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A B S T R A C T

Incident detection (ID), or the automatic discovery of anomalies from road traffic data (e.g., road sensor and
GPS data), enables emergency actions (e.g., rescuing injured people) to be carried out in a timely fashion.
Existing ID solutions based on data mining or machine learning often rely on dense traffic data; for instance,
sensors installed in highways provide frequent updates of road information. In this paper, we ask the question:
can ID be performed on sparse traffic data (e.g., location data obtained from GPS devices equipped on
vehicles)? As these data may not be enough to describe the state of the roads involved, they can undermine
the effectiveness of existing ID solutions. To tackle this challenge, we borrow an important insight from the
transportation area, which uses trajectories (i.e., moving histories of vehicles) to derive incident patterns. We
study how to obtain incident patterns from trajectories and devise a new solution (called Filter-Discovery-Match
(FDM)) to detect anomalies in sparse traffic data. We have also developed a fast algorithm to support FDM.
Experiments on a taxi dataset in Hong Kong and a simulated dataset show that FDM is more effective than
state-of-the-art ID solutions on sparse traffic data, and is also efficient.
1. Introduction

Advances in traffic data acquisition technologies (e.g., loop sensors,
road detectors, Global Positioning System (GPS), and CCTV cameras)
provide gigantic amounts of Big Transportation Data (BTD) in real-
time [1–4]. These data (e.g., road traffic conditions, vehicle locations,
speeds, pedestrian information) enable urban computing applications
(e.g., autonomous vehicles, intelligent navigation, smart traffic light
control, and air pollution reduction), with the goal of improving trans-
portation conditions and living quality of citizens [5–8]. A fundamental
problem in BTD is the automatic discovery of incidents (e.g., roadblock
and traffic incidents). Particularly, a number of incident detection (ID)
algorithms have been proposed (e.g., [9–12]), which perform mining
and machine learning on BTD, identify abnormal traffic states, so that
appropriate actions could be taken (e.g., dispatch medical and police
resources to prevent life loss, or detour drivers to incident-free routes
to avoid congestion).
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E-mail addresses: xiaolinh@nwpu.edu.cn (X. Han), t.grubenmann@napier.ac.uk (T. Grubenmann), machenhao@cuhk.edu.cn (C. Ma), xdli@cs.hku.hk

(X. Li), wysun@cs.hku.hk (W. Sun), hhecwsc@hku.hk (S.C. Wong), shang@nwpu.edu.cn (X. Shang), ckcheng@cs.hku.hk (R. Cheng).
1 https://www.td.gov.hk/en/transport_in_hong_kong/its/intelligent_transport_systems_strategy_review_and_/traffic_detectors/index.html.
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For existing ID algorithms, the underlying traffic data is often as-
sumed to be dense – i.e., each road involved is covered by huge volumes
of traffic data (e.g., vehicle locations). This is a reasonable assumption
for freeways, where fixed equipment such as road detectors and CCTV
cameras are installed to acquire traffic information regularly. In fact,
most experiments on existing ID solutions [9–12] are conducted on
freeways. However, it is doubtful whether these solutions are effective
on urban roads (i.e., roads in cities with many neighboring junctions
and traffic lights), where road detectors may be rare. For example, in
Hong Kong, 1210 road detectors have been installed until the end of
2020, covering only 6.2% of all the roads.1 A road detector, which
can be more than US$ 1K, may not be deployed to cover the whole
metropolitan city with dense road networks.2

An alternative BTD source whose data provide a higher coverage
of roads is GPS data. Due to the low costs of GPS devices, they are
commonly found in many smart phones and vehicles. They are much
less costly than road detectors, and the positions of vehicles can be
vailable online 1 June 2024
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Fig. 1. Illustrating a trajectory that drives around an incident spot.
o

cquired by GPS devices in real-time. Hence, by using GPS data, the
raffic state of urban roads can be obtained. However, GPS data may not
e readily available, which can be due to privacy reasons (e.g., a mobile
hone service provider is unlikely to share their customer information),
r commercial reasons (e.g., a company like Google that owns GPS data
ay see it as a valuable asset). Oftentimes, companies that provide
PS equipment to their vehicles have GPS data. In Didi, one of the

argest share-riding companies in China, data is acquired from the GPS
quipment installed in their own vehicles. We have also collected GPS
ata from the vehicles owned by a taxi company in Hong Kong. A
roblem common to these data sources is that they may not cover all
he roads with the same amount of data. For example, roads located in
ommercial districts are traveled more frequently than other roads. For
oads in residential or suburb areas, traffic data can be sparse.

In this paper, we investigate the question: can ID be performed on
parse traffic (e.g., GPS data)? Experiments on GPS data provided by
taxi company show that sparse traffic renders existing ID solutions

ess effective. The main reason is that these data mining or machine
earning solutions often require a huge amount of traffic data over both
patial and temporal dimensions. They utilize the difference between
patial and temporal features to detect incidents, since these features
eviate in a large degree once an incident happens. However, not all
patial and temporal features’ differences may be available when only
few trajectories are contained in the dataset. For example, in Fig. 1,

nly one trajectory is passing through the incident location at road 𝑟5
ithin six time steps 𝑡1,… , 𝑡6. Since the spatial features 𝑓𝑡2 ,𝑟4 of 𝑟4 and
𝑡2 ,𝑟6 of 𝑟6 at the time interval 𝑡2 are missing, we cannot obtain the
patial feature difference 𝑓𝑡2 ,𝑟4 − 𝑓𝑡2 ,𝑟6 . Our research question is: can we
till detect incidents when trajectories are sparse in the spatial and temporal
imensions? This paper is an extension of our previous work [13].

To tackle this challenge, we borrow an insight from the trans-
ortation community, which makes use of the movement history (or
rajectory) of a vehicle to derive a speed pattern (i.e., an observation
f the speed of a vehicle over a certain period of time) [14]. As
ointed out by [14], when a vehicle passes through a location where
n incident occurs, these speed patterns can be used to detect incidents
ffectively. Based on this intuition, we develop a solution called Filter-
iscovery-Match (FDM). The main idea of FDM is to use speed patterns

o identify anomalies. Specifically, we use the divergence between the
peed pattern of the current vehicle and those patterns that are not
ffected by incidents to find out whether a vehicle is passing the scene
f an incident. In sparse settings where roads do not receive a lot
f traffic data, FDM yields a lower mean time-to-detect (MTTD) than
xisting solutions.

The MTTD measures the time between the occurrence of an incident
nd the detection of this incident by the ID algorithm. This includes the
2

d

time until all necessary data is available and the time to actually run
the ID algorithm. If we focus on a single incident, we often have to wait
for several minutes before the observed vehicles have produced enough
data for a successful detection of the incident. In contrast, running
the ID algorithm often requires only a few seconds. In light of this
observation, one might argue that the runtime of the ID algorithm is
of lower priority, as the MTTD is dominated by the waiting time until
all necessary data is available. However, this is only true as long as
we focus on detecting a single incident. Indeed, as soon as we wish
to continuously observe a large road network, the runtime of the ID
algorithm becomes an important factor. If the runtime of our algorithm
is too slow, we may not be able to process all the available data
in real-time. As FDM requires extensive analysis over trajectory data,
the computational cost of our solution can be quite high. To enable
fast detection of incidents, we develop a fast detection algorithm. It
compresses the patterns behind incidents by a hierarchical pattern tree.
When checking whether an upcoming trajectory is associated with an
incident, we can stop the computation early based on a data structure
we developed, called the hierarchical pattern tree. Our experiments on
a large taxi dataset in Hong Kong and a simulated dataset show that
(1) FDM is more effective than existing ID algorithms, and (2) FDM is
computationally efficient, which is on average 38 times faster than the
original detection algorithm without speeding up.

The rest of this paper is organized as follows. Section 2 discusses
related work. In Section 3, we introduce the definition of incident de-
tection and present our solution, named FDM. In Section 4, we propose
an efficient algorithm to facilitate the incident detection. Section 5
describes the experimental results. Finally, Section 7 concludes our
paper.

2. Related work

Previous work on traffic incident detection can be divided into three
categories: pattern recognition, deviation detection, and machine learn-
ing. Most of these categories provide methods for incident detection
on freeways. As the data is collected from static detectors installed
along freeway roads, these algorithms generally assume that the data is
updated at very short time intervals for each individual road segment.
This assumption limits their applicability for incident detection on
urban roads using GPS-equipped vehicles, as the time between two
successive vehicles traveling through some road segments can be very
large. We call this the data sparsity problem in urban roads.

