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Abstract
Temporal graphs, widely used in social network modeling, are valu-
able for research but pose challenges due to data accessibility and
privacy concerns. High-quality graph generation models can pro-
duce surrogate data for sharing and training, benefiting tasks such
as behavior analysis, anomaly detection, and data augmentation.
However, existing deep learning and probabilistic approaches often
struggle to balance global statistical properties with local structural
details. To overcome this limitation, we leverage motifs, small sub-
graphs that serve as the building blocks of complex networks, to
encode local information. Based on a spectral analysis of motifs,
we propose MoDiff, a novel motif-aware diffusion model for tem-
poral graph generation. MoDiff integrates motifs into a diffusion
framework by employing motif-enhanced Hermitian matrices that
capture local structures and edge orientations, while the spectral
diffusion model efficiently generates graphs. Moreover, MoDiff sup-
ports controllable graph generation by adjusting density parameters
to simulate the evolution of temporal graphs. Experimental results
demonstrate that MoDiff outperforms existing approaches, reduc-
ing degree discrepancies by 10–50% and clustering discrepancies by
50–90%, while better preserving higher-order structural features.
Our code is available at: https://github.com/Yuwe1XU/MoDiff.

CCS Concepts
•Networks→Network simulations; •Computingmethodologies
→ Network science.
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Table 1: Demo of generation processes for fourmethods, with
quantitative metrics results on StackOverflow graph (1000-
Node Scale). Metrics are MMD, where smaller is better.

1 Introduction
Temporal graphs, characterized by directed edges with specific
timestamps, are pivotal in analyzing complex real-world systems
such as communication networks [11, 39, 40], financial transac-
tions [5, 10], and physical models. They are widely applied in social
network analysis for tasks such as behavior prediction, anomaly
detection, and user profiling [3, 13, 28, 34]. Training models on tem-
poral graph data requires large-scale datasets. However, real-world
data is sensitive, raising significant privacy concerns. To overcome
these challenges, graph generation techniques [12, 23, 26, 27] have
become essential for simulating realistic data, enabling surrogate
data sharing, data augmentation, and privacy protection.

Existing graph generators and their limitations. Several
types of graph generators have been developed tomeet the demands.
Parametric models like EpicNet [26], TASBM [22] and STM [23]
generate graphs using distribution-based parameters like commu-
nity ratios and node activity state. Probabilistic models, such as
MTM [12], further model the occurrence and transitions of spe-
cial patterns, like motifs, instead of individual edges. Likelihood-
based generative models, including GraphGAN [30], GraphVAE [27],
GraphRNN [36] and TagGen [42], generate complete graphs by
simulating the edge distribution of nodes through random walk.
Table 1 presents demos from one representative method per cate-
gory, with metrics evaluated on a 1000-node scale StackOverflow
dataset. Details are provided in Section 4.

However, as shown in Table 1, these methods face key limitations
in their perception scope. Parametric models rely on parameters
based on the entire graph, making capturing correlations between
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individual edges challenging. Probabilistic models improve this by
incorporating motif evolution but overlook how finer-grained struc-
tures influence the global graph. Expanding these models to larger
regions is theoretically possible but impractical. The exponential
growth in combinations and increased noise severely escalate com-
plexity and instability. Likewise, likelihood-based methods face simi-
lar challenges. They often rely on sampling multiple random walks
per node to simulate edge distributions, which creates a significant
computational bottleneck. TagGen, for instance, requires extensive
random walk operations to process 1 million nodes (1,000 graphs ×
1,000 nodes), with one training epoch requiring half an hour.

OurWork. Balancing the perception of fine-grained details with
global structural information remains challenging—expanding local
features to the global scale is often impractical. Instead, integrating
global generation mechanisms with fine-grained structures offers
a viable solution. Recent advancements—such as diffusion-based
graph generators that directly produce adjacency matrices—have
shown promise in capturing global edge correlations. Meanwhile,
motifs have long served as a fundamental tool for micro-level graph
analysis [2, 4, 8, 11, 20]. Using rigorous statistical methods and hy-
pothesis testing, we analyze the role of motifs to identify those that
most effectively label fine-grained features, and we further examine
how these motifs impact the graph’s spectral decomposition to
enhance its structural representation.

Hence, we propose MoDiff, a Motif-aware Diffusion Model that
utilizes motif analysis to encode fine-grained structural details,
effectively bridging local patterns with global edge correlations.
MoDiff builds upon the spectral diffusion method with three new
designs: 1) To capture fine-grained structures, we use motifs to
label recurring local patterns in temporal graphs and use statistical
analysis to identify and quantify the most effective ones. 2) To over-
come the limitation of existing diffusion-based generators—which
are typically designed for undirected graphs—we represent the
adjacency matrix as a Hermitian matrix, thereby accommodating
edge directions, bidirectional influences, and asymmetry, with real-
valued eigenvalues facilitating effective spectral diffusion. 3) To
mitigate the computational cost and potential information loss
associated with training on multiple data labeled via different mo-
tifs (as seen in ensemble approaches), we introduce a Magnetic
Hermitian Matrix that encodes multiple motifs within a single ma-
trix, enabling integrated training of the diffusion model. Section 4
compares MoDiff against several state-of-the-art temporal graph
generation models on real-world datasets across diverse domains.
Our method reduces degree discrepancy by 10-50% and cluster-
ing discrepancy by 50-90% compared to other approaches, while
preserving a near-1 ratio of higher-order structures between the
generated and target graphs without specialized training.

Our key contributions can be summarized as follows:

• New Findings. We demonstrate how statistical and hypothe-
sis testing methods can effectively select motifs as structural
labels for deep learningmodels, such as diffusionmodels, and
analyze their impact on graph properties and performance.
• New Model. We introduce MoDiff, a novel temporal graph
generator based on the spectral diffusion model. It features
an efficient encoding strategy that captures graph structural
information w.r.t. multiple motifs within a single Magnetic

Hermitian Matrix, enriching input data while avoiding the
inefficiencies and information loss of separate training.
• Controllable Generation. During decoding, we introduce a
single parameter to control graph density. This ensures ad-
justable graph density without compromising structural sta-
bility, and we provide theoretical validation of this method.
• SOTA Performance. Extensive experiments on real-world
datasets demonstrate MoDiff’s superiority in preserving
structural information, such as degree distribution and clus-
tering, while achieving strong performance on other high-
level structural features.

2 Background
In this section, we first present the definition of the temporal graph
and its generation problem in Section 2.1, and then briefly review
the temporal motifs and analyze them in Section 2.2.

2.1 Problem Definition
Temporal graphs are commonly represented as G = (V, E,X).
Here,V is the set of nodes, and E is the set of events, where each
event 𝑒𝑖 ∈ E is a 3-tuple (𝑢𝑖 , 𝑣𝑖 , 𝑡𝑖 ) representing a directed event from
source node𝑢𝑖 to target node 𝑣𝑖 at time 𝑡𝑖 .X is a matrix for encoding
node attribute information. To capture the dynamic evolution of
the temporal graph, we divide the timeline into 𝐾 consecutive,
non-overlapping time windows of equal duration 𝛿 ∈ R+, with
the 𝑘-th interval denoted as [𝑘𝛿, (𝑘 + 1)𝛿), where 𝑘 ∈ [0, 𝐾). To
facilitate the model processing, the temporal graph in the 𝑘-th
time window is projected as a snapshot 𝐺𝑘 = (V𝑘 , 𝐸𝑘 ,X𝑘 ), where
𝐸𝑘 = {(𝑢𝑖 , 𝑣𝑖 ) | (𝑢𝑖 , 𝑣𝑖 , 𝑡𝑖 ) ∈ E ∧ 𝑡𝑖 ∈ [𝑘𝛿, (𝑘 + 1)𝛿)}. While the X𝑘
denotes the attribute set of vertex 𝑣 ∈ V𝑘 at timestamp 𝑘 .

