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Abstract—Structural Graph Clustering is a well-known prob-
lem that aims to identify clusters and distinguish between special
roles, such as hub and outlier. However, SCAN, the fundamental
structural clustering model, is designed for pairwise graphs and
fails to capture the unique structural information inherent in
hypergraphs when clustering hypergraphs. Motivated by this, we
propose a new structural clustering model, HSCAN, specifically
for hypergraphs. We further design an Order-Index to accelerate
fetching the key information of the HSCAN and a Lightweight
Similarity Bucket Index to reduce the index cost. Next, we
present an index-based sequential query algorithm with high
performance and a parallel query algorithm to process large
hypergraphs faster. Additionally, we provide the algorithms for
constructing Order-Index and Lightweight Similarity Bucket
Index. Extensive experiments on both real-world and synthetic
datasets show that HSCAN performs better than existing models,
and the two index-based query algorithms are up to three orders
of magnitude faster than the existing algorithm.

Index Terms—SCAN, graph algorithm, hypergraph, structural
graph clustering

I. INTRODUCTION

Hypergraph is a fundamental graph structure consisting of
hyperedges in which each hyperedge connects an arbitrary
number of nodes, which differs from pairwise graphs where
each edge connects two vertices [1]–[3]. Recently, hypergraphs
have attracted growing attention as they capture higher-order
relationships among multiple entities [1], such as neural net-
works [4], academic networks [5], protein complex networks
[6], and other real-life applications. There has been extensive
research about hypercore maintenance [7], neighborhood-core
decomposition [8], subgraph matching [9], and other problems
[10]–[15]. In this paper, we focus on the structural graph
clustering problem over hypergraphs.
Prior Works. Structural Graph Clustering [16] is a well-
known problem that aims to cluster the vertices based on
structural similarity (e.g., Cosine Similarity [17] or Jaccard
Similarity [18]) and finds clusters, hubs, and outliers. SCAN
[16] is the most fundamental structural clustering model. It
calculates the structural similarity of each vertex pair using
their neighborhoods. Then, SCAN constructs distinct clusters
based on structural similarity scores. Other vertices are iden-
tified as hubs and outliers that do not belong to any cluster,
while hubs bridge different clusters. An example of SCAN is
shown in Fig. 1(a).
Application. Compared to other graph clustering methods,
Structural Graph Clustering has unique outputs (similarity-
based structural clusters, hubs, and outliers), which have a
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Fig. 1. Motivation.

wide range of applications as follows:
• Similarity-based structural clusters have been widely

applied to the analysis of biological data [19]–[22],
social media data [23]–[26], and web data [27]–[29].
In addition, they are useful in image segmentation [30],
image clustering [31], and fraud detection on blockchain
data [32].

• Hubs can be treated as influential nodes and are mean-
ingful in many fields, such as viral marketing [33],
epidemiology [34], and graph compression [35]. Outliers
can be isolated as noise and play a significant role in data
mining [36]–[39].

Motivation. Why not apply SCAN to hypergraphs? Although
SCAN is an effective structural clustering model for undirected
pairwise graphs, it is not effective for other types of graphs
(e.g., directed graphs [40] and uncertain graphs [41], [42]).
When transforming hypergraphs into pairwise graphs to apply
the SCAN model, some similar hypergraphs with different
structural relationships are transformed into the same pairwise
graph, e.g., G1, G2, and G3 shown in Fig. 1(b) are all
converted to G4. This indicates that a significant amount of
information within the hyperedges is lost when applying
SCAN due to the unique nature of hyperedges.

The following example demonstrates the outcome of apply-
ing SCAN to hypergraphs.

Example 1. 2(a) illustrates an example hypergraph. Fig.
2(b) depicts a pairwise graph converted from the example
hypergraph, and Fig. 2(c) is the structural information of
the example hypergraph. In the pairwise graph, for vertex
v5 and each of its neighbors vi (i ∈ [1 − 4] ∪ [6 − 9]),
the cosine similarity score of their neighborhoods is 0.745.
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(b) An example of converting different hypergraphs into pairwise graphs.
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It indicates that v5 is similar to all other vertex, and SCAN
treats the entire graph as a cluster. It is inappropriate for
hypergraphs, as the structural relationship between two groups
{v1, v2, v3, v4, v5} and {v5, v6, v7, v8, v9} involves only two
hyperedges that share a single common vertex. This weak con-
nection contrasts sharply with the stronger internal structural
relationships within each group.

