
TempASD: Temporal Anomalous Subgraph Discovery in
Large-Scale Dynamic Financial Networks

Xiaolin Han

School of Computer Science

Northwestern Polytechnical

University

Xi’an, China

xiaolinh@nwpu.edu.cn

Yikun Zhang

School of Computer Science

Northwestern Polytechnical

University

Xi’an, China

yikunzhang@mail.nwpu.edu.cn

Chenhao Ma
∗

School of Data Science

The Chinese University of Hong

Kong, Shenzhen

Shenzhen, China

machenhao@cuhk.edu.cn

Lingyun Song

School of Computer Science

Northwestern Polytechnical

University

Xi’an, China

lysong@nwpu.edu.cn

Reynold Cheng

School of Computing and Data

Science

The University of Hong Kong

Hong Kong SAR, China

ckcheng@cs.hku.hk

Xuequn Shang
∗

School of Computer Science

Northwestern Polytechnical

University

Xi’an, China

shang@nwpu.edu.cn

Abstract
In this paper, we investigate the discovery of temporal anomalous

subgraphs in large-scale financial networks, aiming to identify ab-

normal transaction behaviors among users over time. This task

is crucial for the real-time detection of transaction anomalies in

financial networks, such as money laundering and trading fraud.

However, it poses significant challenges due to the diverse distribu-

tion of transactions, the dynamic nature of temporal networks, and

the absence of theoretical foundation. To tackle these challenges,

we introduce a novel Temporal Anomalous Subgraph Discovery

(TempASD) algorithm with theoretical analysis. First, we propose

a temporal candidate detection module that quickly pinpoints ab-

normal candidates by detecting anomalies in both the temporal

structure and transaction distribution. Then, we introduce a care-

fully crafted reinforcement-learning-based refiner to optimize these

candidates toward the most abnormal directions. We conducted

extensive evaluations against thirteen advanced competitors. Tem-

pASD achieves an average improvement of 7× in abnormal degree

compared to the state-of-the-art and is efficient in large-scale dy-

namic financial networks.

CCS Concepts
• Information systems → Spatial-temporal systems.
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1 Introduction
The extensive financial data generated from daily transactions,

e.g., blockchain, in recent years has facilitated various financial

data mining applications [14, 15], e.g., financial time-series fore-

casting [12, 33, 56], credit risk assessment [5, 22], and anomaly

detection [6, 13, 16]. In particular, anomaly detection has been

extensively studied recently since it can be used for identifying

illegal transactions, such as money laundering and trading fraud

[1, 6, 10, 11, 16, 23, 35, 42], thereby safeguarding the assets of users

or corporations in the real world [16, 23, 42]. Unlike single-node

anomaly discovery, detecting anomalous subgraphs can uncover

abnormal structures among users, offering an intuitive way to trace

irregular transactions [6, 16, 23].

Temporal anomalous subgraph discovery captures anomalies

over time, enabling the timely identification of illegal transactions

among users. This dynamic monitoring of suspicious activities is

essential for maintaining the security of financial networks. Since

temporal anomaly detection is crucial, an increasing number of

researchers are focusing on temporal fraud detection in networks

[3, 9, 28, 31, 40, 41, 52, 53]. They propose detecting anomalies based

on structural and temporal information, which are distinguished

from normal patterns in dynamic graphs.

However, since these methods are designed for general graphs,

they fail to account for specific transaction details among users in

financial networks. Specifically, even if some nodes frequently trans-

fer money to other nodes at certain times, leading to structural and

temporal anomalies, these transactions might still be normal. For ex-

ample, university accounts may often deliver stipends or allowances

to different student or teacher accounts. If transaction details are
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Figure 1: (a) Financial distribution in our transaction dataset,
which follows Benford’s law; Abnormal subgraph detected
by (b) AntiBenford ; (c) TempASD (Ours); (d) AnoGraph. The
"financial distribution" refers to the frequency distribution
of the first digits in transaction amounts within the trans-
action subgraph. The height of each bar represents the pro-
portion of transactions startingwith a specific digit, ranging
from 1 to 9, with each digit represented by a unique color.

overlooked, these transactions could be incorrectly identified as

anomalous subgraphs, despite being entirely legal in practice.

To fix these issues, the latest work [6] proposes to detect AntiBen-

ford subgraphs for anomaly detection in static financial networks

with transaction information involved. AntiBenford subgraphs are

dense subgraphs whose transaction distribution deviates from Ben-

ford’s law significantly. Benford’s law [2, 32] states that the pro-

portion of transaction numbers starting with the digit d follows a

monotonically decreasing function of d , i.e., log
10
(1 + 1/d). This

pattern is observed in natural datasets, e.g., tax records, stock quo-

tations, et al [6]. Figure 1 (a) visualizes the first digit distribution

in our evaluation dataset named ETH-Jan-18 (see Section 5.1.1),

confirming the presence of Benford’s law in financial transactions.

However, the latest work [6] can only identify static abnormal

subgraphs (Figure 1 (b)) within a financial network since it is de-

signed on non-temporal graphs, meaning it cannot detect changes

and trends in user transaction behaviors over time. In this work,

we theoretically define the temporal AntiBenford subgraphs, in-

spired by the static AntiBenford subgraphs [6]. This allows for

the discovery of temporal abnormal subgraphs that deviate from

Benford’s law in dynamic financial networks, supported by a solid

theoretical foundation. Figure 1 (c) displays the temporal abnor-

mal subgraph discovered by TempASD in our evaluation dataset,

with edge color indicating transaction frequency–darker colors

correspond to higher frequencies. This subgraph is dense over time,

and its financial distribution, i.e., the distribution of the first digits

in transaction amounts, significantly deviates from Benford’s law.

In contrast, the advanced temporal abnormal subgraph discovery

method AnoGraph [3] detects subgraphs with structural and tem-

poral anomalies (Figure 1 (d)), but their transaction distribution

does not deviate from Benford’s law.

Our contributions. Our primary objective is to effectively dis-

cover temporal anomalous subgraphs in dynamic financial net-

works. To achieve this, we first establish a theoretical foundation

for identifying temporal abnormal subgraphs whose transaction

distributions significantly deviate from Benford’s law, i.e., temporal

AntiBenford subgraphs. Building on this foundation, we introduce

a pruning strategy to quickly pinpoint abnormal candidates based

on both structure and transaction anomalies in the encoded vector

space. To facilitate this, we propose a temporal subgraph encoder

with a subgraph sampling-based algorithm. Subsequently, we pro-

pose a novel reinforcement learning-based algorithm to refine the

abnormal candidates in the direction of maximal abnormality.

Secondly, we focus on efficiently discovering anomalies in large-

scale dynamic networks for instant tracking. Specifically, we pro-

pose a top-p selection strategy to prune normal temporal subgraphs

at an early stage, thereby saving computation in the temporal can-

didate detection module. Additionally, since the computations for

temporal dense subgraphs and transaction information are indepen-

dent for each node, we utilize multiprocessors for parallelization.

Furthermore, we leverage the trained parameters in the reinforce-

ment learning-based algorithm for fast anomaly refinement, as

these parameters have already been learned during the offline train-

ing phase. TempASD demonstrates near-linear time complexity

with respect to graph size. To summarize, our contributions are:

• Theoretical Analysis. We are the first to conduct a theo-

retical analysis of temporal AntiBenford subgraphs (Section 3.2),

which supports the discovery of temporal anomalous subgraphs in

dynamic financial networks.

• Effective Algorithms. TempASD introduces a temporal can-

didate detection module together with a temporal anomaly refine-

ment module for the effective discovery of temporal anomalies.