Problem 1. Given the observed network G𝑘 up to time 𝑘 , the
task is to generate 𝐺̃𝑘+1 = (V𝑘+1, 𝐸𝑘+1, X̃𝑘+1) satisfying 𝑆 (𝐺̃𝑘+1) ≈
𝑆 (𝐺𝑘+1), where 𝑆 (·) denotes a set of statistical measures of the
graph, including but not limited to degree and clustering coefficient.

Unlike prediction, generation focuses on preserving overall struc-
tural and statistical characteristics rather than forecasting specific
future events or edges with high accuracy.

2.2 Motif on Graph Generation
Temporal Motif.Motifs are small and recurring subgraph patterns
defined by a specific combination of edges. In a temporal graph,
motifs can be labeled with the number of events they have. An
𝑙-event motifM𝑙 = (V′, E′) is defined as a connected temporal
subgraph of G, where V′ ⊆ V , E′ ⊆ E, and |E′ | = 𝑙 . After
projection,M𝑙 = (V′, E′) will be reduced to the projected motif
𝑀𝑙 = (V′, 𝐸′) by ignoring the timestamps on edges.

Figure 1: MOSER [18]: Verifying whether a motif is crucial.
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Figure 2: Framework of MoDiff.

Selecting appropriate motifs to capture local graph structures
requires an efficient strategy due to the vast number of possible
motifs. Deep learning methods often depend on additional labeling,
which can be costly. To assess the structural relevance of motifs,
we integrate existing hypothesis testing techniques and analyze
motif occurrence probabilities across multiple graphs. We adapt the
motif detection algorithm, MOSER [18], to analyze the structural
roles of several motifs in various graphs: 3-Star , 3-Path ,
Triangle (Tri.) , 4-Cycle (4Cyc) , and Diamond (Diam.) .
Figure 1 illustrates the p-values obtained from hypothesis testing
on motif occurrence probability, displayed on a log scale. A dashed
line at 0.05 marks the significance threshold, with values below this
threshold indicating motifs with structural importance. The results
suggest that motifs connecting more nodes (e.g., 3-Star, 3-Path)
emphasize network connectivity but lack structural specificity. In
contrast, loop-dominated motifs, such as Triangles and 4-Cycles,
are more distinctive in both undirected and social networks, making
them effective for annotating finer-grained structures.

Table 2: Proportion of High-Frequency Differences.

Scale CollegeMsg Reddit SuperUser StackOverflow

100 11.7 10.3 18.0 10.9
500 23.1 16.7 12.8 17.8
1000 19.3 11.2 12.8 19.0

Motifs also exhibit structural specificity at the spectral level,
particularly in high-frequency eigenvalues. We applied motif-based
labeling to the edges of triangles in adjacency matrices across sub-
graphs of temporal graphs. To eliminate bias, we also randomly
labeled an equal number of edges for comparison. The results show
minimal differences in low-frequency eigenvalues but significant de-
viations in high-frequency ones. Table 2 presents the proportion of
these differences, with high-frequency eigenvalue deviations rang-
ing from at least 10% to nearly 20% across different graph scales. This
difference demonstrates that using motifs as fine-grained structural
labels is more prominently reflected in high-frequency eigenval-
ues. Since high-frequency eigenvalues are more sensitive to local

structures, motif labeling effectively captures structural variations.
Therefore, motif labeling is applicable to both adjacency matrix and
spectral space. A detailed diagram can be found in Appendix A.

3 Method
In this section, we present our motif-based temporal network gen-
erator (MoDiff). We provide an overall framework of the generator
in Section 3.1, and detail the key modules in Section 3.2 and 3.3,
with a rationality analysis in Section 3.4.

3.1 MoDiff Framework
Figure 2 illustrates the overall architecture of MoDiff. Given a tem-
poral graph 𝐺𝑘 = (V𝑘 , 𝐸𝑘 ,X𝑘 ) at time window 𝑘 , the goal of
MoDiff is to generate a new graph 𝐺̃𝑘+1 = (V𝑘 , 𝐸𝑘+1) for time
window 𝑘 + 1. The key challenge lies in capturing both the global
and local structure information while guaranteeing robustness and
efficiency. To address the challenges above, MoDiff incorporates
two key components:Motif Tagger, which encodes different views
of the graph w.r.t. different motifs into a Magnetic Hermitian Matrix
to ensure capturing the graph structural information from multiple
perspectives efficiently; Controllable Diffusion-based Gener-
ator, which utilizes spectral decomposition to avoid performing
diffusion on the whole matrix and decodes the generated Hermitian
matrix into the graph while supporting controllable parameters.

As shown in Figure 2, the overall process of MoDiff contains
four steps. First, the whole graph is divided into subgraphs to fit
the input shape of the model. Secondly,Motif Tagger incorporates
temporal motifs as fine-grained structures to enrich the adjacency
matrix with higher-order structural information. Using the ana-
lyzed motifs, motif-related edges are detected and encoded. These
encoded subgraphs are merged into a single Hermitian matrix, im-
proving efficiency while preserving information integrity. Details
are provided in Section 3.2. Thirdly, the eigenvectors and eigen-
values of the Hermitian matrix are extracted via spectral decom-
position, allowing the model to avoid operating on the full matrix.
The diffusion model is trained with subgraphs from 0 to 𝑘 − 1, to
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generate eigenvalues (Section 3.3), which are combined with eigen-
vectors uniformly sampled from observed subgraphs to construct a
new Hermitian matrix. The final step, Controllable Generation,
converts the Hermitian matrix into a graph with adjustable density.
MoDiff maps continuous values to discrete edges or motifs in the
adjacency matrix, ensuring it reflects the graph structure (Section
3.4). The decoded adjacency matrix is then aligned with the target
graph via node correspondence to produce the final structure.

3.2 Motif Tagger
Due to the asymmetry of directed edges and the binary 0-1 la-
beling, traditional adjacency matrices present two key challenges:
1○ it limits the applicability of spectral decomposition, which the
downstream diffusion model relies on, and 2○ it contains limited
information beyond basic edge connectivity.

To address Challenge 1○, we first make adjacency matrix spec-
trally decomposable by converting it into a Hermitian matrix. Her-
mitian matrix refers to a complex matrix equaling its own conjugate
transpose, and has all real eigenvalues. The Hermitianmatrix allows
us to achieve three key objectives: 1)distinguishing edge directions,
2) efficient spectral decomposition, and 3) recovering asymmetric
adjacency in the graph. Thus, the eigenvalues of Hermitian can be
directly used for the training of the spectral diffusion model, and
the generated adjacency matrix can be mapped to the graph in a
direction-preserving manner.

To address Challenge 2○, we propose an efficient and low-cost
labeling approach using motifs. Motifs, which represent various
types of network behavior, effectively capture higher-order struc-
tural information in graphs. While valid motifs can be identified
based on prior analysis, the challenge lies in combining them to
generate the target graph. A simple solution is ensemble learning,
where multiple models are trained on different motif views and their
outputs combined. However, this approach significantly increases
computational costs and compromises global structural information.
To overcome these limitations, we further utilize the Hermitian
matrix, whose components can encode additional information. By
embedding different motif views into the Hermitian matrix, we
preserve both local structures and directional edge information,
enabling a more efficient and unified representation.

