which is limited by memory size and can only leverage

partial data graph information. FilMNet, albeit superior in variance

value prediction on the BJ dataset, is hampered by its linear trans-

formation focus and inability to discern correlations between graph

and motif representations in a non-linear transformed latent space.

5.4 Efficiency Comparison
Average querying time comparison. To assess efficiency, we

compare the average query processing times of our method and

baselines across various datasets and motif sizes, as depicted in Fig.

5. Sampler-ALSS’s training and inference time is related to vanilla

ALSS, which is the time cost of ALSS times the number of sampled

possible worlds. Therefore, we focus on vanilla ALSS to analyze its

efficiency. While ALSS, EGNN, and our method outperform LINC

and BMA in all contexts, our method exhibits minimal sensitivity

to motif size compared to ALSS, especially for 5-node and 6-node
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Figure 4: Mean absolute percentage error comparison.

Table 3: Accuracy evaluation of mean over different refinement strategies.

Methods ITL KRC DBLP BJ CAL
MAPE Q-error MAPE Q-error MAPE Q-error MAPE Q-error MAPE Q-error

non-USSL 0.459±0.080 1.005±0.008 5.598±0.305 1.060±0.035 1.054±2.297 1.056±1.296 1.320±0.068 1.013±0.007 6.827±0.507 1.135±0.052
USSL 0.076±0.087 1.001±0.001 0.485±0.370 1.000±0.001 1.083±0.878 1.001±0.001 0.552±0.308 1.001±0.001 3.970±3.482 1.004±0.003

Table 4: Accuracy evaluation of mean value over different counting units.

Methods ITL KRC DBLP BJ CAL
MAPE Q-error MAPE Q-error MAPE Q-error MAPE Q-error MAPE Q-error

FiLMNet 49.547±122.08 1.190±0393 1.982±0.978 1.012±0.002 13.616±7.433 1.015±0.009 2.416±1.586 1.003±0.002 5.209±3.815 1.006±0.004
DIAMNet 18.760±28.945 1.153±0.345 38.356±9.112 1.060±0.041 3.969±1.217 1.005±0.004 36.095±25.323 1.364±0.611 34.349±9.596 1.041±0.011
CCANet 11.471±30.637 1.108±0.310 2.568±0.901 1.003±0.015 2.446±1.810 1.008±0.013 4.556±7.004 1.007±0.012 3.970±3.482 1.004±0.003

Table 5: Subgraph extraction strategy comparison on ITL.

Methods MAPE(Mean) MAPE(Var.) Q-Error(Mean) Q-Error(Var.)

1-hop ego 0.522±0.176 1.829±1.104 1.005±0.001 1.018±0.015
1-hop edge-ego 0.085±0.063 0.272±0.254 1.001±0.001 1.003±0.002

2-hop ego 0.931±0.676 2.104±1.147 1.009±0.007 1.021±0.019
2-hop edge-ego 0.582±0.289 1.380±0.116 1.006±0.001 1.014±0.005

3-hop ego 2.493±0.167 4.501±0.310 1.025±0.017 1.046±0.036
3-hop edge-ego 0.444±0.033 1.480±0.152 1.004±0.003 1.015±0.016

1-hop BFS 1.511±0.11 3.025±0.31 1.013±0.010 1.031±0.025
random walk 0.692±0.231 0.038±0.026 1.007±0.002 1.039±0.014

Table 6: Motif neural network comparison on KRC.

Methods MAPE(Mean) MAPE(Var.) Q-Error(Mean) Q-Error(Var.)

GCN 16.742±56.670 95.078±287.284 1.252±0.358 1.323±0.320
GAT 18.307±58.775 123.268±372.917 1.250±0.363 1.317±0.334
SAGE 22.938±21.301 110.611±163.684 1.023±0.019 1.053±0.047
GIN 14.913±17.776 49.575±41.009 1.016±0.022 1.043±0.052
GINE 0.485±0.370 1.421±1.656 1.000±0.001 1.001±0.001

motifs across most datasets, and provides up to 6 orders of magni-

tude speedup over LINC. This is attributable to ALSS’s quadratic

time growth due to its query graph decomposition strategy. Despite

its efficiency, particularly with smaller motifs on larger data graphs,

ALSS’s method—embedding only substructures from the query

graph—compromises its accuracy, as discussed in Section 5.2. Our

model also outperforms EGNN on most datasets. Besides, EGNN

applies doubly stochastic normalization, which brings 𝑂 ( |𝐸 | × |𝐸 |)
extra time cost compared with vanilla GNN models. BMA needs to

sample more possible worlds than LINC to obtain accurate estima-

tion results, which causes high time costs.