• Efficient Discovery. TempASD proposes a pruning strategy

with parallelization for fast discovery and achieves near-linear time

complexity with respect to graph size.

• Comprehensive Evaluations. We conducted extensive ex-

periments on four real transaction datasets, comparing with thir-

teen methods. TempASD shows an average improvement of 7× in

the abnormal degree compared to the state-of-the-art methods.

2 Related Work
Static anomaly discovery.Non-temporal anomaly detectionmeth-

ods are designed for static graphs, where the structure and rela-

tionships between nodes remain unchanged over time. CPM [34]

proposes to identify connections between cliques that share nodes

for community structure discovery. BigClam [48] detects commu-

nities using a nonnegative matrix factorization method but fails to

capture varying edge distributions among vertices. Holoscope [23]

detects contrast patterns between vertices by analyzing both topol-

ogy and spikes in graphs. FlowScope [16] efficiently detects the

complete flow of money with multipartite graphs, and can scale to

large networks. AntiBenford [6] identifies the densest subgraphs in

the financial network and filters out those that are statistically nor-

mal with respect to the transaction distribution. CLARE [44] locates

anomalous communities in the networks and uses a reinforcement-

learning framework to refine these anomalies. AS-GAE [54] extracts

anomalies with an unsupervised framework. GCAD [59] identifies

anomalous subgraphs as those that are rare and significantly differ-

ent from the majority. BioGNN [8] leverages a bi-level optimization

framework within a graph neural network to enhance anomaly

detection in graphs. SIGNET [25] identifies motifs that are most dis-

criminative in graph samples to explain graph anomalies. However,
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these methods are designed for static graphs and fail to account for

the dynamic changes in transaction distributions among nodes and

edges over time.

Temporal anomaly discovery. There are several advanced

methods for discovering temporal anomalous subgraphs. Netspot

[31] introduces an efficient technique for detecting anomalous re-

gions in temporal graphs. StreamSpot [28] utilizes clustering for ef-

ficient temporal anomaly detection in heterogeneous graphs, which

is memory-efficient. MTHL [40] employs a multi-view algorithm to

learn a hypersphere around normal patterns, then uses the learned

hypersphere to distinguish normal and abnormal ones. A stochastic

process-based method [53] is designed to detect changes in graph

streams. Netwalk [52] presents a random walk-based algorithm for

identifying anomalies in dynamic graphs. DeepSphere [41] intro-

duces a deep autoencoder-based algorithm for dynamic anomaly

detection. RustGraph [9] jointly learns structural and temporal de-

pendency in dynamic graphs for anomaly detection. AnoGraph [3]

utilizes a sketch-based method for anomaly detection in temporal

graphs. However, these methods are designed for general graphs

and do not account for the specific anomalies associated with the

amounts transferred between nodes in financial transactions. Be-

sides, there are methods designed for temporal anomaly detection at

the node level [21, 46] and the edge level [4, 57], which are beyond

the scope of this paper.

Temporal densest subgraphdiscovery.Adivide-and-conquer

method [50] utilizes pruning strategies to efficiently mine diver-

sified temporal subgraph patterns. FIDES [26] and FIDES
+
[27]

connect the temporal densest subgraph discovery with a variant of

the Prize Collecting Steiner Tree problem and offer efficient solu-

tions for the discovery. FAST-GA [38] employs a greedy method for

temporal densest subgraph discovery. TopkDBSOL [7] shows that

density bursting subgraphs with long durations can be decomposed

into indecomposable density bursting subgraphs with equal or

larger burstiness, then presents an efficient way to detect indecom-

posable density bursting subgraphs in an online mode. EMU [24]

introduces a stochastic method that extends the conventional EM

algorithm for detecting the densest temporal subgraphs in dynamic

graphs. A hierarchical core maintenance algorithm [20] is designed

for large dynamic graphs. TopLC [18] presents a DFS-based search

algorithm for discovering diversified lasting cohesive subgraphs in

temporal networks. MBC [36] efficiently mines bursting cores in

temporal graphs. OTCD [49] introduces a scalable temporal k-core
query algorithm using a novel structure named temporal edge list.

However, these methods primarily focus on detecting the dense

subgraphs based on the structural and temporal information and

overlook the amounts of transactions in their model designs.

3 Definition and Theory
In this section, we first give the problem definition. Then, we give

a formal theoretical analysis for temporal anomalous subgraphs.

3.1 Problem Definition
Definition 1 (Temporal Financial Network). A financial

network is represented as a graph G(V , E), where V denotes the set
of nodes and (u,v, t , z) ∈ E represents a temporal edge indicating a
transaction from node u to v at time t with an amount z transferred.

Definition 2 (Benford’s law[2, 6, 32]). Benford’s law is the
distribution of the first digit d of numbers appearing in a wide variety
of numerical data., i.e., log

10
(1 + 1/d).

ProblemDefinition: Temporal Anomalous SubgraphDiscov-
ery. Given a temporal financial network G(V , E), the objective is
to identify the top-a temporal anomalous subgraphs, where a is

a hyperparameter defined by users (refer to Tables 1 and 3 in the

experiment section). Each subgraph is defined based on equal-width

time intervals using a time window, and involves a subset of nodes

S ⊆ V such that (i) it induces a high average number of temporal

edges, which is calculated by dividing the total number of temporal

edges within the subgraph during the time window by the number

of nodes in the subgraph, and (ii) the empirical histogram of the first

digit of these edges’ weights, i.e., transaction amounts, significantly

deviates from Benford’s law statistically.

The key difference between detecting anomalous subgraphs in

static graphs (e.g., the latest work [6]) and in temporal graphs (e.g.,

our TempASD) is that the latter captures subgraphs with abnormal

transaction behaviors as they change over time. In contrast, the

former overlooks temporal information and only detects anomalies

in static graphs, whichmay bemisleading, as those anomalies might

not persist when considering the temporal dimension.

3.2 Temporal AntiBenford Subgraph Theory
The existing theory on abnormal subgraphs in financial networks

mainly focuses on static subgraphs, such as AntiBenford subgraphs

[6]. In this work, we provide a formal theoretical analysis of tem-

poral AntiBenford subgraphs, facilitating the identification of tem-

poral anomalous subgraphs in dynamic financial networks. Our

theorems build upon the work in [6], which operates in a static

graph setting. We extend these static results to the temporal domain

through a theoretical analysis.

Given a temporal financial networkG(V , E), we consider the set
of its edges as i.i.d. samples from Benford’s distribution as [6], and

we denote this hypothesis as H0.

Theorem 3.1. Let h(S) denote the number of induced edges in the
temporal subgraph formed by S ⊆ V , let 0 < ϵ < 1 be an accuracy
parameter, let XS,d denote the number of all edges with the first digit
d in the temporal subgraph formed by S , let |Ts | represent the number

of snapshots, and let δ
def
= mind pd = p9 = 0.048, which is the

lowest digit probability in Benford’s law. Suppose the null hypothesis
H0 holds, with high probability, for all temporal subgraphs S ⊆ V

with temporal average degree
2h(S)

|S | |Ts |
at least Cϵ logn (where Cϵ =

36

δϵ2
is a constant, n = |V |, and Ts = {t |(u,v, t , z) ∈ E,u,v ∈

S}), the number of temporal edges (
XS,d

|Ts |
) with the first digit d in

temporal graph G[S] is strongly concentrated around its expected

value E
[
XS,d

|Ts |

]
, which equals

pdh(S)

|Ts |
, for all d = 1, · · · , 9.

The intuition behind Theorem 3.1 is that when a subgraph has a

sufficiently high temporal average degree, the observed distribution

of first digits will strongly concentrate around its expected value.