Pattern Recognition: California [15] and DELOS [16] make use
f the occupancy difference in the spatial and temporal dimensions to

etect incidents. In their experiments, the data is updated in one-minute
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and thirty-seconds intervals, respectively. Such short intervals are un-
realistic for urban roads, however, since many urban road segments
are not covered by even one vehicle during some time intervals. To
adapt their solution to GPS signals collected by vehicles on urban roads,
aggregation over longer time intervals is necessary. This can lead to the
problem of a high mean time-to-detect (MTTD).

Deviation Detection: Time series [17] and nonparametric regres-
sion [18] are used to predict the road occupancy or traffic volume at a
specific time interval 𝑡. A traffic situation is classified as an incident
when the deviation between the predicted value and the observed
value is higher than a user-defined threshold. However, there are many
missing values in urban roads due to data sparsity. The forecasted
values based on many missing values can be inaccurate and can lead
to low detection rates. Particle filters [19] are utilized to estimate the
traffic state, which can be used to detect incidents. However, real-
time estimation is not feasible when the number of sensors is limited.
Traffic state estimation [20] uses the spatial–temporal feature deviation
to estimate the traffic state and to detect incidents using these states.
However, the estimated traffic state can be biased when the GPS data
is limited. Probabilistic topic modeling [21] uses the Latent Dirichlet
Allocation (LDA) equivalent model [22] to calculate the divergence
of the current traffic state from the normal traffic state. A traffic
state is classified as an incident when the divergence exceeds a user-
defined threshold. However, it requires mass data to estimate the real
distribution of data. As all of these methods are designed for scenarios
with dense datasets, their performance can be negatively affected by
the sparsity of GPS data on urban roads.

Machine Learning: Neural network (NN) based methods [9,11]
use the upstream and downstream of traffic volume, road occupancy,
and traffic speed at different time intervals as features to train NN
based models. Support vector machines (SVM) [10,12] use the same
features to detect incidents. Wong and Wong [12] show that SVM
models can outperform NN-based models. Convolutional Neural Net-
works (CNN) [23] are utilized to detect incidents on traffic flow data
aggregated over 5 min intervals. However, all these methods are de-
signed for freeways and may perform poorly when applied to urban
roads, which generate much sparser vehicular data. One could address
this problem by aggregating data over a longer time period, but that
would significantly increase the MTTD and may render these methods
impractical. In [24], a time series method is used to forecast normal
traffic and SVM is used to learn the difference between current traffic
and normal traffic. However, the time series method does not perform
well under data sparsity, as the regular traffic behavior has to be
estimated due to the lack of available data. In [25], a heat diffusion
model is used to model the propagation of traffic anomalies along road
networks. However, the diffusion model cannot be fitted well based on
sparse data. Multivariate time series classification [26] utilizes incident
impact intervals to detect incidents on freeways. However, these impact
intervals cannot be extracted due to many missing values in sparse
trajectories on urban roads.

We summarize in Table 1 the state-of-the-art techniques which can
be applied to the urban incident detection problem.

Handling Sparsity: In [27–30], decomposition techniques are uti-
lized to decompose a matrix or tensor into a product of low-rank
matrices and use these decomposed matrices to estimate missing values.
If the matrices and tensors are very sparse, estimations based on these
few data are unsatisfactory. To overcome this problem, they introduce
a context to borrow more information from other data sources when
decomposing. Unfortunately, this context is often very domain-specific
and does not generalize well since different data is used in different
scenarios.

3. Filter-Discovery-Match (FDM)

In this section, we first give definitions of the basic concepts and
the problem (Section 3.1). Then, we introduce the incident patterns,
which are the basic building blocks for incident detection (Section 3.2).
After that, our FDM method is further explained in Section 3.3. We
summarize the notations of our method in Table 2.
3

Table 1
Comparison of other traffic incident detection methods.

Category Methods Handle sparsity Low MTTD

Pattern recognition California [15]
DELOS [16]

No No

Deviation detection Time series
[17,20]
Regression [18]
Topic model [21]

No Yes

Machine learning SVM [10,12]
Hybrid method
[24]
Heat diffusion
[25]
MTS [26]
NN [9,11,23]

No No

Table 2
Table of notations.

Notation Description

𝑇 A trajectory
𝑃𝑡𝑖 A trajectory point at time 𝑡𝑖
𝑟 A road
𝑟𝑖 The 𝑖-th road segment
⃖⃖⃗𝑆 A speed vector
𝑚 The size of the speed vector
⃖⃖⃖⃗𝑆𝑎 An incident speed vector
𝜏 The threshold for defining an incident speed vector
⃖⃖⃖⃗𝑆𝑛 A normal speed vector
𝑅(𝑡𝑗 ) A set of reference time points for time 𝑡𝑗
⃖⃖⃖⃖⃗𝑆𝑇 The speed vector for trajectory 𝑇
⃖⃖⃖⃖⃖⃖⃖⃗𝑆nor
𝑛 The normalized normal speed vector

⃖⃖⃖⃖⃖⃖⃖⃗𝑆nor
𝑎 The normalized incident speed vector

⃖⃖⃗𝑃 A pattern
⃖⃖⃖⃖⃗𝑃𝑎𝑖 An incident pattern, where 𝑖 ∈ {1,… , 𝑘}
⃖⃖⃖⃖⃗𝑃𝑇 The pattern for trajectory 𝑇

3.1. Problem definition

As discussed previously, the core purpose of this paper is to use
GPS trajectories for incident detection. A GPS device is continuously
tracking its location. Due to technical limitations, the GPS locations are
only tracked at discrete timestamps, which results in an approximation
of a GPS trajectory using a finite number of GPS points.

Definition 1 (Trajectory). A trajectory is an ordered sequence of points
𝑝𝑡1 , 𝑝𝑡2 , 𝑝𝑡3 ,… , 𝑝𝑡𝑛 ⟩ where 𝑡1 < 𝑡2 < ⋯ < 𝑡𝑛. A point 𝑝𝑡𝑛 is a three-tuple
𝑡𝑛, 𝑥, 𝑦) which contains a timestamp 𝑡𝑛, the latitude 𝑥 and longitude 𝑦
f its position at 𝑡𝑛. □

To facilitate the analysis of a road network, roads are usually
ubdivided into smaller partitions, which we call road segments.

efinition 2 (Road Segment). Given a road 𝑟, we subdivide the road
into disjoint road segments 𝑟1,… , 𝑟𝑖,… , 𝑟𝑚 such that 𝑟 = ⋃𝑚

𝑖=1 𝑟𝑖 . □

The motivation of using road segments is to partition a road network
into smaller spatial units of (approximately) equal length, as long road
edges cannot be directly compared to short road edges due to the high
variability fo road length.

Definition 3 (Speed Vector). Let 𝑟1,… , 𝑟𝑚 be a sequence of road seg-
ments and 𝑡1,… , 𝑡𝑚 with 𝑡1 < 𝑡2 < ⋯ < 𝑡𝑚 a sequence of time
steps. We define the speed vector ⃖⃖⃗𝑆 = (𝑆𝑟1 ,𝑡1 ,… , 𝑆𝑟𝑚 ,𝑡𝑚 ) as the vector
of speed values 𝑆𝑟𝑖 ,𝑡𝑖 of the speed of a vehicle which travels through
road segment 𝑟𝑖 at time 𝑡𝑖. □

The speed for a given point 𝑝𝑡𝑖 can be directly obtained from the

GPS device. The speed information is an additional feature which is
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Fig. 2. From trajectory to speed vector.
provided along the location. In our method, we make use of both,
location of a vehicle as well as the speed. By using the speed as an
additional feature, we are able to perform better incident detection, as
we show in Section 5. Based on the definition of the speed vector, we
can define the incident speed vector. An incident speed vector is a speed
vector of a vehicle which passes through an incident location after an
incident.