Encoding Hermitian matrix involves extracting and representing
motif views from 𝐺𝑘 based on different motifs. The motif view on
motif 𝑀𝑚 denotes as 𝐺𝑘

𝑚 = (V, 𝐸𝑘𝑚), where 𝐸𝑘𝑚 = {𝑒 ∈ 𝐸𝑘 |∃𝑆 ∈
V, 𝑒 ∈ 𝐺𝑘 [𝑆] and 𝐺𝑘 [𝑆] ∼ 𝑀𝑚}. 𝐺𝑘 [𝑆] denotes the subgraph
induced by 𝑆 and𝐺𝑘 [𝑆] ∼ 𝑀𝑚 denotes isomorphic. In other words,
𝐺𝑘
𝑚 includes all edges belonging to subgraphs isomorphic to𝑀𝑚 .

Thus, each view 𝐺𝑘
𝑚 contains the information specific to𝑀𝑚 .

Since representing various graphs with Hermitian matrices is
still an open question, we adopt a method similar to the Magnetic
Laplacian in this work. For motif view 𝐺𝑘

𝑚 with |V| = 𝑛, we sim-
plify the derivation by ignoring the time label 𝑘 and denote its
adjacency matrix as A𝑚 ∈ R𝑛×𝑛 . The Magnetic Hermitian matrix
is constructed by combining the connection strength matrix 𝐴𝑠𝑚
and the phase matrix Θ(𝜃 )𝑚 .

𝐴𝑠𝑚 (𝑟 ) = 𝑟 (A𝑚 + A𝑇
𝑚), 𝑟 ∈ R

Θ(𝜃 )𝑚 = exp(2𝜋𝜃 · 𝑖 (A𝑚 − A𝑇
𝑚)), 𝜃 ∈ R+

(1)

Figure 3: The process to derive the integrated Hermitian.

where 𝑟 determines the strength of 𝐴𝑠𝑚 , and the phase matrix
Θ(𝜃 )𝑚 rotates the imaginary part by angle 𝜃 . To clearly distinguish
bidirectional from unidirectional edges while preserving edge di-
rectionality, 𝜃 is fixed as 0.25. In this case, for a unidirectional
edge (𝑢, 𝑣), Θ(.25)

𝑚 (𝑢, 𝑣) = −Θ(.25)
𝑚 (𝑣,𝑢) = 𝑖 . And for bidirectional

edges, both (𝑢, 𝑣) and (𝑣,𝑢) yield 1. For simplicity, we will denote
Θ𝑚 = Θ(.25)

𝑚 throughout the rest of this article.
Then we focus on distinguishing motif views. The symbol ⊙

denotes element-wise multiplication, while Re(Θ𝑚) and Im(Θ𝑚)
represent the real and imaginary components of Θ𝑚 , respectively.
Using factors 𝑟 and 𝛽 to independently control the real and imagi-
nary parts, the matrix H(𝑟𝑚,𝛽𝑚 )

𝑚 for motif𝑀𝑚 is expressed as:

H(𝑟𝑚,𝛽𝑚 )
𝑚 = A𝑠

𝑚 (𝑟𝑚) ⊙ (Re(Θ𝑚) + 𝛽𝑚 · Im(Θ𝑚)) . (2)

The parameters 𝑟𝑚 and 𝛽𝑚 in Equation 2 allow H(𝑟𝑚,𝛽𝑚 )
𝑚 to dis-

tinguish edges within motif view 𝐺𝑘
𝑚 . Then MoDiff merges the

Hermitian matrices H(𝛼,𝛽 )𝑚 from 𝜂 selected motif views into a inte-
grated matrix H𝐼 . To retain the full graph, edges do not belong to
any motif viewmakes up residual graph𝐺𝑘

𝑅𝑒𝑠
= (V, 𝐸𝑘

𝑅𝑒𝑠
), which is

encoded into H
(𝑟𝜂+1,𝛽𝜂+1 )
𝑅𝑒𝑠

. The operation ⊕ is defined as a selective
merge, preserving only the non-zero elements from the encoded
Hermitian matrices. So with 𝜂 + 1 Hermitian matrices, the final
integrated matrix H𝑘

𝐼
of 𝐺𝑘 can be expressed as:

H𝑘
𝐼 = H(𝑟1,𝛽1 )

1 ⊕ H(𝑟2,𝛽2 )
2 ⊕ · · · ⊕ H

(𝑟𝜇 ,𝛽𝜇 )
𝜇+1 ⊕ H

(𝑟𝜇+1,𝛽𝜇+1 )
𝑅𝑒𝑠

(3)

Since an edge can belong to multiple motifs, the merging order of
the Hermitian matrices should follow the structural importance of
each motif, as outlined in previous work [7, 18, 21], which we omit
here for brevity. Figure 3 provides a simple example to illustrate the
process of encoding motif views and constructing the integrated
Hermitian matrix from the original graph. In the matrix diagram,
squares indicate existing values, with varying shades representing
different encoding methods.

3.3 Diffusion with Spectral Decomposition
In prior work, GDSS [6] first employed diffusion models for graph
generation, but its performance was limited by the direct use of
the adjacency matrix. GSDM [15], proposed by Luo et al., improved
performance by conducting diffusion only on eigenvalues obtained
by spectral methods. However, GSDM is restricted to undirected
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Algorithm 1: MoDiff Training with Motif Tagger

Input :Graphs 𝐺𝑘 with various 𝑘 , selected motifs𝑀𝑚 ,
noise steps 𝑇

Output :Learned score models 𝜌𝜃 (X) , 𝜌𝜃 (Λ)
/* Preprocessing: */

1 foreach 𝐺𝑘 do
2 Extract Subgraph 𝐺𝑘

𝑚 with motif𝑀𝑚

3 Compute Hermitian embedding 𝐻𝑘
𝐼
via Eqs.1–3

4 Extract spectral pair (X𝑘 ,Λ𝑘 )
/* Training Loop: */

5 for training epochs do
6 Sample mini-batch {(X,Λ)} ; // omit 𝑘

7 foreach (X,Λ) in mini-batch do

8 Perturb: (X,Λ)
noise, Eq. 4
−−−−−−−−−→(X𝑡 ,Λ𝑡 )

9 Compute scores 𝜌𝜃 (X) (X𝑡 ,Λ𝑡 ) and 𝜌𝜃 (Λ) (X𝑡 ,Λ𝑡 )
10 Compute losses LX , LΛ via Eq. 6
11 Update 𝜃X, 𝜃Λ by gradient descent

graphs and struggles to capture fine-grained structural details. The
integrated Hermitian matrix by MoDiff enables spectral diffusion
models to be applied on directed graphs.

The spectral diffusion model applies the diffusion process to
the eigenvalues. The full training workflow using the motif-tagger
enhanced Hermitian matrix is outlined in Algorithm 1. In general,
diffusion models progressively add noise to data and then learn
to reverse the process to reconstruct the original data, leveraging
stochastic differential equations (SDEs) to model both the forward
(noise addition) and reverse (denoising) dynamics. For the spec-
tral method, consider the spectral decomposition of the integrated
Hermitian matrix H𝑘

𝐼
as U𝑘 Λ𝑘 (U𝑘 )†. Here, U𝑘 contains the eigen-

vectors as its columns, (U𝑘 )† is the conjugate transpose of U𝑘 , and
Λ𝑘 is a diagonal matrix of eigenvalues.X𝑘 ∈ R𝑛×𝑑 can encode node
features like degrees (no need for other expensive labels), where 𝑑
is the feature-length. Although joint diffusion over X𝑘 and Λ𝑘 can
enhance training [6, 15], this chapter focuses only on the derivation
of Λ𝑘 , since the primary difference is whether noise is added to
diagonal elements, thus requiring separate models. And the notation
of time window 𝑘 is also omitted in this chapter to simplify.