5.5 Inductive Test
We also evaluated the inductive learning performance of UnG-

MoCha. Firstly, we pre-train our model on KRC dataset with only

small size motifs as training data, then fine-tune the pre-trained

model with different number of training data under three settings:

predict the count of large size motifs on KRC, it of small size motifs

on DBLP and large size motifs on DBLP. The result is visualized

in Figure 6. With the increase of training data, the pre-trained

model achieves better performance. With 20% of training data, the
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Figure 5: Average query processing time (ms).

fine-tuned model can achieve acceptable results. It is interesting

that the pre-trained model achieves a relatively lower MAPE when

estimating the counts of small-size motifs on an unseen dataset,

demonstrating UnG-MoCha is less impacted by the input graph.

The result indicates that UnG-MoCha can be applied to handle

large-scale graphs after pre-trained on smaller-size datasets.

Figure 6: Results of inductive test.

6 Related Work
Graph Representation Learning. Graph representation learn-

ing is a kind of technique that encodes the nodes in the complex

network into low-dimensional vectors and maintains the graph

structure information as much as possible. Graph neural network

(GNN) models [24, 33, 57, 59, 65] learn the graph representation via

deep learning and show great success in recent years. For example,

GIN [59] shows that GNN models can have the same discrimi-

nation ability as Weisfeiler-Leman (1-WL) test [35]. Contrasting

traditional embedding methods, GNNs offer the notable capability

to generalize to unseen nodes and new graphs, providing pertinent

representations. Most GNN models follow the idea of convolutional

neural networks and message-passing mechanisms [20].

Graph Structure Learning. Graph structure learning (GSL) [62,
66, 68] has attracted substantial attention in recent years and proved

its efficiency in learning robust graph representation. However, GSL

has not been well studied on uncertain graphs. There is no learning-

based method for uncertain graphs, and the existing method [46] is

an unsupervised method, lacking optimization in accordance with

errors from downstream tasks.

Subgraph Matching and counting. There are two main cate-

gories of subgraph matching: backtracking approach [10, 32, 51, 56]

and join-based approach [2, 52]. Through exhaustive enumeration

of all potential subgraph isomorphisms, these methods are able to

derive exact counts for subgraphs.

For subgraph counting, traditional algorithms [9, 18, 25, 41, 54]

suffer from high time complexity. Learning-based subgraph iso-

morphism counting methods [39, 40, 58, 61, 67] attempt to find the

approximate isomorphic subgraph counts with lower time complex-

ity. NSIC [39] first proposed GNN-based subgraph isomorphism

counting and leverages the attention memory mechanism to reduce

the time complexity. ALSS [67] combines active learning with the

GNN model to count subgraph isomorphism or homomorphism.

However, there is no ML method focusing on subgraph isomor-

phism counting on uncertain graphs.

7 Conclusion
In this paper, we introduce UnG-MoCha, a novel learning-based

approach designed to estimate the mean and variance values of

motif counts in uncertain graphs. Our method initially leverages

uncertain subgraph structure learning on extracted subgraphs, cap-

turing edge uncertainty effectively. Subsequently, target graph neu-

ral network is employed to learn the representation of the uncer-

tain graph. Simultaneously, motif representation is learnt by motif

neural network. Through the incorporation of the counting unit,

our approach adeptly mines correlations between motif and graph

representations, enhancing estimation accuracy. Extensive experi-

ments demonstrate the effectiveness and efficiency of UnG-MoCha

in motif counting tasks on uncertain graphs, highlighting its po-

tential utility and applicability in further graph analysis scenarios.