Definition 4 (Incident Speed Vector). Let ⃖⃖⃖⃗𝑆𝑎 = (𝑆𝑟𝑖 ,𝑡𝑖 ,… , 𝑆𝑟𝑖+𝑚−1 ,𝑡𝑖+𝑚−1 ) be
a speed vector. The speed vector ⃖⃖⃖⃗𝑆𝑎 is an incident speed vector if there
exists an incident in a road segment 𝑟inc at time 𝑡inc and a speed value
𝑆𝑟𝑎 ,𝑡𝑎 ∈ ⃖⃖⃖⃗𝑆𝑎 s.t. 𝑟𝑎 = 𝑟inc and 𝑡𝑎 ∈ [𝑡inc, 𝑡inc + 𝜏] for a given threshold
𝜏 ∈ R+. □

In Fig. 1, for example, the speed vector corresponding to the trajec-
tory is an incident speed vector if we set 𝜏 ≥ 𝑡5 − 𝑡1.

To classify this incident speed vector, we need a reference for
comparison. For this, we use the normal speed vector, which is defined
as follows:

Definition 5 (Normal Speed Vector). Given sequence of road segments
𝑟𝑖, 𝑟𝑖+1,… , 𝑟𝑖+𝑚−1 and the time sequence 𝑡𝑖 < 𝑡𝑖+1 < ⋯ < 𝑡𝑖+𝑚−1. Let 𝑅(𝑡𝑗 )
be a set of reference time points for 𝑗 ∈ [𝑖, 𝑖+𝑚−1]. The normal average
speed 𝑆𝑟𝑖 ,𝑡𝑖 of 𝑟𝑖 at 𝑡𝑖 is the average speed of all trajectories which passed
through 𝑟𝑖 at some time point 𝑡 ∈ 𝑅(𝑡𝑗 ) and are not classified as incident
speed vectors given a threshold 𝜏 ∈ R+. The normal speed vector ⃖⃖⃖⃗𝑆𝑛 is
defined as ⃖⃖⃖⃗𝑆𝑛 = (𝑆𝑟𝑖 ,𝑡𝑖 , 𝑆𝑟𝑖+1 ,𝑡𝑖+1 ,… , 𝑆𝑟𝑖+𝑚−1 ,𝑡𝑖+𝑚−1 ) . □

The reference set 𝑅(𝑡𝑗 ) defines how trajectories are aggregated for
the normal speed vectors. A typical choice is to define 𝑅(𝑡𝑗 ) as all the
time points which have the same time of the day, or the same weekday
and time of the day, as 𝑡𝑗 .

With these definitions, we can now formulate the problem definition
of our paper:

Incident Detection: The aim of real-time traffic incident detection
with sparse trajectories is to raise an alarm when an incident 𝑎 happens
on a road segment 𝑟𝑖 at the current time 𝑡 by comparing the speed vector
⃖⃖⃖⃗𝑆𝑎 of by-passing vehicle with the corresponding normal speed vector
⃖⃖⃖⃗𝑆𝑛. If there is a heavy deviation between ⃖⃖⃖⃗𝑆𝑎 and ⃖⃖⃖⃗𝑆𝑛, and the pattern of
the deviation is similar as the one caused by incidents, then incidents
are detected. The incident detection should be performed in real-time,
i.e., the detection algorithm should scan the road network continuously
and dynamically adapt to changing traffic conditions in order to detect
an incident as soon as possible.
4

Fig. 3. From speed vector to candidate incident pattern.

3.2. Incident patterns

Experts from the transportation field [14] evaluated the impact of
traffic incidents using trajectories, finding that vehicles first reduce
their speed, maintain that speed for a certain time-interval, and then
finally increase in speed, having passed the incident locations. How-
ever, in [14], they did not generalize these incident patterns which
would allow one to detect incidents. We discovered that a lot of
incidents do not strictly follow the pattern found in [14]. Hence, we
developed a more data-driven approach to extract these patterns. In
Fig. 2, we illustrate the trace of one vehicle 𝑣 passing through the
incident location from road segment 𝑟0 until 𝑟10 in the road network,
where the sequence of black dots ⟨𝑝𝑡0 , 𝑝𝑡1 , 𝑝𝑡2 , 𝑝𝑡3 , 𝑝𝑡4 ⟩ represent one
trajectory and the black explosion mark stands for an incident. For each
road segment 𝑟𝑖, we have a time 𝑡𝑖 when the vehicle passes through 𝑟𝑖
and a corresponding speed 𝑆𝑟𝑖 ,𝑡𝑖 . To get the normal speed 𝑆𝑟𝑖 ,𝑡𝑖 on 𝑟𝑖
at 𝑡𝑖, we aggregate the trajectories which passed through 𝑟𝑖 at some
time 𝑡 ∈ 𝑅(𝑡𝑖) without being involved in any incident (according to
our threshold 𝜏). To limit our search, we only track 𝑚 road segments
in our sliding window. For example, in Fig. 2, 𝑚 = 11. Our idea is to
discover incident patterns by comparing the incident speed vector and
the normal speed vector as the incident impacts the speed of vehicle 𝑣
which passes through the incident location.

Once we obtain the incident speed vector and the normal speed
vector, we can use the difference between them as the candidate incident
pattern. We will give a formal definition of the candidate incident
pattern later. In Fig. 3(a), the dashed line represents the normal speed
vector while the solid line represents the incident speed vector. The 𝑌 -
axis represents the speed, and the 𝑋-axis represents the road segments
that a vehicle passes through. In Fig. 3(b), the 𝑌 -axis represents the
normalized speed. The normalization procedure will be introduced in
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Section 3.3.1. The line represents the candidate incident pattern, which
is obtained from the difference between the normalized normal speed
vector and the normalized incident speed vector. From Fig. 3(b), we
can see that the candidate incident pattern first increases in trend, then
fluctuates a little, and finally decreases.

Based on this observation, we propose a model to group candidate
incident patterns by clustering them and choose the centers of clusters
as the incident patterns. Then, these incident patterns can be treated
as templates for real-time detection in the online phase. If the pattern
for a speed vector of a real-time trajectory is close to one of our
discovered incident patterns, an alarm is triggered. If no alarm has been
triggered, we conclude that no incident happened at this specific time
and location. Our method not only detects incidents in real-time, but
also returns the matched incident patterns as further evidence to the
user.

3.3. Method

Challenges. A trajectory may pass through many road segments,
e.g., 100 road segments, but only a few segments are affected by an
incident, e.g., 4 road segments. If we need to detect the incident,
we should only consider the segments affected by the incident. If we
simply detect the patterns on the whole trajectory, it does not make
sense, because most road segments cannot observe any incident-related
patterns. It is quite challenging to extract the pattern behind these road
segments affected by the incidents. We use a sliding window with a
fixed size m to slide the coming trajectories. So even though there is
a trajectory passing through many road segments, what we are doing
is using the sliding window with the size m to calculate the distance
between it and the incident patterns. When the sliding window covers
these road segments that are affected by an incident, our method can
capture the small distance and then detect the incident. The sliding
window leads to an online process, in which we can keep tracking
trajectories generated in a streaming mode.

Therefore, we propose a method to detect incidents with a sliding
window. The method FDM is named after three main steps: noise
filtering, incident pattern discovery, and incident pattern matching.

he first two steps are utilized to extract incident patterns during the
ffline phase and the last step is applied for the online detection phase.
e depict the overview of FDM in Fig. 4. We will explain the individual
5

arts of Fig. 4 throughout this section.
3.3.1. Noise filtering
First, we extract incident speed vectors from trajectories that pass

through incident locations when an incident occurred, according to
Definition 4. The corresponding normal speed vectors are obtained
by taking the average speed of those vehicles which passed through
the same road segments at the corresponding reference time points,
according to Definition 5. This step is depicted in the upper right part
of Fig. 4.

When comparing a speed vector with the normal speed vector, we
are not interested in the absolute difference between the two vectors
but in how their speed vectors differ. Thus, in order to compare
the speed trend, we first have to normalize both speed vectors. For
normalization, we scale both speed vectors such that their maximum
value equals to 1. Eq. (1) shows the normalization formula.

⃖⃖⃖⃖⃖⃖⃗𝑆𝑛𝑜𝑟 =
⃖⃖⃗𝑆

max(⃖⃖⃗𝑆)
(1)

Using such a normalization strategy allows us to mitigate the general
speed fluctuations and to concentrate on the trend of the vectors in
question. In addition, the normalization also allows us to generalize
the discovered patterns to other districts, which might have different
speed limits and average speeds. Fig. 5 shows the normal speed vector
(dashed line) and the incident speed vector (solid line) before and
after the normalization. The normal speed vector ⃖⃖⃖⃗𝑆𝑛 and the incident
speed vector ⃖⃖⃖⃗𝑆𝑎 have a similar trend but their distance is larger be-
ore normalization (left-hand-side of Fig. 5) than after normalization
righthand-side of Fig. 5). As we can see, after normalization, these two
peed vectors are quite similar in their trend.