Since spectral theory does not rely on full matrices, the dimen-
sions of Λ can be reduced from 𝑛 to 𝑙 to lower computational
costs. With diagonal matrix Λ ∈ R𝑙×𝑙 of 𝑙 selected eigenvalues
and X ∈ R𝑛×𝑑 , the SDE of the whole spectral diffusion generator
can be expressed as following equation:

dΛ𝑡 = fΛ (Λ𝑡 , 𝑡)d𝑡 + 𝜎Λ𝑡 dBΛ
𝑡 , 𝑡 ∈ [0,𝑇 ] (4)

where fΛ (·, 𝑡) : R𝑙×𝑙 ↦→ R𝑙×𝑙 is drift function acting only on the
diagonal spectrum. 𝜎Λ𝑡 refers to the scalar function for fluctuation
of diffusion terms. BΛ

𝑡 are Brownian motions on R𝑙×𝑙 , which acts
only on the diagonal elements. Note that fX (·, 𝑡) and BX𝑡 for X acts
on all the elements.

Suppose 𝑝𝑡 (·) as the probability density function of X𝑡 at time 𝑡 ,
the Reversed time SDE, which aims to train the model for denoising

Algorithm 2: MoDiff Sampling with Controllable Density
Input :Trained models 𝜌𝜃 (X) , 𝜌𝜃 (Λ) , target graph nodes

𝑁𝑡𝑎𝑟𝑔𝑒𝑡 , Training data D𝑘 , denoise steps 𝑇𝑑𝑒𝑛
Output :Generated graph 𝐺gen
/* Initialization: */

1 Extract {𝑈𝑖 } via Hermitian spectral decomposition (Eqs. 1–3)
2 Determine 𝜆 via data-driven or heuristic methods
3 Sample noise X𝑇 ∼N(0, 𝐼 ), Λ𝑇 ∼N(0, 𝐼 )
/* Reverse Diffusion: */

4 for 𝑡 = 𝑇𝑑𝑒𝑛 to 1 do
5 Predict score 𝜌𝜃 (X) (X𝑡 ,Λ𝑡 ), 𝜌𝜃 (Λ) (X𝑡 ,Λ𝑡 )
6 Update X𝑡−1,Λ𝑡−1 by solver of reversed SDE (Eq. 5)
/* Reconstruction: */

7 Form Hermitian matrix H𝑔 = 𝑈𝑖 Λ𝑔𝑈
†
𝑖

8 Threshold: Ĥ𝑔 = Clip(H𝑔, 𝜆) (Eq. 15)
9 Binarize: 𝐴𝑔 = I(Ĥ𝑔 > 0)

10 Mask: 𝐴 = Mask(X𝑔, 𝐴𝑔, 𝑁𝑡𝑎𝑟𝑔𝑒𝑡 )
11 Return 𝐺gen = (𝑁𝑡𝑎𝑟𝑔𝑒𝑡 , 𝐴)

data back towards 𝐷 , can be written as:

dΛ̄𝑡 = [fΛ (Λ𝑡 , 𝑡) − 𝜎2
𝑡 ∇Λ𝑡

log𝑝𝑡 (Λ𝑡 |Λ0)]d𝑡 + 𝜎Λ𝑡 dB
Λ
𝑡 , (5)

where B
Λ
𝑡 is reversed time Brownian motions on diagonal elements,

d𝑡 = −d𝑡 is the backward timestamp for denoise from 𝑇 to 0.
∇X𝑡 log𝑝𝑡 (·)is a score function representing the original feature
probability at time 𝑡 , it can be estimated with a score-based GNN
𝜌𝜃 (Λ) (·, ·). The training objective of GNN is to approximately esti-
mate the score by minimizing:

LΛ (𝜃 ) = EGEΛ𝑡 |G | |𝜌𝜃 (Λ) (X𝑡 ,Λ𝑡 ) − ∇Λ𝑡
log𝑝𝑡 (Λ𝑡 |Λ0) | |2 . (6)

For generated Λ𝑔 , since it is close to Λ0, it can be regarded as the
result of adding a perturbation ΔΛ to Λ0:

Λ𝑔 = Λ0 + ΔΛ. (7)

3.4 Controllable Graph Generation
The diffusion model generates eigenvalues within the prior feature
space. However, since these eigenvalues may deviate from the target
eigenvalues, the resulting Hermitian matrix H𝑔 = UΛ𝑔U† consists
of continuous values rather than values corresponding to different
discrete motif tags in H𝐼 . To round the values to motif tags, we
show that for edge (𝑢, 𝑣), the probability of its occurrence can
be approximated with the minimum distance between generated
matrix H𝑔 (𝑢, 𝑣) and motif tags H𝑚 (𝑢, 𝑣) to any motif𝑀𝑚 .

With Λ𝑔 generated by the diffusion process and H𝑔 = UΛ𝑔U†,
the probability of the target matrix H𝑇 is expressed as P(H𝑇 |H𝑔).
With Bayes’ Theorem, the probability P(H𝑇 |H𝑔) can be converted
into the likelihood function P(H𝑔 |H𝑇 ). Decompose the Hermitian
matrix H𝑇 of the target graph as H𝑇 = U𝑇 Λ𝑇 U†

𝑇
. The Λ𝑇 can be

projected to the eigenspace of U with UU† = I:

H𝑇 = UU†H𝑇 UU† = UU†U𝑇 Λ𝑇 U†
𝑇

UU† = UΛ̂𝑇 U†,

Λ̂𝑇 = U†U𝑇 Λ𝑇 U†
𝑇

U,
(8)
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and the likelihood function P(H𝑔 |H𝑇 ) can then be expressed as:

P(H𝑔 |H𝑇 ) = P(UΛ𝑔U† |UΛ̂𝑇 U†) = P(Λ𝑔 |Λ̂𝑇 ) . (9)

As described in Equation 7, the generated eigenvalues Λ𝑔 can be
expressed by adding perturbation ΔΛ to Λ̂𝑇 : Λ𝑔 = Λ̂𝑇 + ΔΛ. As
U†U = I, we have

∥H𝑇 − H𝑔 ∥𝐹 = ∥U(Λ̂𝑇 − Λ𝑔)U†∥𝐹 = ∥ΔΛ∥, (10)

where ∥ · ∥𝐹 is Frobenius norm, which can be expressed as: ∥A∥𝐹 =√︁
Σ𝑖Σ 𝑗 |A(𝑖, 𝑗) |2. It is similar to Euclidean distance in the real do-

main, which works on ΔΛ. So Equation 10 can also be expressed
as:

∥ΔΛ∥ =
√︃
Σ𝑛
𝑢=1Σ

𝑛
𝑣=1 |H𝑇 (𝑢, 𝑣) − H𝑔 (𝑢, 𝑣) |2 . (11)

Since there is no prior knowledge of the target Hermitian matrix
H𝑇 , it can only be approximated with the Hermitian matrix tagged
by motifs. Let H𝑚 (𝑢, 𝑣) denote possible motif tag values of the edge
between 𝑢 and 𝑣 w.r.t. motif 𝑀𝑚 . As the edge has four possible
cases, 𝑢 → 𝑣 , 𝑢 ← 𝑣 , 𝑢 ↔ 𝑣 , and no connection, H𝑚 (𝑢, 𝑣) also have
four possible values, and the actual values can be computed based
on 𝛼𝑚 and 𝛽𝑚 . Then, for each node pair (𝑢, 𝑣), we approximate
|H𝑇 (𝑢, 𝑣) − H𝑔 (𝑢, 𝑣) | by

min
𝑚,H𝑚 (𝑢,𝑣)

{|H𝑚 (𝑢, 𝑣) − H𝑔 (𝑢, 𝑣) |2} ≤ |H𝑇 (𝑢, 𝑣) − H𝑔 (𝑢, 𝑣) |2 . (12)

The motif 𝑀𝑚 and H𝑚 (𝑢, 𝑣) that minimize the left-hand side is
always no larger than H𝑇 (𝑢, 𝑣), since H𝑇 (𝑢, 𝑣) is one possible value
of H𝑚 (𝑢, 𝑣).