This ensures that deviations from Benford’s Law can be flagged as

potential anomalies. We use this theorem to derive Corollary 3.2.
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Figure 2: The overall framework of our proposed TempASD model, where G[SPi ] represents the candidates obtained through
the temporal candidate detection module in Section 4.3, and BSPi is the boundary of G[SPi ].

Corollary 3.2. Let ψ (S)
def
= 1

|S |
∑
9

d=1

( XS,d
|Ts |

−
pd h(S )
|Ts |

)
2

pd h(S )
|Ts |

, which

is the average deviation of the distribution of the first digits from
Benford’s law. Suppose the null hypothesis H0 holds, it expects that
for temporal subgraphs S ⊆ V , maxS ⊆V ψ (S) ≤ ρ⋆T holds, where ρ⋆T
is the temporal density of the temporal densest subgraph in G[S].

Theorem 3.3. A temporal AntiBenford subgraph is a subset of

nodes S ⊆ V whereψ (S) ≫
h(S)

|S | |Ts |
.

Theorem 3.1 implies that for subgraphs with high temporal den-

sity (many transactions), observed digit counts concentrate around

Benford’s expectation. Corollary 3.2 implies that deviation score

ψ (S) ≤ temporal density (ρT ) for normal subgraphs. Based on Corol-

lary 3.2, Theorem 3.3 derives that anomalies satisfy ψ (S) ≫ ρT .
The proofs for all theorems are provided in the appendix.

4 The TempASD Model
4.1 Framework
The overall framework of the TempASD model is depicted in Figure

2. The process begins by encoding temporal subgraphs using tem-

poral graph neural networks (Sec. 4.2). Next, it narrows down the

pool of temporal anomalous candidates using a pruning strategy

for fast discovery (Sec. 4.3). Finally, these candidates are refined

with a novel reinforcement learning-based algorithm (Sec. 4.4).

4.2 Temporal Subgraph Encoder
In this section, we introduce the methodology for encoding tempo-

ral subgraphs. It is non-trivial due to their diverse structures and

varying financial distributions over time.We propose to encode tem-

poral subgraphs by learning their hidden features in terms of both

temporal graph structure and financial distribution. The temporal
graph structure reflects connectivity and transaction frequency be-

tween nodes, while the financial distribution captures the empirical

histogram of transaction amounts’ first digits.

Temporal Graph Neural Networks for Financial Subgraphs. We

propose to encode the financial transaction information between

nodes using temporal graph neural networks. It allows us to ef-

fectively capture the dynamic nature of financial interactions over

time, enhancing the detection and analysis of temporal anomalies

in financial networks. TempASD accommodates any type of tem-

poral graph neural networks (temporal GNN), e.g., [17, 37, 39, 55],

without restrictions. For simplicity, we select GConvLSTM [39] as

the base encoder in this paper, where the weights in the temporal

GNN are transaction frequencies between nodes. GConvLSTM is

selected for its ability to handle sequential data with relational

dependencies and capture long-term temporal patterns, which are

essential in financial networks.

We propose to train the graph structures and temporal interac-

tions among temporal subgraphs using a carefully crafted temporal

graph learning algorithm. It improves the model’s ability to dif-

ferentiate temporal anomalies in financial networks by leveraging

both structural and temporal information. The temporal graph is

segmented into snapshots based on fixed time intervals using a time

window. These snapshots allow us to analyze the network’s evolu-

tion over time by examining the temporal edges and their weights

within each snapshot. The impact of the duration of time intervals

will be demonstrated in Section B.3 of the appendix. We aim to lo-

cate embeddings of subgraphs with similar structures and financial

distributions close to each other, while separating the embeddings

of subgraphs with differing structures and financial distributions.

To construct positive subgraph pairs, for each temporal anomalous

subgraph G[Siat ] in the training set G[Sat ], we sample two nested

temporal subgraphs G[Sb
+
] ⊂ G[Sa ] from G[Siat ], where G[S

b+ ] is

constructed by randomly removing some transactions from each

snapshot of the subgraph G[Sa ] . In contrast, negative subgraph

pairs are formed from another different anomalous subgraphG[S
j
at ]

in the set G[Sat ], and G[S
a ] ⊈ G[Sb

−

], G[Sb
−

] ⊆ G[S
j
at ].

The similarity sim(G[Sa ],G[Sb
+
]) between positive subgraph

pairs G[Sa ] and G[Sb
+
] is calculated as:

sim(G[Sa ], G[Sb
+
]) =

|SaT
0

|∑
i=1

TV∑
q=1

TV∑
k,q

e(G[Sa ]
Tq
i )⊺e(G[Sb

+
]
Tk
Ni

)

| |e(G[Sa ]
Tq
i ) | | | |e(G[Sb+ ]

Tk
Ni

) | |

− KL (w (G[Sa ]), w (G[Sb
+
])) ,

(1)

where e(G[Sa ]
Tq
i ) represents the encoded vector of the i-th node

of the subgraph G[Sa ] at the snapshot Tq . Similarly, e(G[Sb
+
]
Tk
Ni

)

denotes the encoded vector of the neighborhood of node i of the sub-

graph G[Sb
+
] at the snapshot Tk , where e(G[S

b+ ]
Tk
Ni

) is calculated

by the readout(·) function over encoded vectors of all neighbors

of node i of the subgraph G[Sb
+
] at the snapshot Tk . |S

a
T0
| is the

number of nodes of the subgraph G[Sa ] at the snapshot T0. And
TV denotes the number of sampled snapshots for each temporal

subgraph. Additionally, KL (·) denotes the KL-divergence between

the financial distributions of two subgraphsG[Sa ] andG[Sb
+
]. Sub-

graphs with similar financial distributions result in lower KL scores.
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Figure 3: The illustration of the temporal anomaly refinement, whereG[SPi ] denotes the candidates obtained by the temporal
candidate detection in Section 4.3, and BSPi denotes the boundary of the subgraph G[SPi ]. This module further refines the
candidates from Section 4.3 towards the most anomalous direction.

Similarly, we calculate the similarity between negative pairs as:

sim(G[Sa ], G[Sb
−
]) =

|SaT
0

|∑
i=1

TV∑
q=1

TV∑
k,q

e(G[Sa ]
Tq
i )⊺e(G[Sb

−
]
Tk
Nj

)

| |e(G[Sa ]
Tq
i ) | | | |e(G[Sb− ]

Tk
Nj

) | |

− KL (w (G[Sa ]), w (G[Sb
−
])) ,

(2)

where e(G[Sb
−

]
Tk
Nj

) denotes the encoded vector of the neighbor-

hood of randomly sampled node j of the subgraph G[Sb
−

] at the

snapshot Tk . Since G[S
a ] and G[Sb

−

] are totally different temporal

subgraphs with no overlaps, we cannot use the same node i for the
negative pair.

The loss function is optimized by maximizing the similarities

between positive pairs and minimizing the similarities between

negative pairs, as shown in Equation 3:

L = − log

exp(sim(G[Sa ], G[Sb
+
])/τ )∑

n exp(sim(G[Sa ], G[Sb− ])/τ )
, (3)

where τ is the temperature parameter.

Based on Theorem A.6 from [45], we derive Theorem 4.1, which

shows that our encoder is more effective after sufficient training.

Theorem 4.1. Let f1 represent the temporal subgraph encoder we
proposed that incorporates financial distribution, and let f2 be the
temporal subgraph encoder without considering financial distribution
as [47]. After adequately training f1 and f2, we have I (f1(G[S1]);y) >
I (f2(G[S1]);y), where y denotes the graph label and I (·) represents
mutual information.

Theorem 4.2. The time complexity of temporal subgraph encoder
is O(deдavg · |V | + k1(|U | + |Z |)), where deдavg denotes the average
degree of nodes, |U | and |Z | represent the number of positive and
negative pairs, and k1 is constant.