After the normalization step, we filter out incident vectors which
re too similar to their corresponding normal speed vector. This step is
ecessary as not all vehicles passing through an incident location are
ctually negatively affected by the incident (e.g., the incident might
lready be resolved by the time the vehicle passes by, or the incident
as not severe enough to affect the traffic). Thus, we use a filter method

o ignore incident speed vectors which do not exhibit a strong enough
eviation from the normal speed vector. For filtering, we compare
he 𝐿1 similarity against a given distance threshold 𝛿. Incident speed

vectors with a 𝐿1 smaller than 𝛿 are not included into the generation
of the incident patterns.

3.3.2. Incident pattern discovery
In the following, we first give the definitions of patterns and can-

didate incident patterns, and then we show the process of pattern

discovery.
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𝑘
d

efinition 6 (Pattern). Given a normalized incident speed vector ⃖⃖⃖⃖⃖⃖⃖⃗𝑆nor
𝑎

nd a normalized normal speed vector ⃖⃖⃖⃖⃖⃖⃖⃗𝑆nor
𝑛 , we define a pattern as the

ector ⃖⃖⃗𝑃 = ⃖⃖⃖⃖⃖⃖⃖⃗𝑆nor
𝑛 − ⃖⃖⃖⃖⃖⃖⃖⃗𝑆nor

𝑎 . □

efinition 7 (Candidate Incident Pattern). Given a filtering threshold 𝛿 ∈
+, a candidate pattern ⃖⃖⃖⃖⃖⃗𝑃𝑐𝑑 is a pattern ⃖⃖⃗𝑃 s.t. 𝐿1(⃖⃖⃖⃖⃖⃖⃖⃗𝑆nor

𝑛 , ⃖⃖⃖⃖⃖⃖⃖⃗𝑆nor
𝑎 ) ≥ 𝛿 . □

To obtain the incident patterns ⃖⃖⃖⃖⃖⃗𝑃𝑎1 ,… , ⃖⃖⃖⃖⃖⃗𝑃𝑎𝑘 from the set of all
andidate patterns ⃖⃖⃖⃖⃖⃗𝑃𝑐𝑑 , we group them into 𝑘 ∈ N clusters w.r.t 𝐿1
imilarity and choose the center of these 𝑘 clusters as the incident
atterns. For clustering, we use K-means. The clustering process which
esults in the incident patterns is depicted in the upper left part of
ig. 4.

.3.3. Pattern matching
After we have obtained the incident patterns ⃖⃖⃖⃖⃖⃗𝑃𝑎1 ,… , ⃖⃖⃖⃖⃖⃗𝑃𝑎𝑘 from the

ffline discovery phase, we can use these incident patterns to classify
ew patterns observed in the online phase (lower part of Fig. 4).
e will now formally define the Speed Vector for Trajectory 𝑇 and

he Pattern for Trajectory 𝑇 , which are used for the online pattern
atching.

efinition 8 (Speed Vector for Trajectory 𝑇 ). Let 𝑇 = ⟨𝑝𝑡1 , 𝑝𝑡2 , 𝑝𝑡3 ,… , 𝑝𝑡𝑛 ⟩
e a trajectory passing through road segments 𝑟𝑖, 𝑟𝑖+1,… , 𝑟𝑖+𝑚−1 during
he time sequence 𝑡𝑖, 𝑡𝑖+1,… , 𝑡𝑖+𝑚−1. The speed for road segment 𝑟𝑖 at
ime 𝑡𝑖 is defined in the following way: for each segment 𝑟𝑖, we define
he speed 𝑆𝑟𝑖 ,𝑡𝑖 as the interpolated speed at the center of this road
egment 𝑟𝑖 using the speed of the trajectory ⟨𝑝𝑡1 , 𝑝𝑡2 , 𝑝𝑡3 ,… , 𝑝𝑡𝑛 ⟩. The
peed Vector for Trajectory T is defined as ⃖⃖⃖⃖⃗𝑆𝑇 = (𝑆𝑟𝑖 ,𝑡𝑖 , 𝑆𝑟𝑖+1 ,𝑡𝑖+1 ,… ,
𝑟𝑖+𝑚−1 ,𝑡𝑖+𝑚−1 ). □

In the online phase, after we obtain the speed vector ⃖⃖⃖⃖⃗𝑆𝑇 for tra-
ectory 𝑇 and its corresponding normal speed vector ⃖⃖⃖⃗𝑆𝑛, we apply the
ormalization from Eq. (1) to obtain ⃖⃖⃖⃖⃖⃖⃖⃗𝑆nor

𝑇 and ⃖⃖⃖⃖⃖⃖⃖⃗𝑆nor
𝑛 .

efinition 9 (Pattern for Trajectory 𝑇 ). Given a normalized speed vector
⃖⃖⃖⃖⃖⃖⃖⃗nor
𝑇 for 𝑇 and the corresponding normalized normal speed vector ⃖⃖⃖⃖⃖⃖⃖⃗𝑆nor

𝑛 ,
e define the pattern for 𝑇 as the vector ⃖⃖⃖⃖⃗𝑃𝑇 = ⃖⃖⃖⃖⃖⃖⃖⃗𝑆nor

𝑛 − ⃖⃖⃖⃖⃖⃖⃖⃗𝑆nor
𝑇 . □

Given one pattern ⃖⃖⃖⃖⃗𝑃𝑇 for trajectory 𝑇 , we measure the distance
etween it and the 𝑘 incident patterns ⃖⃖⃖⃖⃖⃗𝑃𝑎1 ,… , ⃖⃖⃖⃖⃖⃗𝑃𝑎𝑘 using 𝐿1 distance. If
here exists one incident pattern ⃖⃖⃖⃖⃗𝑃𝑎𝑖 such that its distance to pattern ⃖⃖⃖⃖⃗𝑃𝑇
s smaller than the predefined threshold 𝛾 (condition in Eq. (2)), then
e detect an incident. As long as we find one pattern ⃖⃖⃖⃖⃗𝑃𝑎𝑖 which satisfies

he condition, we can stop the computation. This condition is different
rom 𝑘NN based algorithms, which must find the nearest neighbor first
nd then check the distance between the pattern ⃖⃖⃖⃖⃗𝑃𝑇 and the nearest
eighbor.

⃖⃖⃖⃖⃗ ⃖⃖⃖⃖⃗
6

𝑖 ∶ 𝑑(𝑃𝑇 , 𝑃𝑎𝑖 ) < 𝛾 , 𝑖 ∈ {1, 2,… , 𝑘} , (2) r
here 𝑑(⃖⃖⃖⃖⃗𝑃𝑇 , ⃖⃖⃖⃖⃗𝑃𝑎𝑖 ) =
∑𝑚

𝑗=1 |
⃖⃖⃖⃖⃖⃗𝑃𝑇𝑗 − ⃖⃖⃖⃖⃖⃖⃗𝑃𝑎𝑖𝑗 |.

Suppose that there are 𝑛 patterns ⃖⃖⃖⃖⃗𝑃𝑇 ∈ R𝑚 generated by vehicles.
ach ⃖⃖⃖⃖⃗𝑃𝑇 needs to be compared with 𝑘 incident patterns ⃖⃖⃖⃗𝑃𝑎 ∈ R𝑚. Hence,

the resulting time complexity for the online detection is 𝑂(𝑛𝑘𝑚). This
can be very expensive during online detection if many vehicles have to
be tracked at the same time.

To speed up the process of the extraction of the normal speed vector
for both offline discovery and online detection, we apply an index
structure named aRB-tree [31]. In an aRB-tree, an R tree is used to
index the spatial dimension, while a B tree is used to index the temporal
information. Give a road segment 𝑟 and time 𝑡, we traverse the R tree
sing 𝑟, then traverse the leaf node found in the R tree using 𝑡 to obtain
he averaged normal speed of 𝑟 at 𝑡. Moreover, to improve the efficiency
f our solutions, we propose exact and approximate algorithms to
urther speed up the matching process of patterns ⃖⃖⃖⃖⃗𝑃𝑇 in Section 4.