When the eigenvalue difference ΔΛ becomes smaller, H𝑇 (𝑢, 𝑣)
aligns more closely with H𝑔 (𝑢, 𝑣), leading to a higher likelihood of
similarity. Then, the minimum distance min𝑚,H𝑚 (𝑢,𝑣) {|H𝑚 (𝑢, 𝑣) −
H𝑔 (𝑢, 𝑣) |2} also decreases, indicating closer proximity between the
compared elements. as shown in Equation 12. By applying a sigmoid
function, we convert the difference between H𝑔 (𝑢, 𝑣) and H𝑚 (𝑢, 𝑣)
into the probability P of the edge (𝑢, 𝑣) appearing:

P((𝑢, 𝑣), 𝜎, 𝜏) = 1

1 + exp
(min{ |H𝑚 (𝑢,𝑣)−H𝑔 (𝑢,𝑣) | }−𝜎

𝜏

) , (13)

where 𝜎 serves as a scale factor controlling the probability, and 𝜏 is
a smoothing factor. With this conversion, the possibility of edge
existence in the generated graph can be transformed into a more
straightforward function with threshold 𝜆 and 𝜖 :

min{|H𝑚 (𝑢, 𝑣) − H𝑔 (𝑢, 𝑣) |} ≤ 𝜆 ⇒ P((𝑢, 𝑣) in 𝐺) ≥ 1 − 𝜖. (14)

The threshold 𝜆, typically analyzed based on training data or trends
but also supporting manual adjustment, is used to generate the
graph view Ĥ𝑔 from H𝑔 :

Ĥ𝑔 = Clip(H𝑔, 𝜆) =
{H𝑚 (𝑢, 𝑣),when |H𝑔 (𝑢, 𝑣) − H𝑚 (𝑢, 𝑣) | ≤ 𝜆;

0, else.
(15)

The Ĥ𝑔 would then be decoded into adjacency matrix 𝐴𝑔 ∈ R𝑛×𝑛 .
Then the full matrix 𝐴𝑔 will be mapped into the target nodes to
generate the adjacency matrix 𝐴𝑇 and graph 𝐺𝑇 . Details on the
MoDiff Sampling with Controllable Density procedure can be found
in Algorithm 2. Despite the dense variety by 𝜆, the structural prop-
erties of the generated graph always remain similar to those of the
original graphs.

4 Experiments
In this section, we present a comprehensive evaluation. First, we in-
troduce experimental settings, datasets used, and graph generation
baselines. After that, we aim to answer the following questions:
Q1. Can MoDiff outperform existing baselines in multilevel graph
discrepancy? Q2. How effectively does MoDiff preserve high-order
structural features? Q3.Which design components most contribute
to MoDiff’s performance? Q4. Can MoDiff generate graphs with
controllable properties? Q5. How scalable is MoDiff?

4.1 Setup
All experiments were conducted on a Linux system running on
a machine equipped with an Intel Gold 6226R CPU, 512 GB of
memory, an NVIDIA RTX 3090 with 24 GB VRAM, and 1 TB SSD.
The implementation was done using Python.

Datasets.We evaluate the approaches on four real-world tempo-
ral networks. The networks include CollegeMsg(CM), Reddit(RD),
SuperUser(SU), and StackOverflow (SO). Their statistics are shown
in Table 3, where MD is the mean degree.

Table 3: Dataset statistics.

Name Nodes Edges Events MD Span(days)

CollegeMsg(CM) 1.90K 20.3K 59.8K 10.7 193
Reddit(Re) 54K 234K 572K 4.3 1,217
SuperUser(SU) 194K 925K 1.44M 4.8 2,773
StackOverflow(SO) 260K 4.15M 6.35M 16.0 886

We aim to generate subgraphs by analyzing the known edge
distribution within communities. In temporal networks, especially
social networks, interactions between users often occur within a
limited time frame and then fade. Community subgraphs can cap-
ture localized and meaningful structural patterns. The community
subgraphs are sampled under time windows at varying scales: 100,
500, and 1000 nodes, with a fluctuation of ±20%. These scales en-
compass approximately 2-3 hop neighbors, i.e., the typical GNN
training ranges. For CollegeMsg, due to its small size (1899 nodes),
the experiment at 1000 scale was conducted on the entire graph.
Most methods degrade significantly due to limited data.

Baselines.We compare our model with the following genera-
tive methods: TASBM [22] and STM [23] are parametric models.
MTM [12] is a probabilistic model. We provide two variants:MTM-
All is trained on thewhole graph, generates thewhole graph, and ex-
tracts the community subgraph, whileMTM-Sub is directly trained
on the community subgraph. Deep models include TagGen [42],
which uses GAN and random walk, and GDSS [6] andHGDM [32],
using the Diffusion model. MoDiff-NoM means MoDiff without
Motif Tagger, as detailed in section 4.4. We employed the C++ im-
plementations of TASBM and MTM, which were provided by their
authors. In TASBM, the number of time windows is set to 10 as sug-
gested. For MTM, we follow the recommended parameters 𝑙𝑚𝑎𝑥 = 4
and 𝛿 = 1. TagGen’s window size matches ours. STM’s ‘duration’
is set based on the graph’s span. GDSS and HGDM use parame-
ters of corresponding scales and asymmetric samples. In general,
we follow the recommended settings. More details on the model
introduction and implementation can be found in the appendix C.1.
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Table 4: Generation quality by maximummean discrepancy. The best result is bold. The second result is underlined.