Since k1, |U | and |Z | are constants, the time complexity can be

further reduced to O(deдavg · |V |).

4.3 Temporal Candidate Detection
In this section, we introduce how to pinpoint temporal candidate

anomalies efficiently.

Firstly, we form the temporal dense subgraph for each vertex

in the observation windowWr by greedily removing vertices with

the minimum temporal degree as inspired by [19]. The observation

windowWr is a sliding window that updates over time. To facili-

tate the discovery process, we filter the top-p temporal abnormal

subgraphs from the obtained dense subgraphs if their transaction

distributions significantly deviate from Benford’s law, as measured

by the X2(Ŝ)-statistic, where Ŝ ⊆ V . It measures how much the

distribution of the subgraph G[Ŝ] deviates from Benford’s law as:

X2(Ŝ ) =
∑

9

d=1

(XŜ,d
|TŜ |

− E

(
XŜ,d
|TŜ |

) )
2

E

(
XŜ,d
|TŜ |

) , (4)

where

XŜ,d

|TŜ |
represents the number of temporal edges in G[Ŝ] with

transaction amounts that have a first digit of d ∈ {1, · · · , 9}, and

E

(
XŜ,d

|TŜ |

)
denotes the expected number of such edges based on Ben-

ford’s distribution. Since the computations of temporal dense sub-

graphs and their X2(Ŝ)-statistics are independent for different ver-
tices, we perform these calculations in parallel across multiple pro-

cessors. This step significantly improves efficiency when handling

large-scale temporal networks.

Next, the temporal GNN in Section 4.2 is employed to encode the

temporal subgraphG[Ŝ] ∈ G[Ŝ] into a vector space. The subgraphs

in G[Ŝ] whose embeddings closely match the encoded vectors of

the training anomalous subgraphs G[Sat ] are then detected as

candidate temporal abnormal subgraphs G[SP ].

Theorem 4.3. The time complexity of temporal candidate detec-
tion is O(|VWr | · |EWr |+dp ·p), where |VWr | is the number of vertices
during the observation windowWr , |EWr | represents the number of
edges duringWr , dp denotes the dimension of the feature vector, and
p is the number of candidates.

4.4 Temporal Anomaly Refinement
We propose a carefully crafted reinforcement-learning-based algo-

rithm to refine temporal candidates from Section 4.3 for finalizing

the temporal anomalies. It allows the model to effectively refine the

detected candidates and focus on the most significant anomalies in

an evolving financial network.

State. The state at the i-th step contains the abnormal candi-

dates G[SPi ] obtained from Section 4.3 and its boundary BSPi . We

propose selecting nodes with the top transaction frequencies as the

boundary BSPi . Specifically, in Figure 3, for the candidate subgraph

G[SPi ] from the temporal candidate detection module in Section

4.3, we obtain its connected nodes: node 1 at the snapshotT3, 5 and
6 at the snapshotT1, 9 at the snapshotT2. Since node 1 atT3, 5 atT1,
and 9 at T2 have the top-3 transaction frequencies compared with

node 6 at T1, they are selected as the boundary BSPi . Overall, the
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boundary BSPi should include the nodes connecting and have the

most aggregate transaction frequencies with nodes in G[SPi ] as:

BSPi = argmaxI⊆V \G [SPi ]Ti :|I |≤m
∑
Ti ∈|T |

∑
s∈I

∑
c∈G [SPi ]Ti

rs,c,Ti , (5)

where rs,c,Ti represents the transaction frequency between nodes

s and c at the snapshot Ti , and |I | ≤ m denotes that the number of

nodes in the boundary cannot exceedm.

The node representation of each node is generated by the trained

temporal GNN in Section 4.2.

Action. We define two actions, exclusion and expansion. The

action space for exclusion involves the nodes in the subgraphs

G[SPi ]. And the action space for expansion contains nodes in the

boundary BSPi . We utilize a Multilayer Perceptron (MLP) to learn

features from nodes in the action spaces and softmax these features

of nodes to select the optimal node with the highest probability.

Besides, the ψ (SPi+1 ) and X2(SPi+1 ) values should become larger

after taking the specific action.

Reward. To guide the model towards the most abnormal direc-

tion, we use the gain of abnormal degree from specific actions as the

reward, optimizing as shown in Figure 3. For instance, the model

selects actions like expanding node 9 at T2 and excluding node 4 at

T1 for higher rewards. We first define the abnormal degree for the

subgraph G[SP ] at the i-th step as:

da (SPi ) =
ψ (SPi )
ρT

, (6)

where ρT =
h(S)

|S | |Ts |
denotes the temporal density of the subgraph

G[SP ] at the i-th step.

Based on the Theorem 3.3, a temporal abnormal subgraph should

satisfyψ (S) ≫ ρT . Therefore, we optimize the problem by policy

gradient to maximize the gain of abnormal degrees after taking the

specific actions, i.e., reward = da (SPi+1 ) − da (SPi ).
Our reinforcement learning (RL)-based refinement module is

designed to iteratively adjust the candidate subgraphs toward a

more anomalous state. The idea behind using RL is that it allows

the model to learn a policy for selecting actions (e.g., expanding

or excluding nodes) that maximize an objective — in our case, the

abnormal degree of a subgraph. The RL framework is effective

because:

• Dynamic Adaptation: Financial fraud patterns (e.g., money

laundering) evolve temporally. Static methods (e.g., greedy search)

often get trapped in local optima, while RL explores the temporal

action space (exclusion / expansion of nodes) to refine subgraphs

toward global anomaly maxima.

• Reward-Driven Optimization: The reward directly incentivizes

actions that increase the abnormal degree da , which quantifies both

structural density (ρT ) and financial deviation (ψ (S)). This ensures
RL prioritizes subgraphs with abnormal transaction patterns rather

than merely dense structures.

Theorem 4.4. The time complexity of refinement is O(|G[Sat ]| ·t),
where t denotes the number of states in the optimization process and
|G[Sat ]| represents the number of training anomalous subgraphs.

4.5 Model Discussion
Here we give a discussion of the TempASD model as follows:

• The TempASD model is effective. The reason is that we detect

candidates by matching the temporal subgraphs with the training

anomalies in the encoded vector space, then use a temporal anomaly

refinement module to optimize the detected candidates towards the

most abnormal direction.

• The TempASDmodel is efficient. The overall time complexity of

the TempASD model is O(deдavg · |V | + |VWr | · |EWr | + |G[Sat ]| · t).
Since |G[Sat ]| and t are constants, the time complexity can be

reduced to O(deдavg · |V | + |VWr | · |EWr |). Since the observation

windowWr is typically short (e.g., around 1 hour in our experiment),

the numbers of vertices and edges (e.g., around 7,000 vertices and

15,000 edges) are usually not large. In our experiment, we have

|VWr | · |EWr | < k2 · deдavg · |V |, where k2 is a constant. Thus, the
complexity is dominated by O(deдavg · |V |), which is near-linear

w.r.t. graph size.

• TempASD can be generalized to other networks and domains.

Firstly, to extend the model to other types of networks, e.g., so-

cial networks and citation networks, the calculation of the top-p

subgraphs with large X2(Ŝ) should be removed from the temporal

candidate detection module, as it is only applicable to financial

networks that follow Benford’s law. Additionally, the reward in

the temporal anomaly refinement module should be adapted to the

downstream application, such as considering gains in density or F1

score.

• The TempASD model is scalable, demonstrating a manageable

increase in time complexity proportional to the size of the financial

network and the time dimension span. It can guarantee the running

time of the model when applying it to larger financial networks

and longer-span transactions.