Note that our method is user-friendly, as incident patterns can be
urther visualized, judged, analyzed, and developed by experts from
ifferent backgrounds. This can be very beneficial, as a domain expert
an double check the output of our method and intervene if it is
onsidered to be necessary. This sets our method apart from other
achine learning methods where the detection mechanism operates as
black box which gives its user only limited insight into why a certain

ituation was classified as an incident.

. Efficient online detection of FDM

Given 𝑛 vehicles which are tracked during the online phase and
incident patterns discovered during the offline phase, an incident

etection algorithm has to perform 𝑛⋅𝑘 checks to match all 𝑛 trajectories
— one check for each trajectory for each of the 𝑘 patterns. However,
𝑛 and 𝑘 can be large and an inefficient matching algorithm can slow
down the online phase significantly. For example, in transportation
data for Hong Kong,3 the value of 𝑛 can be 762,000 and 𝑘 can be
several hundred (see Fig. 9(a and c)) due to complex traffic conditions.
It takes several minutes to match 𝑛 trajectories with 𝑘 incident patterns
in our powerful server. Since the trajectories collected from vehicles are
analyzed in real-time [20], the speed of the matching algorithm should
be at most in the order of seconds to detect incidents as fast as possible.
Therefore, we propose an exact and fast pattern matching algorithm to
speed up online pattern matching.

4.1. Hierarchical pattern tree

We observe that there are some common prefixes between incident
patterns we discovered, therefore, we develop a novel hierarchical

3 https://www.hyd.gov.hk/en/road_and_railway/existing/road_network/
oad.html.

https://www.hyd.gov.hk/en/road_and_railway/existing/road_network/road.html
https://www.hyd.gov.hk/en/road_and_railway/existing/road_network/road.html
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Fig. 6. Hierarchical pattern tree.
pattern tree to speed up the matching further. The hierarchical pattern
tree organizes the incident patterns based on their similarities over
dimensions, as illustrated in Fig. 6. On the left of the figure are incident
patterns from 𝑎 to 𝑒, and on the right part is the corresponding hierar-
chical pattern tree with the bounding rectangle 𝑅, which is denoted
as [𝑅𝐿, 𝑅𝑈 ]. Each node contains a set of incident patterns and the
minimum value 𝑅𝐿 and maximum value 𝑅𝑈 of the bounding rectangle
𝑅 at the 𝑖th dimension 𝑚𝑖. For instance, 𝑚2 indicates that the nodes
are partitioned by values at the second dimension. As the values of
one dimension among incident patterns are not exactly the same, we
introduce a relaxation factor 𝜌 here. As long as the values’ differences
in one dimension among some incident patterns are within 𝜌, we group
them within one bounding rectangle 𝑅. For instance, the values of the
third dimension of pattern 𝑎, 𝑏 are 0.7, 0.75, respectively. If 𝜌 is 0.06,
then 𝑎, 𝑏 fall into the same branch since their values’ difference is 0.05
which is smaller than 𝜌. Then the minimum value 𝑅𝐿 equals 0.7, and
maximum 𝑅𝑈 equals 0.75.

Rescheduling the order of dimensions: There are some dimen-
sions that have heavier fluctuations in the incident patterns than others.
If we can first compare the pattern ⃖⃖⃖⃖⃗𝑃𝑇 for trajectory 𝑇 with incident
patterns over these highly fluctuating dimensions, we have higher
chances to stop the computation earlier. Therefore, we further propose
to reschedule the dimensions of incident patterns when constructing the
hierarchical pattern tree, instead of treating dimensions in their original
order.

The idea is to give higher priority to the dimensions with heavy
fluctuation when conducting pattern matching. Another intuition is
that the number of splits over each dimension should be minimal in
order to take less computation over each dimension. The main ideas
are as follows:

1. Dimensions with high fluctuations should be chosen before di-
mensions with lower fluctuation, when constructing the pattern
tree.

2. Multiple splits over one dimension should be penalized.

To achieve a good ordering of dimensions, we assign a score 𝑠𝑖 to
each dimension 𝑚𝑖 according to the following equation:

𝑠𝑖 =
1
𝑏𝑖

⋅
𝑏
∑

𝑗=1
|𝑚𝑖,𝑗 ⋅ 𝑐𝑖,𝑗 | , (3)

where 𝑏𝑖 is the number of splits in dimension 𝑚𝑖, 𝑗 is the 𝑗th split in
dimension 𝑚𝑖, 𝑚𝑖,𝑗 is the average value in the 𝑗th split of 𝑚𝑖, 𝑐𝑖,𝑗 is the
size of patterns falling into the 𝑗th split of 𝑚𝑖,

1
𝑏𝑖

is the penalty factor
for a large number of splits. ∑𝑏

𝑗=1 |𝑚𝑖,𝑗 ⋅ 𝑐𝑖,𝑗 | calculates the fluctuation of
patterns in 𝑚𝑖. Since negative values exist in the value of patterns, we
use the absolute value to evaluate the fluctuation. The larger the value
of |𝑐 | is, the greater the fluctuation of the speed pattern, because if
7

𝑖,𝑗
the speed vector remains close to the normal speed vector |𝑐𝑖,𝑗 | should
be close to zero. We use the order of dimensions in the ranking of 𝑠𝑖 to
construct the hierarchical pattern tree, and represent the 𝑖th dimension
after rescheduling as 𝑚𝑜𝑖 .

Algorithm 1: Hierarchical Pattern Tree
1 function constructTree (𝑝, 𝑚, 𝑖, 𝑆index, 𝑃a, 𝜌);
Input : tree node 𝑝, total number of dimensions 𝑚, count 𝑖, index set

𝑆index, matrix of incident patterns 𝑃a, factor 𝜌
2 if 𝑖 = 𝑚 then return;
3 𝑐𝑢𝑟𝐷𝑖𝑚 ← nextDimByRescheduling();
4 𝑆sub ← split(𝜌, 𝑃a, 𝑐𝑢𝑟𝐷𝑖𝑚, 𝑆index);
5 for every 𝑠𝑗 in 𝑆sub do
6 𝑐 ← 𝑝.createNode();
7 𝑐.𝑖𝑑𝐿𝑖𝑠𝑡.extend(𝑠𝑗);
8 𝑐.𝑚𝑜𝑖 ← 𝑐𝑢𝑟𝐷𝑖𝑚;
9 𝑐.𝑅𝐿, 𝑐.𝑅𝑈 ← getNode_Boundary(𝑐);
10 constructTree(𝑐, 𝑚, 𝑖 + 1, 𝑠𝑗 , 𝑃a, 𝜌);
11 𝑝.𝑐ℎ𝑖𝑙𝑑𝑟𝑒𝑛.append(𝑐);
12 𝑐.𝑝 = 𝑝;

We show the detailed process of constructing the hierarchical pat-
tern tree in Algorithm 1, which is a recursive algorithm. If 𝑖 equals to
the total number of dimensions 𝑚, then the current recursion returns
(Line 2). Otherwise, we find the next best dimension 𝑐𝑢𝑟𝐷𝑖𝑚 by Eq. (3).
Then we apply the split method to split over the 𝑐𝑢𝑟𝐷𝑖𝑚-th dimension
with factor 𝜌. For the 𝑐𝑢𝑟𝐷𝑖𝑚-th dimension, if the range in the 𝑐𝑢𝑟𝐷𝑖𝑚-
th dimension of adding one pattern 𝑝𝑘 to one set of patterns 𝑃 is within
𝜌, then we add 𝑝𝑘 to 𝑃 . Then, we set 𝑆sub to be the list of the partitioned
set which contains the IDs of incident patterns in the same partition
(Line 4). For each item 𝑒𝑗 in 𝑆sub, we create a child node and recursively
build the tree on the child node (Lines 5–11). Specifically, for each item
𝑠𝑗 , we calculate the minimum value 𝑅𝐿 and maximum value 𝑅𝑈 in the
𝑐𝑢𝑟𝐷𝑖𝑚-th dimension of the bounding rectangle 𝑅 containing patterns
with IDs in 𝑠𝑗 (Line 9). Finally, we start with the next recursion based
on the tree node 𝑐 (Line 10), and set the child node of the tree node in
the current iteration as the 𝑐 (Lines 11).