Dataset CollegeMsg Reddit SuperUser StackOverflow

Scale Model Deg. Clus. Orbit Deg. Clus. Orbit Deg. Clus. Orbit Deg. Clus. Orbit

100

TASBM 0.649 0.179 8.1e-2 0.151 1.159 4.6e-2 0.258 0.790 1.1e-2 0.560 0.476 4.1e-3
TagGen 0.755 0.844 7.3e-2 0.089 0.399 6.2e-3 0.128 0.412 7.6e-3 0.173 0.238 7.8e-4
STM 0.623 0.321 1.3e-4 0.121 0.742 6.4e-2 0.428 1.018 8.0e-5 0.423 0.523 1.4e-5
MTM-All 1.042 0.291 2.4e-3 1.109 1.797 5.2e-2 1.196 1.255 5.7e-3 1.112 0.786 1.4e-3
MTM-Sub 0.813 0.208 1.3e-3 0.158 0.905 1.7e-4 0.237 0.446 1.9e-6 0.148 0.123 1.4e-4
GDSS 0.876 0.203 5.4e-3 0.123 0.332 1.9e-2 0.590 0.981 3.4e-3 0.353 0.432 2.9e-2
HGDM 0.703 0.246 3.9e-5 0.141 0.859 2.6e-3 0.258 0.776 1.2e-3 0.603 0.536 1.7e-4
MoDiff-NoM 0.393 0.201 9.2e-4 0.149 0.276 1.5e-3 0.157 0.351 2.1e-4 0.149 0.131 1.1e-4
MoDiff(ours) 0.213 0.143 4.5e-4 0.086 0.057 5.7e-5 0.058 0.033 6.7e-5 0.113 0.027 8.0e-5

500

TASBM 0.623 0.166 2.0e-1 1.053 1.617 1.0e-2 0.372 0.986 1.4e-3 0.374 0.672 8.1e-3
TagGen 0.517 0.220 3.3e-2 0.705 0.523 1.7e-2 0.117 0.569 2.5e-3 0.165 0.352 3.2e-3
STM 0.658 0.256 4.4e-7 0.781 1.409 1.2e-2 0.301 1.077 1.2e-4 0.364 0.756 2.7e-4
MTM-All 0.801 0.173 3.7e-3 1.564 1.506 2.4e-2 1.098 1.099 1.1e-2 1.146 0.718 3.8e-3
MTM-Sub 0.876 0.255 4.1e-3 0.865 0.999 3.5e-4 0.153 0.461 5.6e-4 0.203 0.162 3.1e-4
GDSS 0.716 0.257 1.0e-1 1.095 1.695 7.3e-2 0.342 1.010 8.5e-2 0.274 0.613 1.1e-3
HGDM 0.920 0.261 5.2e-3 0.939 1.349 1.3e-2 0.540 0.954 2.7e-4 0.171 0.786 1.0e-6
MoDiff-NoM 0.384 0.268 1.8e-3 0.302 0.292 1.3e-4 0.430 0.441 7.5e-4 0.251 0.122 3.6e-4
MoDiff(ours) 0.280 0.255 5.6e-4 0.479 0.066 1.1e-5 0.095 0.084 5.5e-5 0.095 0.043 8.0e-6

1000

TASBM 1.980 0.079 5.9e-3 0.275 1.776 2.7e-2 0.349 1.136 1.2e-3 0.260 0.749 1.3e-2
TagGen 1.397 0.040 3.6e-6 0.162 0.412 2.0e-5 0.057 0.571 6.7e-3 0.089 0.445 3.4e-3
STM 1.990 0.149 2.9e-4 0.183 1.716 7.8e-2 0.295 1.165 3.8e-4 0.452 0.775 9.9e-4
MTM-All 1.211 0.027 8.2e-3 1.050 1.726 7.2e-2 1.081 1.194 1.7e-2 1.090 0.773 7.2e-3
MTM-Sub 1.211 0.027 8.2e-3 0.280 1.152 3.9e-4 0.154 0.581 1.1e-3 0.188 0.228 5.1e-4
GDSS 1.957 0.381 1.4e-2 0.545 1.819 9.7e-2 0.332 1.181 2.6e-3 0.172 0.786 2.3e-2
HGDM 1.989 0.167 1.0e-3 0.437 1.399 5.3e-3 0.735 0.919 4.9e-4 0.568 0.761 3.3e-4
MoDiff-NoM 1.694 0.256 3.8e-3 0.164 0.402 3.7e-3 0.454 0.671 1.6e-3 0.186 0.230 3.8e-4
MoDiff(ours) 1.777 0.113 5.9e-4 0.147 0.041 7.6e-8 0.083 0.092 3.1e-4 0.045 0.028 3.1e-4

4.2 Preserving Global Graph Property
To answer Q1, we report the experimental results in Table 4. As
a generation task, Maximum Mean Discrepancy (MMD) [15, 38]
evaluates the discrepancy between generated and real graphs across
specific distributions. Smaller MMD values indicate better genera-
tion quality. The detailed formulas of MMD are in the appendix C.2.
The metrics include MMD of degree distribution (Deg.), clustering
coefficient (Clus.), and specific orbit distribution (Orbit) on nodes.
They characterize the structural patterns of nodes and edges.

As shown in Table 4, 1) our model, MoDiff, performs better than
other approaches in terms of degree distribution. Spectral decompo-
sition ensures consideration of the full graph’s degree distribution
during generation, while controllable density allows the average
degree to simulate the target graph. 2)MoDiff achieves much better
results in clustering and orbit distribution, reducing the MMD of
Deg. by 10–50% and Clus. by 50–90%. This improvement stems from
the integrated Hermitian matrix, which effectively encodes edge
directions and diverse motif views. Performance on CollegeMsg
at large scales is limited due to the dataset’s small size, leading to
insufficient training data.

In previous methods, TASBM, while efficient, performs poorly
on clustering and orbit distributions (e.g., 1.159 Clus. on Reddit at

scale 100) due to limited structural capture. TagGen excels at degree
distribution but also struggles with higher-order structures. On the
contrary, STM excels in Orbit due to its focus on motifs, but under-
performs on degree distribution. Similarly, MTM-Sub struggles to
preserve global properties, as shown by high Deg. scores like 0.865
for Reddit at scale 500. MTM-All, which extracts subgraphs from
the large graph, performs worse than MTM-Sub across all metrics.
GDSS struggles with noise due to its diffusion on the adjacency
matrix, affecting its ability to maintain global structure. HGDM,
adding an auto-encoder, still performs poorly on Clus. due to the
inability to capture finer structures.

4.3 Preserving Higher-order Structural Statistics
To answer Q2, we evaluate different methods w.r.t. preserving
higher-order structures. We generate graphs at the scale of 500
nodes in each dataset, same in Section 4.2. Inspired by the previous
work [12, 23], we evaluate four structural metrics: the number of
connected components (NCC), the size of the largest connected
component (LCC), the mean degree (MD), and the mean of the
triangle motif count (MTriangles). Figure 4 reports the relative
values (e.g., NCC of generated

NCC of target ) for these metrics, where the target
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Figure 4: Relative values ( gen value
tgt value ) w.r.t. different metrics.

Figure 5: Cost of different methods over different scales.

value of 1 is marked with a dashed red line. The closer the result is
to the red line, the better the preservation.

As shown in Figure 4, our MoDiff effectively preserves the orig-
inal graph structure. Despite being a deep model without extra
labeling costs, it outperforms both parametric models based on
graph statistics and probabilistic models based on motif transitions.
1) For connected components, MoDiff matches top-performing
models like STM and TASBM, accurately capturing their number
and size, demonstrating its strong global perception. 2) For aver-
age degree, most models handle it smoothly, except for TagGen
due to overly long walk steps and GDSS due to noise. MoDiff also
works well with controllable generation. 3) While previous studies
perform poorly on motif count ratios due to their susceptibility to
noise, MoDiff demonstrates strong motif simulation capabilities,
even when many models struggle in this area.

4.4 Ablation & Controllable Generation
To answer Q3, we study the effect of the Motif Tagger module via
ablation study. Then we examine the effect of varying the number
of diffusion steps and varying 𝑘 for top-𝑘 spectral features. For Q4,
we access the quality of generated graphs with different densities
by controlling 𝜆. The experiments are conducted on 100-node scale
subgraphs of four datasets.