• The TempASDmodel is parallelizable in the temporal candidate

detection module since the computations of the temporal dense sub-

graphs, and X2(Ŝ) values are independent among different vertices.

They can be executed in parallel with multiprocessors to reduce

the running time significantly.

5 Experiments
5.1 Experimental Setup
5.1.1 Datasets. Four real financial datasets, namely PlusToken-

Ponzi, ETH-Jan-18, ETH-Jan-19, and Blur, are used to evaluate mod-

els. The PlusTokenPonzi dataset
1
is a real Ethereum blockchain

transaction dataset that involves labeled money laundering ac-

tivities from EthereumHeist [43] covering from 2018 to 2022. It

contains 6122 ground truth labels for money laundering. The ETH

datasets consist of real transaction data obtained from the Ethereum

blockchain, available through Google BigQuery
2
. The Blur dataset

is a real transaction dataset from the NFT marketplace [58], span-

ning from October 19, 2022, to April 1, 2023. Statistic details are in

Table 2. Details about these datasets are available in the appendix.

The code for our proposed model can be accessed here
3
.

5.1.2 Preprocessing. Following AntiBenford [6], transactions with

values less than 1 unit are excluded during preprocessing. Since

our goal is to discover anomalous subgraphs in temporal networks,

we retain the timestamps associated with the transactions.

1
https://github.com/lindan113/EthereumHeist?tab=readme-ov-file

2
https://www.kaggle.com/bigquery/ethereum-blockchain

3
https://github.com/KZ-code/TempASD
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Table 1: Effectiveness on PlusTokenPonzi. For each method, we report average results over five runs. The best method should
extract subgraphs with higher abnormal degree da (S) and relatively higher density ρT . Our method TempASD meets it.
top-a Metrics Holoscope FlowScope AntiBenford CLARE AS-GAE GCAD SIGNET FAST-GA TopLC OTCD DeepSphere RustGraph AnoGraph TempASD

5

X2(S) 1020.57 4278.46 4965.96 1983.10 1453.70 724.71 2311.75 1583.32 1031.54 1238.73 263.62 995.25 1099.51 7682.23
ψ (S) 20.85 32.03 16.16 12.14 13.64 39.18 27.76 26.52 34.18 71.98 34.75 4.10 12.35 903.71
ρT 13.83 28.33 14.98 12.44 18.44 32.39 33.63 25.29 53.02 85.05 28.92 5.40 28.97 81.34

da (S) 1.51 1.13 1.08 0.98 0.74 1.21 0.83 1.05 0.64 0.85 1.20 0.76 0.43 11.11
ONMI 0.30 0.02 0.21 0.56 0.20 0.40 0.00 0.28 0.00 0.23 0.34 0.00 0.01 0.78

10

X2(S) 816.36 3743.96 4575.90 2943.27 818.51 359.44 1242.36 889.37 911.85 1172.41 147.69 721.27 1077.05 6790.91
ψ (S) 14.20 21.62 11.75 8.46 8.98 26.23 18.58 21.20 22.91 45.54 18.43 2.74 8.43 456.24
ρT 8.20 16.99 12.56 6.78 14.91 44.00 17.32 18.52 36.82 58.98 14.50 3.95 24.82 43.85

da (S) 1.73 1.27 0.94 1.25 0.60 0.60 1.07 1.15 0.62 0.77 1.27 0.69 0.34 10.40
ONMI 0.27 0.01 0.13 0.53 0.20 0.40 0.00 0.22 0.00 0.18 0.29 0.00 0.00 0.64

15

X2(S) 619.63 3469.80 4049.66 4310.50 595.26 272.53 1131.72 795.96 901.25 946.46 104.94 563.65 2653.54 6711.95
ψ (S) 10.97 15.55 9.81 6.50 7.16 19.34 15.00 18.79 17.18 33.18 12.81 2.03 5.92 305.46
ρT 5.92 12.71 10.93 5.55 13.63 39.77 11.57 12.82 27.60 43.47 14.88 2.96 18.63 38.84

da (S) 1.85 1.22 0.90 1.17 0.52 0.49 1.30 1.47 0.62 0.76 0.86 0.69 0.32 7.87
ONMI 0.21 0.00 0.09 0.46 0.18 0.39 0.00 0.18 0.00 0.13 0.27 0.00 0.00 0.50

20

X2(S) 561.68 3095.10 3750.38 3241.47 479.28 238.11 895.65 700.76 870.44 774.77 88.75 424.04 2489.22 6482.48
ψ (S) 8.97 12.07 8.21 5.17 6.04 15.37 12.65 15.68 13.76 25.75 10.90 1.55 5.55 229.75
ρT 4.79 10.04 10.04 4.99 9.91 31.83 12.13 10.17 21.79 33.18 12.48 2.23 17.47 33.25

da (S) 1.87 1.20 0.82 1.04 0.61 0.48 1.04 1.54 0.63 0.78 0.87 0.69 0.32 6.91
ONMI 0.20 0.00 0.01 0.44 0.12 0.31 0.00 0.11 0.00 0.12 0.20 0.00 0.00 0.50

Table 2: Statistics of experimented datasets.

Datasets # Nodes # Edges # Transactions

PlusTokenPonzi 38,324 58,731 64,858

ETH-Jan-2018 1,761,571 2,749,707 4,279,799

ETH-Jan-2019 2,199,347 3,331,594 6,128,061

Blur 175,071 1,103,791 3,539,773

The temporal graph is divided into multiple snapshots at equal

time intervals, with a sequential relationship between these snap-

shots. For each time interval, we represent multiple transactions

between two nodes as a single edge. Each edge is associated with

both the transaction frequency and the financial distribution, which

includes the probabilities of transaction amounts starting with each

digit d . This forms the input graph for our analysis.

As ETH and Blur datasets lack inherent anomaly labels, we use

the advanced methods [18] and [6] as a reference. Specifically, we

identify the densest temporal subgraphs satisfyingψ (S) ≫ ρT (see

Theorem 3.3), and randomly select 80 of them for the training set.

Since the PlusTokenPonzi dataset includes anomaly labels itself,

we randomly pick 20% of the ground truth data as the training set.

5.1.3 Competitors. We compare our proposed model with thirteen

other methods. More details are provided in Section 2.

Non-temporal anomaly detectionmethods:Holoscope [23],
FlowScope [16] andAntiBenford [6] propose non-learning-based
methods for anomalous subgraph discovery. While CLARE [44],

AS-GAE [54],GCAD [59], and SIGNET [25] utilize learning-based

methods for anomaly detection.

Temporal anomaly detection methods: To detect anomalies

in dynamic graphs, DeepSphere [41] combines deep autoencoders

with a hypershere learning algorithm.RustGraph [9] detects anom-

alies by jointly learning structural-temporal dependency in tempo-

ral graphs. AnoGraph [3] proposes a sketch algorithm to detect

anomalies in streaming graphs.

Temporal densest subgraph discovery methods: FAST-GA
[38] proposes a greedy approach to detect temporal dense sub-

graphs. OTCD [49] and TopLC [18] propose to utilize scalable

temporal cores for temporal cohesive subgraph mining.

5.1.4 Hyperparameter Settings. We perform hyperparameter tun-

ing using grid search. We tune the parameters as follows: the du-

ration of time interval for snapshots in {5, 10, 20, 30} minutes, the

maximum sizem of nodes in the boundary in {100, 150, 200, 250},

the range of observation windowWr for temporal dense subgraphs

in {30, 60, 90, 120} minutes, the size of the top-p candidates in {100,

150, 200, 250}, the number of sampling pairs in {5, 10, 15, 20}, and

the number of training subgraphs in {20, 50, 80, 110}.