Note that the hierarchical pattern tree can be constructed offline
since all the incident patterns are available from historical traffic data.
It will not lead to any cost in the online matching process as the
hierarchical pattern tree can be obtained before the online match.

4.2. Fast match

Here, we introduce how to efficiently check whether the pattern
⃖⃖⃖⃖⃗𝑃𝑇 for trajectory 𝑇 can match any incident pattern maintained in the
hierarchical pattern tree.
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As a first step, since incidents rarely occur in the real world, we use
the threshold 𝛿 to prune trajectories which are close to the trajectories
under normal traffic conditions based on the distances between their
speed vectors, ⃖⃖⃖⃖⃖⃖⃖⃗𝑆nor

𝑇 and ⃖⃖⃖⃖⃖⃖⃖⃗𝑆nor
𝑛 . Only trajectories with a distance larger

r equal than 𝛿 are considered for further investigation. After pruning,
nly 𝑛′ patterns ⃖⃖⃖⃖⃗𝑃𝑇 ∈ R𝑚 needs to be checked, where 𝑛′ ≪ 𝑛.

For each pattern that passes the first step, we need to check whether
t can match any incident pattern in the hierarchical pattern tree. To
void traversing the whole tree, we maintain the lower and upper
ounds of the distances between the pattern ⃖⃖⃖⃖⃗𝑃𝑇 and the patterns stored
n the current sub-tree during the traversal process. Before discussing
ow the bounds can be used for an early stop, we first present the
omputation and maintenance of the lower and upper bounds.
Lower bound. According to Eq. (2), different dimensions are in-

ependent to each other when computing the pattern distance. Mean-
hile, only one dimension is considered in each layer of our hierarchi-

al pattern tree. Hence, the lower bound of the distance between ⃖⃖⃖⃖⃗𝑃𝑇
nd the patterns in the subtree rooted at current node 𝑐 can be defined
ecursively as:

(𝑐) =

⎧

⎪

⎨

⎪

⎩

𝐿(𝑐.𝑝) + 𝑐.𝑅𝐿 − ⃖⃖⃖⃖⃗𝑃𝑇 [𝑐.𝑚𝑜𝑖 ], if 𝑐.𝑅𝐿 > ⃖⃖⃖⃖⃗𝑃𝑇 [𝑐.𝑚𝑜𝑖 ]
𝐿(𝑐.𝑝) + ⃖⃖⃖⃖⃗𝑃𝑇 [𝑐.𝑚𝑜𝑖 ] − 𝑐.𝑅𝑈 , if 𝑐.𝑅𝑈 < ⃖⃖⃖⃖⃗𝑃𝑇 [𝑐.𝑚𝑜𝑖 ]
𝐿(𝑐.𝑝), otherwise

(4)

where 𝐿(𝑐) (resp. 𝐿(𝑐.𝑝)) is the lower bound of the distances between ⃖⃖⃖⃖⃗𝑃𝑇
and the patterns in the subtree rooted at 𝑐 (resp. 𝑐.𝑝). Note 𝑐.𝑝 denotes
the parent node of the current node 𝑐. Because the root node does not
have a parent node, we set 𝐿(𝑟𝑜𝑜𝑡.𝑝) = 0.

When matching ⃖⃖⃖⃖⃗𝑃𝑇 via traversing the tree, we use a min-heap to
maintain the nodes to be explored using their lower bounds as the key.
If the minimum value maintained in the min-heap already exceeds or
equals to 𝛾, no incident patterns will be matched. Under such situation,
we can safely early stop the matching process.

Upper bound. Similarly, we can also calculate the upper bound of
the distance between ⃖⃖⃖⃖⃗𝑃𝑇 and the patterns in the subtree rooted at node
𝑐 with respect to the first 𝑙 dimensions (assuming 𝑐 locates in the 𝑙th
layer in the tree). Hence, the upper bounds can be recursively defined
as follows:

𝑈 (𝑐) = 𝑈 (𝑐.𝑝) + max(|𝑐.𝑅𝐿 − ⃖⃖⃖⃖⃗𝑃𝑇 [𝑐.𝑚𝑜𝑖 ]|, |𝑐.𝑅𝑈 − ⃖⃖⃖⃖⃗𝑃𝑇 [𝑐.𝑚𝑜𝑖 ]|), (5)

where 𝑈 (𝑐) (resp. 𝑈 (𝑐.𝑝)) is the upper bound of the distances between
⃖⃖⃖⃖⃗𝑃𝑇 and the patterns in the subtree rooted at 𝑐 (resp. 𝑐.𝑝) with respect
to the first 𝑙 dimensions. Analogically, 𝑈 (𝑟𝑜𝑜𝑡.𝑝) is set to 0.

We can derive that the distance between the pattern 𝑃𝑇 for testing
trajectory and each incident pattern 𝑃𝑎𝑖 in the subtree rooted at node
𝑐, i.e., 𝑑(𝑃𝑇 , 𝑃𝑎𝑖 ), satisfies that:

𝐿(𝑐) ≤ 𝑑(𝑃𝑇 , 𝑃𝑎𝑖 ) ≤ 𝑈 (𝑐) . (6)

Note the upper bound will only be used when we traverse into a
leaf node, because until then the upper bound has taken all dimensions
into calculation. If the upper bound of a leaf node is less than 𝛾, we can
safely stop the matching process, because the distances between ⃖⃖⃖⃖⃗𝑃𝑇 and
all patterns in the leaf node are less than 𝛾.

Based on the above lower-bound- and upper-bound-based pruning
techniques, we propose an efficient matching algorithm, detailed in
Algorithm 2. We first initialize the min-heap 𝑄 (Line 1), compute the
lower and upper bounds of the root node (Lines 2–3), and push the
root node and its lower bound into the heap (Line 4). Next, we keep
processing the nodes in the heap until 𝑄 is empty (Lines 5–22). In each
iteration, we pop out the node 𝑝 with minimum lower bound from 𝑄
(Line 6), and use the lower bound to check whether we can terminate
the match process with false returned (Line 7). If 𝑝 is a non-leaf node,
we compute the lower and upper bounds for each child of 𝑝 and push
the child into the heap 𝑄 if the lower bound is less than 𝛾 (Lines 9–12).
If 𝑝 is a leaf node, we first use the upper bound whether we can stop
8

the process with true returned (Line 14). If not, we need to calculate
Algorithm 2: Fast Match
Input : dimension 𝑚, the pattern for testing trajectory ⃖⃖⃖⃖⃗𝑃𝑇 , pattern

tree 𝑡𝑟𝑒𝑒, threshold 𝛾
1 𝑄 ← min_heap();
2 computes 𝐿(𝑟𝑜𝑜𝑡) via Equation (4);
3 computes 𝑈 (𝑟𝑜𝑜𝑡) via Equation (5);
4 push pair ⟨𝑟𝑜𝑜𝑡, 𝐿(𝑟𝑜𝑜𝑡)⟩ into 𝑄;
5 while 𝑄 is not empty do
6 ⟨𝑝, 𝐿(𝑝)⟩ ← 𝑄.pop();
7 if 𝐿(𝑝) ≥ 𝛾 then return false;
8 if 𝑝 is a non-leaf node then
9 for c ∈ p.children do
10 computes 𝐿(𝑐) via Equation (4);
11 computes 𝑈 (𝑐) via Equation (5);
12 if 𝐿(𝑐) < 𝛾 then push pair ⟨𝑐, 𝐿(𝑐)⟩ to 𝑄;

13 if 𝑝 is a leaf node then
14 if 𝑈 (𝑝) < 𝛾 then return true;
15 for each incident pattern 𝑃𝑎𝑖 ∈ 𝑝 do
16 𝑓𝑐𝑢𝑟 ← 0;
17 for 𝑚𝑜𝑖 in 𝑚 do
18 𝑓𝑐𝑢𝑟 ← 𝑓𝑐𝑢𝑟 + |

⃖⃖⃖⃖⃗𝑃𝑇 [𝑚𝑜𝑖 ]-𝑃𝑎𝑖 [𝑚𝑜𝑖 ]| ;
19 if 𝑓𝑐𝑢𝑟 ≥ 𝛾 then break;

20 if 𝑓𝑐𝑢𝑟 <𝛾 then return true;

21 return false;

the distance between ⃖⃖⃖⃖⃗𝑃𝑇 and each incident pattern in 𝑝 (Lines 16–19)
and check whether the distance is less than 𝛾 (Line 20). If all nodes in
𝑄 are processed and the process is not terminated, we return false,
as no pattern can match ⃖⃖⃖⃖⃗𝑃𝑇 .