Ablation on Motif Tagger.We demonstrate the effectiveness
of Motif Tagger in preserving local information through ablation
experiments. MoDiff-NoM is trained only with edge directional
information without motif views. The results of MoDiff-NoM are
presented in Table 4. In most cases, MoDiff outperforms MoDiff-
NoM, with more pronounced gaps in Clus.. This is because the
clustering coefficient is more influenced by higher-order structures
captured by motif views. Additionally, without the Motif Tagger,

(a) Deg. w.r.t. #steps (b) Clus. w.r.t. #steps

(c) Deg. w.r.t. #eigenvalues in % (d) Clus. w.r.t. #eigenvalues in %

(e) Deg. w.r.t. #density (f) Clus. w.r.t. #density

Figure 6: MMD w.r.t. different hyperparameters.

MoDiff-NoM performs similarly to MTM and TagGen, indicating
that its advantage is not solely dependent on the diffusion model.

Varying the Number of Diffusion Steps. Figures 6a and 6b
show the impact of diffusion steps. With too few steps, the model
performs poorly due to insufficient denoising. Around 100 steps,
results improve and stabilize, but excessive steps also cause over-
denoising and significantly increase generation time. Usually, using
around 100 steps ensures efficiency and quality in generation.

Varying the Number of Top Eigenvalues. Spectral decom-
position reduces feature dimensions, allowing diffusion models to
scale to larger graphs. Figure 6c and 6d illustrates generation results
using different percentages of eigenvalues. Too few eigenvalues re-
duce accuracy, while 20–30% yield strong performance. Beyond this,
adding eigenvalues could introduce noise. Usually, using around
20% could enhance both scalability and precision.

Generating Graphs with Different Density. MoDiff controls
graph density by adjusting the threshold 𝜆 in equation 14. It can
be computed based on the training data or temporal trend, or man-
ually set. This allows users to generate graphs with the desired
density without expertise. Figures 6e and 6f show the MMD results
of generated subgraphs with different densities across 7 intervals
(from 2 to 9, spanning 1 unit each). MoDiff is the same one used in
Table 4 without being specifically trained for this task. By adjusting
the threshold 𝜆, we generate graphs with varying densities and
compare them to subgraphs of corresponding density. The gener-
ated results maintain the structural properties and do not fluctuate
rapidly with density changes.

4.5 Scalability
For Q5, we assess the generation and training costs. Figure 5a
shows that MoDiff significantly reduces generation time compared
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to randomwalk-based methods or diffusion models using adjacency
matrix. This reduction in generation time makes MoDiff highly effi-
cient for integration into downstream tasks, such as GNN training.
Figure 5b illustrates bars for memory-usage ratios and a line for
per-epoch training time as the graph scale increases. The batch
size decreases from 64 at 100 nodes to 2 at 10k nodes. At 10k-node
scale with batch size 2, the memory usage approaches the limits of
a single 24GB GPU and 512GB of system RAM. Despite this, the
spectral diffusion model keeps training costs low and enables fast
generation on a single GPU, even for graphs over 10k nodes.

5 Related Work
Here we briefly summarize the previous work on the generative
models for temporal networks, diffusion model on graphs, and
temporal motifs.

Temporal Graph Generator. Recently, temporal graph gen-
eration has gained significant attention, with methods falling into
three main categories. First, parameter-based approaches [9, 24, 37,
41] generate graphs directly from parameters. For example, EpiC-
Net [26] creates time-evolving networks inspired by epidemiology.
TASBM focuses on community analysis and motif simulation[22].
Purohit et al. proposed Structural Temporal Modeling (STM) [23],
which generates graphs using the frequencies of basic atomic motifs.
Second, many methods are based on transition probabilities. Liu et
al. developed the Motif Transition Model (MTM) [12] to simulate
the evolution of motifs in temporal graphs, making the generated
graphs reflect realistic temporal dynamics. RTGEN++ [16] studies
dynamic degree distribution evolution, and Scholtes [25] combines
variable-order Markov chains with edges in 𝑘-th order pathways.
Lastly, deep learning methods are also prominent. Likelihood-based
models, such as GANs, VAEs, and score-based models, generate
entire graphs holistically [27, 30, 36, 38]. TagGen [42] employs self-
attention and discriminator on random walk sequences. Despite
their advantages, existing generators often work within modeling
scopes that are either too broad or too narrow, and deep learning
methods reliant on random walks struggle with large graphs.

Diffusion Model on Graph. Compared to the methods men-
tioned earlier, diffusion models for graph generation are still in
early stages. A classical approach involves applying stochastic dif-
ferential equations (SDE) to the adjacency matrix, as seen in GDSS
and HGDM [6, 31, 32]. However, adding direct noise to the adja-
cency matrix would significantly disrupt the graph structure. To
address this, Luo et al. introduce GSDM [15], which performs low-
rank diffusion SDE in the graph spectrum space. It enhances the
stability of denoising in the Reversed-SDE process. Additionally,
diffusion models are applied to other graph-related tasks. Luo et al.
introduced GALA [14], which uses the diffusion model for domain
adaptation on undirected graphs. Tian et al. proposed Conda [29]
for data augmentation with Encoder. However, these models are
not designed for temporal graph generation, facing challenges such
as direction labeling, large scale, and structural preservation.

Motif on Temporal Network.Higher-order temporal subgraph
structures, i.e., temporal motifs, are small subgraph patterns repre-
senting specific structural arrangements of nodes and edges. Mo-
tifs are treated as building blocks of large complex graphs [17].
For instance, Alon et al. [1] identified triangle structures, known

as “feedforward loops” in genetics networks, as persistence detec-
tors. Motif provides insights into the functional and organizational
principles of the network [2, 4, 8, 11, 20], and assists in network
trend analysis [10, 11, 13, 34]. Selecting effective motifs thus re-
quires rigorous mining and statistical frameworks [18, 43] to assess
significance and frequency, while recent motif-aware learning ap-
proaches [33, 35] further automate the discovery of task-relevant
subgraphs. Some generators (e.g., TASBM, STM, MTM) use motifs
to enhance structure, but they typically focus on single patterns
and overlook broader motif dependencies. Persistent homology
provides a rigorous approach to the entire graph topology by track-
ing the topological features across filtrations [19, 44], yet it often
requires filtration design and intensive computation. In contrast,
motif extracts directly interpretable, adjacency-driven patterns with
small overhead, generalizes effectively across diverse graphs.

6 Conclusion
In this paper, we propose MoDiff, a motif-aware spectral diffusion
that preserves both global and finer structures during generation.
MoDiff encodes the adjacency matrix into Magnetic Hermitian Ma-
trix enriched with motif views, and employs a spectral diffusion
process to generate eigenvalues efficiently. We validate MoDiff on
four real-world networks across diverse domains. Our method pre-
serves both global properties and high-order structures while en-
abling generation at varying densities. Our scalability study further
shows that MoDiff efficiently handles subgraphs with up to 10k
nodes. While MoDiff excels in structural preservation and scalabil-
ity, it relies on fixed-size graphs and coarse timestamps—trade-offs
deemed reasonable given its overall effectiveness. Promising future
directions include developing dynamic diffusion schemes to handle
variable or larger subgraphs, as well as enhancing the Hermitian
encoding with finer temporal resolution or heterogeneous edge
semantics to further expand its generative capabilities.
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Appendix
A Graph Spectral Analysis
Figures 7 illustrate the spectral decomposition features of each
dataset across multiple scales. From top to bottom, the four rows
correspond to the datasets: CollegeMsg, Reddit, SuperUser, and
StackOverflow.Within each row, the three groups of plots (from left
to right) represent increasing subgraph sizes: 100-node, 500-node,
and 1000-node scales. Each group of plots compares the eigenvalue
spectra of three graph variants: the original graph, the graph with
edges enhanced based on triangle motifs, and a randomly enhanced
version where the same proportion of edges are randomly marked.
Here, Original refers to the unmodified graph; Triangles refers to
the graph where edges involved in triangle motifs are identified
and enhanced; and Randomized refers to a control setting where an
equal number of edges are randomly selected and marked, eliminat-
ing motif value influence. For high-frequency spectral components,
triangle-based motif marking not only has a noticeable effect but

also exhibits a significantly stronger growth trend compared to
random assignment.