5.1.5 Performance Metrics. We evaluate performance using stan-

dard metrics from [6] and [19], including the X2-statistic, temporal
subgraph density ρT and ψ (S), which is the average X2

per node

of the subgraph G[S] . The X2(S) metric evaluates the deviation

of the subgraph’s financial distribution from Benford’s law, while

ψ (S) calculates the average deviation, represented as
X2(S )
|S | . This

average is crucial because large X2(S) values in larger subgraphs

may lead to deceptively small ψ (S) values. Thus, ψ (S) provides a
fair comparison across subgraphs of varying sizes.

According to Theorem 3.3, a temporal subgraph with nodes S
is considered abnormal ifψ (S) ≫ ρT , we use the abnormal degree
da (S) =

ψ (S )
ρT as a metric. A higher da (S) indicates a more abnormal

temporal subgraph.

Furthermore, since the PlusTokenPonzi dataset includes ground

truth data, we evaluate the overlapping similarity between the

anomalies detected by each method and the ground truth on the

PlusTokenPonzi dataset. For this, we adopt the ONMI metric (Over-
lapping Normalized Mutual Information) , as used in [29, 44], which

is an overlapping variant of the NMI score.

5.2 Effectiveness Evaluation
We evaluate the effectiveness of all methods by comparing their top-

a results in Tables 1, 3, ranked byψ (S). Note that the results for the
ETH-Jan-2019 and Blur datasets have been included in the appendix

due to space limitations. We do not choose da (S) =
ψ (S )
ρT because it

returns subgraphs with very low density ρT , which are not dense

and fail to meet the criteria for temporal abnormal subgraphs. We

observe:
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Table 3: Effectiveness on ETH-Jan-2018. For each method, we report average results over five runs.
top-a Metrics Holoscope FlowScope AntiBenford CLARE AS-GAE GCAD SIGNET FAST-GA TopLC OTCD DeepSphere RustGraph AnoGraph TempASD

5

X2(S) 309.29 3966.68 7900.45 1745.85 449.84 724.71 1724.03 1598.60 1312.87 954.85 145.41 3332.36 2150.12 9754.80
ψ (S) 33.87 92.69 2.39 21.51 4.04 7.11 7.59 30.17 151.27 111.33 23.89 38.96 542.23 1280.87
ρT 22.77 317.13 0.94 19.70 23.86 17.78 11.67 68.25 192.32 101.31 68.45 51.21 137.36 112.69

da (S) 1.49 0.29 2.55 1.09 0.17 0.40 0.65 0.44 0.79 1.10 0.35 0.76 3.95 11.37

10

X2(S) 694.76 2635.44 4001.75 1044.07 287.68 359.44 996.69 1684.03 824.03 520.43 78.38 2954.33 2295.02 5225.04
ψ (S) 23.51 50.36 1.70 11.63 2.58 5.98 4.41 25.33 109.42 66.77 14.52 32.55 468.27 673.59
ρT 13.65 260.18 2.98 30.58 10.78 12.57 10.50 58.98 178.72 91.95 60.15 44.67 107.73 62.92

da (S) 1.72 0.19 0.57 0.38 0.24 0.48 0.42 0.43 0.61 0.73 0.24 0.73 4.35 10.71

15

X2(S) 674.76 2202.56 2702.57 801.36 257.98 272.53 693.55 1607.24 601.84 354.44 56.21 2178.36 1761.74 3566.73
ψ (S) 18.43 35.82 1.40 3.86 2.03 4.84 3.09 20.22 90.44 44.59 10.76 39.60 239.52 454.19
ρT 25.22 261.43 2.27 21.36 8.89 8.52 8.61 50.40 160.00 71.04 63.78 70.80 89.09 43.77

da (S) 0.73 0.14 0.62 0.18 0.23 0.57 0.36 0.40 0.57 0.63 0.17 0.56 2.69 10.38

20

X2(S) 591.19 2042.13 2029.30 616.65 260.12 238.11 529.02 1602.92 458.06 271.04 46.37 1264.23 1355.93 2702.99
ψ (S) 14.87 30.88 1.21 7.64 1.52 2.58 2.42 20.17 68.05 33.49 8.59 27.51 131.49 342.24
ρT 22.13 264.16 1.75 20.29 11.20 9.31 7.03 50.28 127.59 55.11 65.41 37.92 71.02 33.12

da (S) 0.67 0.12 0.69 0.38 0.14 0.28 0.34 0.40 0.53 0.61 0.13 0.73 1.85 10.33

(1) Our proposed TempASD achieves the best performance in

detecting anomalies when compared with the ground truth on the

PlusTokenPonzi dataset in Table 1. ONMI measures the similarity

between detected and ground truth subgraphs, with higher scores

indicating larger overlaps. Specifically, TempASD achieves the high-

est ONMI scores compared to other methods, indicating its superior

accuracy in identifying anomalies.

(2) TempASD demonstrates the highest abnormal degree across

all datasets compared to other baseline methods. On average, it is

7× more effective than the state-of-the-art in terms of abnormal

degree. This confirms TempASD’s capability to detect the temporal

abnormal subgraphs in dynamic financial networks.

(3) TempASD achieves the highestψ (S) values across all datasets
compared to other baselines. Although its X2(S) values at the top
5, 15, and 20 on the Blur dataset are not the highest, their average

X2(S) values, i.e., ψ (S) values, are the highest. Since ψ (S) values

measure the average X2(S) per node, i.e., X
2(S )
|S | , this metric is more

fair for comparing subgraphs with varying sizes.

(4) The temporal density (ρT ) values of TempASD are comparable

to those of other baselines, even though some are not the highest.

However, the abnormal degree values of TempASD consistently

remain the highest. Some baselines, such as FlowScope, may have

some of the highest temporal density values, but their abnormal

degree values are very low, indicating that they are not abnormal

subgraphs at all.

(5) The abnormal degree values decrease as the a values increase.

This occurs because a larger a includes more subgraphs with lower

abnormal degrees. Nevertheless, TempASD can still identify tempo-

ral subgraphs with a higher abnormal degree.

5.3 Ablation Study
We conduct an ablation study on TempASD to evaluate the impact of

its key components. The Blur and PlusTokenPonzi datasets, as well

as the results for the top 15 and top 20, are excluded due to similar

behavior patterns. TempASDnr omits temporal anomaly refinement

(Section 4.4). TempASDnw disregards weights, i.e., transaction fre-

quency, for the temporal GNN (Section 4.2). TempASDnk excludes

the KL-divergence of financial distributions between pairs (Section

4.2). TempASDnc substitutes temporal dense subgraphs with k-ego
nets (Section 4.3). TempASDnf randomly selects connected nodes

as the boundary nodes (Section 4.4). From Figure 4, we observe:

(1) TempASD outperforms TempASDnr on both datasets, demon-

strating the significance of temporal anomaly refinement in im-

proving candidates towards the abnormal direction.

(2) TempASDnw achieves higher density ρT than TempASD, but

it gets a very low abnormal degree da (S), which means that the sub-

graph is not abnormal. This underscores the effect of incorporating

transaction frequency in the temporal GNN.

(3) TempASD outperforms TempASDnk on both datasets, high-

lighting the effect of using KL-divergence in measuring the trans-

action similarity between subgraph pairs.

(4) TempASD significantly outperforms TempASDnc on both

datasets, highlighting the critical role of temporal dense subgraphs

in candidate discovery.

(5) TempASD outperforms TempASDnf on both datasets, high-

lighting the importance of using the transaction frequency to select

boundary nodes.

5.4 Efficiency Evaluation
We use Intel Xeon Platinum 8370C processor 32-core 2.8GHz CPU

with NVIDIA GeForce RTX 4090 24G GPU for evaluation.