The hierarchical pattern tree based algorithm is an exact solution to
speed up the matching process. The lower bound (Eq. (4)) and upper
bound (Eq. (5)) are used to reduce the computation cost safely, which
do not involve any approximation. Note that the relaxation factor 𝜌 is
only used to decide the range of bounding rectangle 𝑅, which does not
introduce any error.

Comparison with 𝑘NN. The 𝑘NN based algorithms always find
the nearest neighbor first and then check the distance between the
pattern of the testing trajectory and the nearest neighbor. However,
incidents rarely occur in the real world. Testing trajectories in most
cases are normal ones, whose distances to the nearest neighbor in
incident patterns are quite large, therefore, they could be pruned earlier
to save computation cost. Hence, our algorithm is different from 𝑘NN
since we can prune earlier and do not require to find the nearest
neighbor as in Algorithm 2.

Complexity. The complexity of the fast match is 𝑂(𝑛′𝑘′𝑚′). In the
worst case, it is 𝑂(𝑛𝑘𝑚). However, 𝑛′ ≪ 𝑛, 𝑘′ ≤ 𝑘, and 𝑚′ ≤ 𝑚, in
practice. It is efficient as shown in Section 5.

Hyperparameter setting. Since hyperparameters in our method
may vary regarding the nature of different trajectory datasets, we
use Bayesian optimization to find the optimal hyperparameters in the
validation data for each dataset in practice, which can be found in
Section 5.4 in detail.

5. Experiments

5.1. Dataset

We conduct experiments on two GPS datasets. The first data set
(HK) consists of 35.1 GB of trajectory data collected from 440 taxis
in Hong Kong in the year of 2010. The generation rate of the GPS
positions is around one position every 40 s. The city map of Hong
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Kong is collected from OpenStreetMap.4 We also obtain incident data
from the Transportation Department of Hong Kong for the year 2010.
From this data, we use 4386 incidents which occurred in road segments
which are visited by at least one taxi during the specified time window.

The second dataset (BJ) simulates GPS data and incident data using
the well-known simulation software Simulation of Urban MObility
SUMO) [32]. SUMO is used in various work on traffic analysis [20,
3,34]. We follow the same setting as in Traffic State Estimation [20] to

simulate GPS data and incident data in the city map containing all roads
within the second ring road in Beijing. We simulated 5000 incident data
and 4.41 GB of GPS data.

In addition to the incident instances, we choose randomly non-
incident instances — these are randomly chosen locations in the road
network where no incident happened at the given time — such that
both datasets are balanced with a 1:2.3 split [12,24] between incident
and non-incident instances.

Note that we also evaluate on the dataset with dense GPS trajec-
tories to compare the performance with existing methods that target
on dense datasets. In Fig. 10, we evaluate all methods on relatively
dense datasets (with sparsity = 50%). The reason that we do not use the
dense datasets from existing methods is that the dense data they used
are summarized data, e.g., average speed over 5 min of all vehicles
passing through each segment, and we cannot obtain the trajectory
for each individual vehicle. So we extract dense trajectories from GPS
trajectory datasets for our trajectory-based incident detection problem,
and evaluate the performance in Fig. 10.

We preprocess our datasets in four steps. We first partition the
whole road network into road segments not longer than 100 m as [35].
Then, incidents are matched to road segments. We filter out incidents
whose distances to their closest road segments exceed 100 m – this
only applies to the HK dataset, as SUMO ensures that incidents always
coincide with road segments for the BJ dataset. Then, we conduct map
matching by applying the algorithm in [36]. Third, as the time interval
between two GPS points is very short (around 40 s), we assume that
the acceleration between two GPS points stays constant. We use linear
interpolation to estimate the speed of a vehicle for segments in which
we do not have a GPS signal — either due to a loss of signal or simply
because the vehicles drive too fast or the segment is too short. Fourth,
we randomly split the data into 64% for the discovery phase (training),
16% for the hyperparameter tuning (validation), and 20% for the online
detection phase (testing).

5.2. Competitors

We compare our method with five advanced competitors that are
designed for trajectory data or sensor data.

∙ SVMN [10]. This method uses an SVM with aggregated spatio-
temporal sensor data as features to detect incidents.

∙ NNA [11]. This method uses a NN with aggregated spatio-temporal
sensor data as features to detect incidents.

∙ Topic Model (TM) [21]. This method applies an LDA equivalent
model to estimate the state over the speed of trajectories. Then, they
measure the deviation between the current state and normal state to
detect incidents.

∙ CNNU [23]. This method uses CNN as model with aggregated
spatio-temporal sensor data as features to detect incidents. Convolu-
tion, ReLU, Max-Pool and Fully-Connected Layers are applied in their
CNN network architecture.

∙ Traffic State Estimation (TSE) [20]. This method conducts spatial–
temporal traffic state analysis from GPS data and uses estimated states
to detect incidents. They use SUMO [32] to simulate 24 incidents and
the required GPS data.

4 https://www.openstreetmap.org.
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5.3. Performance metrics

Following [10,11,20,23], we evaluate our model based on detection
rate (DR), false alarm rate (FAR), mean time-to-detect (MTTD), and F1
score:

DR = number of detected incidents
total number of tested incidents , (7)

FAR = number of false alarms
total number of tested non-incidents , (8)

MTTD = 1
𝑛

𝑛
∑

𝑖=1
(𝑡detected
𝑖 − 𝑡occurred

𝑖 ) , (9)

where 𝑡detected
𝑖 is the time when the incident is detected, 𝑡occurred

𝑖 is
he time when the incident occurs, and 𝑛 is the number of correctly
etected incidents.

.4. Hyperparameter tuning

We conduct hyper-parameter tuning by Bayesian optimizer on the
alidation dataset. The scopes of hyper-parameters are 𝑘 {10, 50, 100,
50, 200}, 𝑚 {5, 10, 15, 20}, 𝛿 {1.6, 2, 2.4, 2.8, 3.2}, 𝛾 {1.5, 2.25, 3,
.75, 4.5}, 𝜏 {2, 4, 6, 8, 10, 12, 14} for effectiveness, and 𝜌 {0, 0.4,
.8, 1.2, 1.6} for efficiency.

.5. Evaluation results

For evaluation on efficiency and effectiveness, we choose a time
indow of 5 min, the size of speed vector 𝑚 = 15, and 𝑘 = 100 incident
atterns as default settings. We will show the evaluation over different
arameter settings. The evaluation is conducted on a machine with a
.2 GHz Intel Core i7 CPU and 16 GB 2400 MHz DDR4 Memory.

.5.1. Incident patterns visualization
We show four different incident patterns in Fig. 7 which are iden-

ified during the offline discovery phase in the HK dataset. Note that
he 𝑦-axis represents the difference between the average historical non-
ncident speed vectors and the incident speed vector. A positive value in
he 𝑦-axis means that a vehicle affected by an incident is slower than
verage. We use 𝑟𝑎 to indicate the incident location. For example, in
he pattern (d) we can see that the vehicle influenced by the incident
educes the speed until reaching the incident location. After passing
he incident, the vehicle speeds up and finally the speed is faster than
verage (negative value on 𝑦-axis).