B Diffusion Model
B.1 MoDiff Compuation Complexity
Regarding complexity, we summarize it based on the process in
Figure 2, where 𝑁 denotes the number of nodes in 𝐺𝑘 .

Motif Extraction in Motif Tagger employs MFinder with a
complexity of 𝑂 (𝑁 ∗ 𝑑𝑚), where𝑚 is the motif size and 𝑑 is the
maximum degree, which is always 3 or 4.

Encoding integrated Hermitian matrix with various motifs
involves only matrix operations, with a complexity of 𝑂 (𝑁 2).

Spectral Decomposition has a complexity of approximately
𝑂 (𝐾𝑁 2), using methods like the Lanczos algorithm, where 𝐾 rep-
resents the dimension of selected eigenvalues.

The diffusion model consists of noise addition and denoising.
In MoDiff’s denoising model, both GCN and MLP are utilized.

-Noise Process:

(a) CollegeMsg

(b) Reddit

(c) SuperUser

(d) StackOverflow

Figure 7: Spectral Analysis Comparison across four datasets and three scales.

3447



KDD ’25, August 3–7, 2025, Toronto, ON, Canada Yuwei Xu & Chenhao Ma

The time complexity for the noise step is typically 𝑂 (𝑇n ∗ 𝑁 ),
where 𝑇n is the number of noise steps.

-Denoising Process:
The denoising process involves performing 𝑇den iterations. The

GCN and MLP are used as follows: For GCN, the input is an 𝑁 × 𝑎-
dimensional X and 𝑁 × 𝑁 -dimensional Adjacency matrix. With 𝐿
layers, the total complexity for GCN is:𝑂 (𝐿∗𝑁 2∗𝑎). The MLP takes
the 𝑁 ×𝑎-dimensional output from the GCN and 𝑁 ×𝐾-dimensional
eigenvalues as input. With ℎ layers, the total complexity for the
MLP is: 𝑂 (ℎ ∗ 𝑁 ∗ (𝑎 + 𝐾)).

Therefore, the time complexity for the denoise step is: 𝑂 (𝑇den ∗
(𝐿∗𝑁 2∗𝑎+ℎ∗𝑁 ∗(𝑎+𝐾))) Due to the use of spectral decomposition,
we only need to generate (𝑎 + 𝐾) features in the MLP, rather than
the complete 𝑁 × 𝑁 adjacency matrix.

Graph Conversion, similar to Motif Tagger but without decom-
position, operates with a complexity of 𝑂 (𝑁 2).

Overall, the Diffusion Model and Spectral Decomposition con-
tribute the most to computational cost.

C Experiment
C.1 Baselines
Due to space limitations, we introduce each baseline method in
detail here and attach their code links.

TASBM [22]: TASBM uses a block model approach to capture
temporal motifs by clustering nodes based on temporal activity
states and assigning probabilities for temporal interactions. It an-
alytically models motif frequencies with closed-form expressions,
avoiding the need for random sampling. This method efficiently sim-
ulates evolving temporal graphs. The code of TASBM is available
at: https://github.com/aporter468/motifsanalyticalmodel

TagGen [42]: TagGen employs a deep generative framework
that models temporal graphs by learning from system logs of times-
tamped interactions. It uses a bi-level self-attention mechanism to
generate temporal random walks, integrating structural and tempo-
ral contexts. A discriminator refines these walks, ensuring plausible
temporal networks. This approach effectively captures both struc-
tural and temporal characteristics. The code of TagGen is available
at: https://github.com/davidchouzdw/TagGen

STM [23]: STM focuses on generating temporal graphs using
a temporal-motif-based approach. It models real-world temporal
graph dynamics and enables the generation of high-fidelity syn-
thetic graphs. Themethod is versatile, supportingmulti-type hetero-
geneous graphs and parameterized generation of linear, sub-linear,
and super-linear preferential attachment graphs, ensuring adapt-
ability for various graph structures. The code of STM is available
at: https://github.com/temporal-graphs/STM

MTM-All [12] MTMmodels temporal graph generation through
motif transition processes, leveraging temporal motifs to capture
both global and local graph features. It computes transition proba-
bilities and rates from the input graph and simulates events based
on these properties. This approach effectively preserves temporal
graph statistics.

MTM-Sub [12] learns the transition possibility of motifs to sim-
ulate the evolution of the temporal graph within the subgraphs ex-
tracted. The code ofMTM is available at: https://github.com/erdemUB/
KDD23-MTM

GDSS [6]: GDSS introduces a score-based generative model for
graphs using a continuous-time framework. It employs a novel
graph diffusion process, modeled via stochastic differential equa-
tions (SDEs), to jointly capture the distribution of nodes and edges.
By tailoring score-matching objectives for this diffusion process
and designing an efficient solver for the reverse SDEs, GDSS en-
ables effective graph generation. The model demonstrates strong
performance across undirectional graph datasets. The code of GDSS
is available at: https://github.com/harryjo97/GDSS

HGDM [32]: HGDM leverages hyperbolic space for graph gen-
eration, addressing the limitations of Euclidean embeddings in
capturing hierarchical graph structures. The model combines an
auto-encoder to embed nodes in hyperbolic space with a diffusion
model operating in this latent space. By incorporating edge infor-
mation into a hyperbolic potential node space, HGDM effectively
models hierarchical distributions. Experiments show it significantly
improves graph generation quality, particularly for graphs with
strong hierarchical characteristics. The code of HGDM is available
at: https://github.com/LF-WEN/HGDM/

C.2 MaximumMean Discrepancy
Maximum Mean Discrepancy (MMD) quantifies the distance be-
tween two probability distributions 𝑋 and 𝑌 through kernel-based
comparison. For graph distributions, MMD is defined as:

MMD2 (𝑋,𝑌 ) = 1
𝑛2

∑︁
𝑖, 𝑗

𝑘 (𝑋𝑖 , 𝑋 𝑗 )−
2
𝑛𝑚

∑︁
𝑖, 𝑗

𝑘 (𝑋𝑖 , 𝑌𝑗 )+
1
𝑚2

∑︁
𝑗,𝑘

𝑘 (𝑌𝑗 , 𝑌𝑘 )

Where 𝑋𝑖 and 𝑌𝑗 represent specific graph subspace distributions
(e.g., degree distributions), 𝑛 and𝑚 are sample sizes of𝑋 and 𝑌 , and
𝑘 (𝑥,𝑦) is a kernel function measuring similarity. The three terms
capture: 1. Within-distribution 𝑋 similarities; 2. Cross-distribution
similarities; 3.Within-distribution𝑌 similarities. The kernels enable
non-parametric distribution comparisons across various domains.
Common kernel choices in MMD include Gaussian Kernel, Lapla-
cian Kernel, and Polynomial Kernel. We use Gaussian Kernel in this
work: 𝑘 (𝑥,𝑦)𝐺𝑎𝑢𝑠𝑠𝑖𝑎𝑛 = exp

(
− ∥𝑥−𝑦 ∥

2

2𝜎2

)
, which is most popular and

captures local similarities.
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