Figure 5 (a) presents the detection time across three datasets,

while Figure 5 (b) shows the training time. TempASD stands out by

achieving the lowest detection time across all three datasets, high-

lighting its efficiency in identifying anomalous subgraphs. More-

over, it has comparable training time to other baselines.

5.5 Case Study
We display the detected temporal abnormal subgraphs by TempASD

in the PlusTokenPonzi dataset, which includes the ground truth, as

shown in Figure 6 (a). We use the default time interval for snapshots

in this case study, i.e., ten minutes. TempASD successfully identifies

temporal dense subgraphs across three time intervals, T1,T2, and
T3, with a highψ (S) value, indicating that the financial transaction

distribution significantly deviates from Benford’s law. Furthermore,

the abnormal degree da (S) is the highest among the three models.

The overlap ratio between detected and ground truth subgraphs

is computed as

Noverlap

Ngt+Npm−Noverlap

, where N
overlap

represents over-

lapping nodes between the ground truth (Ngt) and model-detected

nodes (Npm). The overlap between the subgraph detected by Tem-

pASD and the ground truth is 72.2%, demonstrating that TempASD

accurately detects the abnormal subgraph.
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Figure 4: The ablation study w.r.t. four evaluation metrics.
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Figure 5: (a) Detection time; (b) training time. Note that non-learning-based methods require zero training time.

Figure 6: The abnormal subgraph detected by (a) TempASD; (b) AntiBenford; (c) AnoGraph, with the ground truth shown in
(d). The color of the edges represents the frequency of transactions–darker colors correspond to higher frequencies.

In contrast, AntiBenford, which is designed for static financial

networks, can only detect non-temporal dense subgraphs, as shown

in Figure 6 (b). The overlap between the subgraph discovered by

AntiBenford and the ground truth is only 16.7%. This limitation

motivated us to establish the theoretical foundation for detecting

abnormal subgraphs in a temporal setting.

Although AnoGraph is designed for temporal networks, it does

not incorporate transaction information, leading to detected tempo-

ral subgraphs that do not deviate from Benford’s law (with a very

lowψ (S) value), which means that the transaction information of

the detected temporal subgraph is normal. Additionally, the overlap

between the subgraph detected by AnoGraph and the ground truth

is only 10%.

6 Conclusions
In this paper, we address the challenge of detecting temporal anoma-

lous subgraphs in dynamic financial networks. We begin with a

formal theoretical analysis of temporal abnormal subgraphs, i.e.,

temporal AntiBenford subgraphs. Building on this, we introduce a

novel model named TempASD. This model first encodes temporal

subgraphs using temporal graph neural networks. Next, it incorpo-

rates a temporal candidate detection module for obtaining candi-

dates. Finally, we present a temporal anomaly refinement module,

which employs a reinforcement learning-based algorithm designed

to optimize toward themost abnormal directions.We conduct exten-

sive evaluations against thirteen advanced models, demonstrating

that the TempASD model outperforms state-of-the-art models in

both effectiveness and efficiency. Additionally, TempASD scales

smoothly to very large dynamic financial networks.
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A Proof of Theorems
We use the Chernoff bound [30] in the proofs.

Theorem A.1. (Chernoff bound). Consider a set of mutually inde-
pendent binary random variables {X1, · · · ,Xq }. Let X =

∑q
i=1 Xi be

their sum. Then, for 0 < ϵ < 1 we have Pr [|X − E[X ]| ≥ ϵE[X ]] ≤

2e−ϵ
2E[X ]/3.

A.1 Proof of Theorems 3.1
Proof. By applying the Chernoff bound (see Theorem A.1), for

any 0 < ϵ < 1, we have:

Pr

[����XS,d

|Ts |
−
pdh(S)

|Ts |

���� ≥ ϵ
pdh(S)

|Ts |

]
≤ 2e

−
ϵ2pdh(S)

3|Ts | .

Since

2h(S)

|S | |Ts |
≥

36 logn

δϵ2
, we get

ϵ2pdh(S)

|Ts |
≥
ϵ2δh(S)

|Ts |
≥ 18|S | logn.

Hence, Pr

[����XS,d

|Ts |
−
pdh(S)

|Ts |

���� ≥ ϵ
pdh(S)

|Ts |

]
≤ 2e−6 |S | logn ≤ 2n−6 |S | .

Next, for all digits d and temporal subgraphs with temporal

average degree

2h(S)

|S | |Ts |
= Ω(logn), we use the double union bound

and get:

Pr

[
∃d ∈ {1, · · · , 9}, S ⊆ V :

XS,d

|Ts |
< (1 + ϵ)E

[
XS,d

|Ts |

] ]
≤

∑
9

d=1
∑n
k=2

(n
k
)
n−6k ≤ 9

∑n
k=2(

en

k
)kn−6k = o(1) .

Consequently, with high probability 1 − o(1), the number of

temporal edges that begin with digit d in G[S] with a sufficiently

large average temporal degree is strongly concentrated around the

expectation E

[
XS,d

|Ts |

]
. □

A.2 Proof of Corollary 3.2
Proof. Theorem 3.1 indicates that for all sufficiently large tem-

poral subgraphs, we expect

XS,d

|Ts |
to be closely concentrated around

its true expectation. With high probability, the following inequality

holds:

ψ (S) = 1

|S |
∑
9

d=1

( XS,d
|Ts |

−
pd h(S )
|Ts |

)
2

pd h(S )
|Ts |

≤ 1

|S |
∑
9

d=1 ϵ
2 pdh(S )

|Ts |
= ϵ 2

2

2h(S )
|S | |Ts |

.

Thus,ψ (S) ≤
h(S)

|S | |Ts |
since 0 < ϵ < 1. Hence, we havemaxS ⊆V ψ (S) ≤

ρ⋆T . □

A.3 Proof of Theorems 3.3
Proof. Corollary 3.2 indicates that under the null hypothesisH0,

which corresponds to a temporal normal subgraph, the inequality

ψ (S) ≤
h(S)

|S | |Ts |
holds. Therefore, for temporal anomalous subgraph,

i.e., temporal AntiBenford subgraph, we haveψ (S) ≫
h(S)

|S | |Ts |
. □

B Supplementary Experiments
B.1 Dataset Description
• The PlusTokenPonzi dataset

4
is a real Ethereum blockchain

transaction dataset that involves money laundering activities from

EthereumHeist [43]. It includes detailed information such as trans-

action timestamps and amounts, service provider address labels,

hierarchical levels of laundering addresses, etc. This is the first pub-

licly available dataset with ground truth data on money laundering.

• The ETH datasets consist of real transaction data obtained from

the Ethereum blockchain, available through Google BigQuery
5
.

These datasets include token transactions between source and sink

addresses, including transaction amounts and timestamps. They

are also used in the advanced method AntiBenford [6].

• The Blur dataset is a real transaction dataset from the NFT

marketplace [58], compiled using the Etherscan API
6
. It covers NFT

transactions among addresses from October 19, 2022, to April 1,

2023.

B.2 Effectiveness Evaluation
Tables 4 and 5 present the effectiveness results for the ETH-Jan-

2019 and Blur datasets. They show that our proposed TempASD

achieves the highest abnormal degree values.

B.3 Sensitivity Analysis
We evaluate the effects of the TempASD model w.r.t. different hy-

perparameters.

Duration of Time Interval for Snapshots. Figure 7 (a) indi-
cates that increasing the time interval results in the best perfor-

mance at an interval of 10 minutes. However, further increases

cause performance to decline due to the loss of more detailed trans-

action information.

Maximum Size m of Nodes in the Boundary. Figure 7 (b)

demonstrates that whenm exceeds 150, it introduces more noise,

leading to degraded results.