.5.2. Evaluation on efficiency
Fig. 8(b) and (d) evaluate the efficiency of Annoy (AN) [37], our

roposed fast match (FM in Section 4) and match (M) – match is the
ase method as described in Section 3.3.3 without any efficiency im-
rovements. Annoy (AN) has been recognized as one of the best Nearest
eighbor (NN) libraries [37]. The ratio of the number of incident speed
atterns and normal speed patterns is 1:100 000 as estimated from the
eal data set HK. The number of incident patterns 𝑘 is 200, and the size
f the sliding window 𝑚 is 20. Fig. 8 shows the average running time
f one speed pattern in the unit of milliseconds. The execution time of
M is much lower than AN. It verifies that FM is more efficient than
he 𝑘NN based algorithm AN. Moreover, FM is 48.1 times faster than

in the BJ dataset, and 28.5 times faster than M in the HK dataset.
ote that FM is an exact algorithm, which means that the effectiveness

s not affected when changing the relaxation factor 𝜌.
We illustrate in Fig. 8(a) and (c) how the fast matching algorithm

ehaves with changing the relaxation factor 𝜌. As shown in Fig. 8, the
xecution time decreases when increasing 𝜌. As a result, the execution
ime can be reduced. For example, the execution time drops 44.11%

hen increasing 𝜌 from 0 to 1.2 in the HK dataset.

https://www.openstreetmap.org
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Fig. 7. Incident patterns discovered in HK.
Fig. 8. Efficiency evaluation over 𝜌 in (a–b) HK and (c–d) BJ. Note that 𝜌 equals 1.2 in (b) and (d) for FM.
Fig. 9. Effectiveness evaluation over the number of incident patterns 𝑘, the size of sliding window 𝑚, threshold 𝛿, threshold 𝛾.
Table 3
Comparison with competitors in HK.

Methods F1 DR FAR MTTD (min)

TM [21] 72.9 71.1 23.9 2.5
TSE [20] 62.0 51.7 15.0 2.6
CNNU [23] 70.8 79.7 42.7 5.0
SVMN [10] 70.9 85.2 55.2 5.0
NNA [11] 70.6 83.2 52.3 5.0
FDM 79.4 75.8 14.9 2.27

5.5.3. Evaluations on effectiveness
First, we list the evaluation results in Tables 3 and 4 by compar-

ing our method (FDM) with the competitors in both the HK and BJ
atasets. As one can see, our method has the highest F1 score. In addi-
ion, our method has the lowest FAR and MTTD. Finally, our method
as the highest DR for the BJ dataset and is still on a competitive level
10

n the HK dataset. We want to point out that a low FAR is especially
Table 4
Comparison with competitors in BJ.

Methods F1 DR FAR MTTD (min)

TM [21] 74.4 71.7 20.9 2.4
TSE [20] 85.6 83.1 10.9 2.5
CNNU [23] 73.4 73.4 26.6 5.0
SVMN [10] 67.5 65.9 29.2 5.0
NNA [11] 63.0 60.7 31.8 5.0
FDM 89.9 86.4 8.69 1.1

important as, in real-world applications, most investigated trajectories
are expected to be non-incidents, rather than incidents.

Second, we test how the performance of our method changes when
changing the number of incident patterns 𝑘 and the size of the speed
vector 𝑚. In Fig. 9(a and c), we can see that the F1 score initially
increases when using more incident patterns. This confirms our hy-

pothesis, that there is no single incident pattern which is valid for all
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Fig. 10. Evaluation as 𝜏 increases in (a–d) HK and (e–h) BJ and as sparsity coefficient increases in (i–l) HK and (m–p) BJ.
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incidents. When increasing the number of patterns further, however,
the F1 score remains stable. As one can see from Fig. 9(a and c), the
F1 score is maximized for 𝑘 = 100, which is the reason why we chose
this as the default parameter in our experiments.

In Fig. 9, we compare DR, FAR, and F1 scores for varying sizes of
the speed vector 𝑚 (b and d). The F1 scores are maximized when 𝑚 = 20
and 𝑚 = 15 for HK and BJ datasets respectively. We also evaluate 𝛿 in
Fig. 9(e and g) and 𝛾 in Fig. 9(f and h). The F1 scores are maximized
when 𝛿 = 2.8 and 𝛿 = 2.4 for HK and BJ accordingly. 𝛾 = 3.75 gives the
best F1 scores for both HK and BJ.

Third, we evaluate how the different methods perform when varying
the time window 𝜏 (cf. Definition 4) used in these methods. Fig. 10(a–
h) shows the F1 score, MTTD, DR, and FAR for the following methods:
NNA, SVMN, CNNU, TSE, TM and our own method: FDM.

As one can see, CNNU benefits most from a bigger time window
with respect to the F1 score. In contrast, TSE first drops as the time
window increases and finally increases slightly. The other methods are
quite stable beyond a time window of 5 min, even showing some slight
decrease in performance when the windows increase in both datasets,
HK and BJ.

5.5.4. Evaluation over different sparsity levels
To evaluate the effectiveness over sparsity levels, we sample differ-

ent subsets from both datasets to obtain datasets with different sparsity
coefficient. Then, we evaluate the performance of our method and
competitors over datasets having different sparsity coefficients. We give
a formal definition as follows:

The sparsity coefficient of a road network dataset is the percentage
of cases where no vehicle passed through a road segment 𝑠 during a
11

𝑖

time window [𝑡𝑗−1, 𝑡𝑗 ).

Sparsity Coefficient =

∑

𝑖,𝑗 1{𝑉𝑠𝑖 ,[𝑡𝑗−1 ,𝑡𝑗 )=𝚏𝚊𝚕𝚜𝚎}

𝑆 ⋅ 𝑇
⋅ 100% , (10)

where 𝑠𝑖 with 𝑖 ∈ [0, 𝑆] represents the 𝑖th road segment and [𝑡𝑗−1, 𝑡𝑗 )
ith 𝑗 ∈ [0, 𝑇 ] stands for the 𝑗th time window between 𝑡𝑗−1 and 𝑡𝑗 .
𝑠𝑖 ,[𝑡𝑗−1 ,𝑡𝑗 ) is a Boolean variable that indicates whether at least one
ehicle passes through road segment 𝑠𝑖 during time window [𝑡𝑗−1, 𝑡𝑗 ).
n addition, 1{𝑉𝑠𝑖 ,𝑡𝑗 =𝚏𝚊𝚕𝚜𝚎}

is an indicator function that is 1 if 𝑉𝑠𝑖 ,𝑡𝑗 =
𝚊𝚕𝚜𝚎 and 0 otherwise, 𝑆 is the total number of road segments 𝑠𝑖 and

𝑇 is the total number of time windows [𝑡𝑗−1, 𝑡𝑗 ). The impact of the
parsity Coefficient is evaluated in Fig. 10(i–p). Although SVMN and
NA achieve better DR scores, their FAR scores are much higher than
ur FDM, and their F1 scores are quite low in the HK dataset. As we can
ee, when the sparsity of the dataset increases (sparsity coefficient from
0% to 80%), our FDM method still outperforms the competitors with
espect to F1 score and achieves the best MTTD, whereas the DR and
AR are still within a competitive range in both HK and BJ datasets. It
eans that the trajectory-based method is tolerant to data sparsity in

patial and temporal dimensions.

. Limitations

We conducted a manual examination of the weaknesses in our
ethodology. We discovered that False Positives, although not true

ncidents, exhibit a deceleration followed by an acceleration pattern,
eading to their erroneous identification. Despite not being true in-
idents, False Positives display a pattern of behavior similar to real
ncidents. This pattern mimics the typical behavior seen in actual
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incidents, such as a vehicle slowing down due to an obstacle or haz-
ard on the road and then accelerating once the obstacle is passed.
However, in the case of False Positives, this pattern occurs without
any actual incident present, leading to their mistaken identification as
true incidents. This discovery highlights a crucial challenge in incident
detection systems, where the presence of certain behavioral patterns
can lead to false alarms or erroneous identifications.

Unlike False Positives, where there is a pattern resembling true inci-
dents, False Negatives involve actual incidents that the system misses.
False Negatives involve minor incidents that quickly recover, resulting
in a short duration of queuing or slowly moving. In this case, the short
duration of the queuing makes it difficult for the system to detect the
incident, especially since the typical pattern of deceleration followed
by acceleration, which is often associated with incidents, may not be
clearly observed. As a result, these incidents are incorrectly classified
as non-incidents or missed entirely. This highlights another challenge
in incident detection systems, where certain types of incidents may not
exhibit the expected patterns or may occur in a manner that makes
them challenging to detect, leading to False Negatives.

7. Conclusions

In this paper, we study the problem of incident detection on urban
roads on a city-wide scale. We propose a new model (FDM) that is
inspired by an insight from the transportation field. Further, we propose
a hierarchical pattern tree based algorithm to speed up the detection
process. We evaluate our method according to different parameter
settings by extensive experiments. Our results show that our method is
more effective while having the lowest MTTD among all competitors.
Thus, our method is a feasible solution to incident detection with sparse
trajectories on a city-wide scale. And it is efficient on large trajectory
data, which is important to give immediate response in the real time.
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