For future work, we plan to study how to extend our solution to

support larger-size motifs.
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A Appendix
A.1 Training Procedure Analysis
Based on the above discussion, we present the subgraph extrac-

tion algorithm via edge-ego net in Alg. 1. The algorithm takes the

backbone graph 𝐺 , the minimum motif size 𝑛min, and hop number

𝑘 as the input, and outputs the subgraph set 𝑆𝑠𝑢𝑏 . The subgraph

extraction based on ego net is similar and omitted here. For each

edge in backbone graph 𝐺𝑏𝑏 , we extract the 𝑘-hop edge-ego net

by retrieving the 𝑘-hop neighbors (lines 2-3). Next, it filters out

the subgraphs whose size is smaller than that of the motif because

the motif will never be isomorphic to a smaller graph (line 4). The

remaining subgraphs will be added to 𝑆𝑠𝑢𝑏 (lines 6-7). Finally, the

subgraph set is returned (line 8).

Algorithm 1: Edge-Ego Net Extraction

Input :Graph 𝐺 = (𝑉 , 𝐸), hop number 𝑘

Output :Subgraph Set 𝑆𝑠𝑢𝑏

1 Initialize 𝑆𝑠𝑢𝑏 ← ∅
2 for 𝑒 (𝑖, 𝑗) in 𝐸 do
3 𝑉𝑒𝑔𝑜 [𝑖, 𝑗] ← neighbor(i, k) ∪ neighbor(j, k)
4 𝐺𝑒𝑔𝑜 [𝑖, 𝑗] ← inducedSubgraph(𝐺 ,𝑉𝑒𝑔𝑜 [𝑖, 𝑗])
5 Append 𝐺𝑒𝑔𝑜 [𝑖, 𝑗] to 𝑆𝑠𝑢𝑏
6 return 𝑆𝑠𝑢𝑏

Alg. 2 illustrates the structure learning process. ratio2rank(·)
and thre2rank(·) denote the ratio-based edge selection strategy and

threshold-based edge selection strategy, respectively.

Algorithm 2: Uncertain Subgraph Structure Learning

Input :Ego net 𝐺𝑒𝑔𝑜 = (𝑉𝑒𝑔𝑜 , 𝐸𝑒𝑔𝑜 ), selection strategy 𝑡 ,

score threshold 𝛾 or ratio limit 𝜌

Output :Vertex feature matrix X, edge set 𝐸𝑒𝑔𝑜

1 Initialize X← 0 ∈ R |𝑉𝑒𝑔𝑜 |×𝑑
2 foreach (𝑖, 𝑗) ∈ 𝐸𝑒𝑔𝑜 do
Z(𝑖, 𝑗) ← 𝑀𝐿𝑃 ( [𝑓 𝑟𝑒𝑞(𝑖, 𝑗) | |𝑃 (𝑖, 𝑗)])

3 Z← softmax(Z)
4 if 𝑡 = ratio then index← ratio2rank(Z, 𝜌)
5 else if 𝑡 = threshold then index← thre2rank(Z, 𝛾)
6 𝐸𝑒𝑔𝑜 ← 𝐸𝑒𝑔𝑜 [index] // get top edges

7 X← filter(X, 𝐸𝑒𝑔𝑜)
8 return X, 𝐸𝑒𝑔𝑜

The training procedure for one training epoch is illustrated in

Alg. 3. In each epoch, the training set is separated into batches with

size 𝑛𝑏 . Before training, we employ edge-ego net extraction as a

preprocessing step to obtain the initial subgraph set 𝑆𝑠𝑢𝑏 for the

uncertain graph G. We then perform uncertain subgraph structure

learning on each subgraph to involve the uncertainty of edges

and generate the representative possible worlds for the counting

task (Line 4). With the obtained possible worlds, the target graph

network can learn the representation hG of input uncertain graph

G (Lines 5-9). The motif representation hM will be learned by motif

network (Lines 11-15). With the obtained graph representation and

motif representation, the predicted mean and variance value can

be calculated by a multi-layer perceptron (Line 16). The loss is

calculated by (17). The model parameter Θ will be updated by the

sum of the loss in one batch.