Range of Observation Window Wr for Temporal Dense
Subgraphs. Figure 7 (c) illustrates that expandingWr beyond 60

results in larger temporal subgraphs with lower abnormal degrees,

which negatively impacts performance.

Size of the Top-p Candidates. Figure 7 (d) reveals that in-

creasing the number of candidates beyond 150 results in more

sub-optimal subgraphs, thereby reducing performance.

Number of Sampling Pairs. Figure 7 (e) shows that increas-

ing the number of sampling pairs beyond 10 leads to degraded

performance due to potentially increased noise.

Number of Training subgraphs. Figure 7 (f) shows that in-

creasing the number of training subgraphs improves results up

to 80. However, the improvement diminishes when the number

reaches 100. Due to the scarcity of training subgraphs, we did not

further increase this number in our experiment.

B.4 Scalability Study
Five datasets ranging from 1 week to 1 year in 2019 are utilized to

analyze the scalability over time in Section B.4.2.

B.4.1 Scalability w.r.t. the size of graph nodes. Figures 8 (a–b) dis-
play the detection and training times in relation to the size of graph

nodes for all methods. Our proposed TempASD exhibits an ap-

proximately linear relationship with the size of nodes in financial

4
https://github.com/lindan113/EthereumHeist?tab=readme-ov-file

5
https://www.kaggle.com/bigquery/ethereum-blockchain

6
https://etherscan.io/
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Table 4: Effectiveness on ETH-Jan-2019 dataset. For each method, we report average results over five runs.

top-a Metrics Holoscope FlowScope AntiBenford CLARE AS-GAE GCAD SIGNET FAST-GA TopLC OTCD DeepSphere RustGraph AnoGraph TempASD

5

X2(S) 2374.97 8018.53 9094.98 3375.30 5542.81 790.27 1459.99 1718.37 3801.75 1387.80 3887.27 2143.54 3163.21 10121.43
ψ (S) 23.52 318.55 67.94 60.60 40.38 5.24 11.98 45.33 168.56 86.54 145.18 69.43 206.08 1082.29
ρT 22.03 313.34 15.14 53.92 63.29 9.37 12.53 52.20 102.50 106.80 54.48 51.53 196.23 98.33

da (S) 1.07 1.02 4.49 1.12 0.64 0.56 0.96 0.87 1.64 0.81 2.67 1.35 1.05 11.01

10

X2(S) 1334.05 4492.26 4800.36 3110.18 3692.44 409.04 703.02 967.54 3441.38 916.11 2230.29 1079.25 2893.23 7632.98
ψ (S) 18.81 168.96 35.38 44.06 24.71 4.62 6.33 29.86 137.50 47.47 102.45 45.91 139.05 714.52
ρT 16.14 157.11 9.46 41.70 44.83 6.24 13.97 37.79 89.57 58.58 42.25 44.92 153.89 69.19

da (S) 1.17 1.08 3.74 1.06 0.55 0.74 0.45 0.79 1.54 0.81 2.43 1.02 0.90 10.33

15

X2(S) 1193.95 3191.97 4183.12 2888.44 2587.29 382.13 668.01 703.64 2580.54 624.84 1804.71 729.30 2772.76 3899.43
ψ (S) 16.67 117.46 24.16 36.78 20.32 2.73 6.33 23.79 96.57 31.62 73.94 34.27 107.55 562.35
ρT 11.17 161.21 89.06 39.34 34.91 8.72 9.92 36.79 71.95 39.02 34.07 39.84 127.28 55.44

da (S) 1.49 0.73 0.27 0.93 0.58 0.31 0.64 0.65 1.34 0.81 2.17 0.86 0.84 10.14

20

X2(S) 1051.14 2699.62 3681.89 2549.08 1518.63 253.45 52.34 566.54 2130.31 474.70 1283.73 567.17 2446.47 1983.41

ψ (S) 13.91 99.94 18.32 30.80 11.92 2.79 0.51 20.09 75.29 23.77 57.93 27.33 86.01 298.44
ρT 8.86 135.20 67.53 33.33 26.18 6.38 4.15 22.76 58.88 29.33 27.19 24.03 101.46 32.98

da (S) 1.57 0.74 0.27 0.92 0.46 0.44 0.12 0.88 1.28 0.81 2.13 1.14 0.85 9.05

Table 5: Effectiveness on Blur dataset. For each method, we report average results over five runs.

top-a Metrics Holoscope FlowScope AntiBenford CLARE AS-GAE GCAD SIGNET FAST-GA TopLC OTCD DeepSphere RustGraph AnoGraph TempASD

5

X2(S) 562.79 168.43 640.74 4575.33 591.73 193.67 116.91 808.49 406.99 592.01 1693.09 1521.74 1280.05 4523.17

ψ (S) 1.45 0.78 2.71 23.76 1.09 2.07 1.17 77.23 54.46 35.63 21.55 137.78 100.90 852.31
ρT 1.32 0.77 1.17 16.57 1.73 1.49 1.89 53.97 80.78 48.63 20.47 51.53 105.29 107.91

da (S) 1.10 1.01 2.31 1.43 0.63 1.38 0.62 1.43 0.67 0.73 1.05 2.67 0.96 7.90

10

X2(S) 192.32 121.93 343.40 2754.44 415.31 190.90 99.12 404.51 275.23 333.08 1086.23 825.58 663.49 3004.62
ψ (S) 0.90 0.72 1.94 15.13 0.63 1.47 0.69 52.32 41.58 23.37 14.78 83.41 51.71 671.56
ρT 1.54 0.55 0.96 10.10 2.63 2.05 1.74 46.77 55.40 49.65 102.48 44.92 54.51 89.19

da (S) 0.58 1.30 2.02 1.50 0.24 0.72 0.40 1.12 0.75 0.47 0.14 1.86 0.95 7.53

15

X2(S) 119.74 87.78 259.30 2000.33 352.49 185.26 93.83 411.00 246.75 187.86 744.70 590.93 450.49 1789.21

ψ (S) 0.61 0.30 1.59 11.35 0.51 0.70 0.88 35.27 37.08 20.06 11.79 66.22 35.02 476.43
ρT 1.20 0.72 0.85 7.63 2.22 1.55 1.36 39.33 41.60 39.78 73.80 39.84 38.05 66.33

da (S) 0.51 0.41 1.86 1.49 0.23 0.45 0.65 0.90 0.89 0.50 0.16 1.66 0.92 7.18

20

X2(S) 99.71 54.27 223.07 1538.24 287.88 191.28 81.82 201.60 97.57 138.23 651.28 514.28 390.08 962.36

ψ (S) 0.59 0.32 1.39 9.02 0.37 0.82 0.46 27.08 21.09 22.44 9.70 58.68 26.58 210.13
ρT 1.13 0.43 0.80 5.98 2.92 0.89 1.52 34.72 22.97 31.88 55.60 24.03 28.80 35.46

da (S) 0.52 0.76 1.74 1.51 0.13 0.92 0.30 0.78 0.92 0.70 0.17 2.44 0.92 5.93
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Figure 7: Hyperparameter effects of TempASD on ETH-Jan-18 dataset.
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Figure 8: Scalability on (a–b) the size of graph nodes; (c–d) the span of time dimension.

networks on a log-log scale, indicating that its time complexity is

polynomial.

B.4.2 Scalability w.r.t. the span of time dimension. Figures 8 (c–d)
display detection and training times w.r.t. the number of days. The

node size is fixed at 500,000 to ensure that the changes are solely

due to variations in the time dimension. The trend for TempASD is

approximately linear in relation to the number of days in dynamic

financial networks.
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