Algorithm 3: The training procedure
Input :Training motif setM𝑡 , subgraph set S𝑠𝑢𝑏 ,

component GNN layer number 𝐾𝑐 , motif neural

network layer number 𝐾𝑚 , batch size 𝑛𝑏 , trade-off

parameter 𝛼

Output :Updated parameters Θ
1 Initialize global optimizer 𝑜𝑝𝑡Θ

2 Separate training set into batches {S𝑏 = {M𝑖 }} of size 𝑛𝑏
3 foreach 𝐺𝑒𝑔𝑜 ∈ S𝑠𝑢𝑏 do
4 Update 𝐺𝑒𝑔𝑜 by Alg. 2 // USSL

5 foreach layer 𝑙 ← 1 to 𝐾𝑐 do
6 foreach vertex 𝑖 ∈ 𝑉𝑒𝑔𝑜 do h(𝑙 )

𝑖
← Eq. (4)

7 h(𝑙 )
𝐺𝑒𝑔𝑜

← Readout(h𝑖 | 𝑖 ∈ 𝑉𝑒𝑔𝑜)

8 h𝐺𝑒𝑔𝑜
← [h(1)

𝐺𝑒𝑔𝑜
| | . . . | |h(𝐾𝑐 )

𝐺𝑒𝑔𝑜
]

9 hG ← Readout(h𝐺𝑒𝑔𝑜
| 𝐺𝑒𝑔𝑜 ∈ S𝑠𝑢𝑏)

10 foreach S𝑏 ∈ M𝑡 do
11 foreachM ∈ S𝑏 do
12 foreach layer 𝑙 ← 1 to 𝐾𝑚 do
13 foreach vertex 𝑖 ∈ M do h(𝑙 )

𝑖
← Eq. (11)

14 h(𝑙 )M ← Sum(h(𝑙 )
𝑖
| 𝑖 ∈ 𝑉M)

15 hM ← [h
(1)
M | | . . . | |h

(𝐾𝑚 )
M ]

16 𝑚̂, 𝑣 ← 𝑀𝐿𝑃 ( [hM | |hG])
17 LΘ (M) ← Eq. (17)

18 Update model parameters Θ by 𝑜𝑝𝑡Θ with

∑
M∈𝑆𝑏 LΘ (M)

19 return Θ

A.2 Time Complexity Analysis
The inference time complexity of eachmodule is outlined as follows:

(1) Uncertain subgraph structure learning:𝑂 ( |𝐸 | · |𝐸𝑒𝑔𝑜 |), where
|𝐸𝑒𝑔𝑜 | represents the maximum number of edges within one

subgraph;

(2) Target graph neural network: 𝑂 ( |𝐸 | × |𝑉𝑒𝑔𝑜 | × 𝑑𝑒𝑔𝑜 ), with
|𝑉𝑒𝑔𝑜 | and 𝑑𝑒𝑔𝑜 indicating the maximum number of vertices

and the maximum degree in each subgraph, respectively;

(3) Motif neural network: 𝑂 ( |𝑉M | × 𝑑M ), where 𝑑M signifies

the maximum degree of motifM;

(4) Counting unit: 𝑂 (1).
𝑘-hop ego net extraction, whose time complexity is𝑂 ( |𝐸 |×|𝑑𝑚𝑎𝑥 |𝑘 ),
is a pre-processing procedure and is not processed during inference.

Therefore, the comprehensive inference time complexity of UnG-

MoCha becomes 𝑂 ( |𝐸 | × (|𝐸𝑒𝑔𝑜 | + |𝑉𝑒𝑔𝑜 | × 𝑑𝑒𝑔𝑜 ) + |𝑉M | × 𝑑M ).
Hyper-parameters (e.g., hidden dimensions, layers) are excluded

as they are adjustable constants unrelated to graph properties,

though they affect execution time. With motif size fixed, as the

edge number |𝐸 | increases, UnG-MoCha exhibits approximately

linear growth in inference time, demonstrating strong scalability.

106


	Abstract
	1 Introduction
	2 Preliminaries
	2.1 Uncertain Graph
	2.2 Motif Counting

	3 Subgraph Extraction and Refinement
	3.1 Subgraph Extraction
	3.2 Uncertain Subgraph Structure Learning

	4 Representation Learning and Count Estimation
	4.1 Target Graph Neural Network
	4.2 Motif Neural Network
	4.3 Counting Unit

	5 Experimental Studies
	5.1 Experimental Setup
	5.2 Accuracy Comparison
	5.3 Ablation Studies
	5.4 Efficiency Comparison
	5.5 Inductive Test

	6 Related Work
	7 Conclusion
	Acknowledgments
	References
	A Appendix
	A.1 Training Procedure Analysis
	A.2 Time Complexity Analysis