Challenges. There are two main challenges in the structural
clustering of hypergraphs as follows:

• Challenge 1. A new effective structural clustering model
for hypergraphs. The new model should capture the unique
characteristics of hypergraphs and extract the information
carried by hyperedges.

• Challenge 2. An efficient approach for implementing struc-
tural clustering based on the new model. Considering the
hypergraphs in real applications can be large, we need a
new approach that minimizes space overhead while ensuring
rapid implementation of structural clustering.

Our solution. To address Challenge 1, we design a new
hyperedge-centric structural clustering model to facilitate ex-
tracting the structural information contained in hyperedges.
Two hyperedges are considered neighbors if they share at least
one common vertex. For such neighboring hyperedges, we use
a single measure to compute the structural similarity between
the sets of vertices contained in them. Additionally, we replace
vertices with hyperedges in other definitions. Thus, we obtain
a new structural clustering model that effectively captures the
unique characteristics of hypergraphs. We can obtain vertex
clusters directly by this new model. In particular, a vertex
cluster is the set of vertices contained in hyperedges of its
corresponding hyperedge cluster.

Why is a hyperedge-centric structural clustering model
chosen? There are two main reasons leading to the new
hyperedge-centered structural clustering model:

(1) The high-order relationships of vertices are important for
improving the clustering quality in many novel clustering
studies [43]–[46], and the unique structure to represent
the high-order relationships of vertices in hypergraphs
is hyperedge [47]. Thus, the hyperedge-centric model
can gain better clustering results, as demonstrated by the
experiments in Exp-1.

(2) A hyperedge represents a small vertex group (as a clique
in pairwise graphs). Clustering these groups can be
widely utilized in real-life applications, including named
entity recognition systems [48], biomedical research lit-
erature analysis [49], among others.

In summary, a hyperedge-centric model can not only obtain
vertex clusters with high-quality clustering results but also has
a wide range of applications.

To tackle Challenge 2, considering that collecting cores and
similar neighbors are two crucial tasks in structural clustering,
we design an Order-Index to accelerate these collections. To
reduce the cost of Order-Index, we present a Lightweight
Similarity Bucket Index to organize key information into
multiple buckets based on similarity instead of storing the
similarity values. It provides approximate clustering results
with the same query time complexity as Order-Index, which
has a high clustering quality proved theoretically (approximate
guarantee in Theorems 4 and 7) and experimentally (Exp-
9) in this paper. Then, we present two query algorithms,
sequential query algorithm and parallel query algorithm, based
on the indexes proposed in this paper. These query algorithms
efficiently handle the structural clustering within the new
model. Additionally, we present the construction algorithms
for building two indexes.
Contributions. Here are our main contributions:
• We propose a new structural clustering model, HSCAN,

for clustering hypergraphs. HSCAN can capture the unique
structural information of hypergraphs. To the best of our
knowledge, this is the first work on structural clustering for
hypergraphs (Section II).

• We design the Order-Index to boost query performance and
introduce the Lightweight Similarity Bucket Index to reduce
its cost (Section III).

• We propose two index-based query algorithms, sequential
query algorithm, and parallel query algorithm, to efficiently
handle the structural clustering within the new model (Sec-
tion IV).

• We present the construction algorithms for building two
proposed indexes efficiently (Section V).

• Extensive experiments on seven real-world datasets and a
synthetic dataset demonstrate that HSCAN performs better
than other clustering models (Section VI).

II. PRELIMINARIES
A. Problem Definition

In this section, we present the structural hypergraph cluster-
ing model. Table I summarizes frequently used notations and
their meanings.
Notations in hypergraph. We consider an unweighted and
undirected hypergraph G=(V,E) on a finite set of vertices
V , where E ⊂ 2V is a set of hyperedges. Each hyperedge
e ∈ E represents a set of |e| vertices that interact. The
hypergraph G can contain hyperedges consisting of only one
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vertex and may have repeated hyperedges. We denote the set
of vertices contained in a certain hyperedge e as V (e) and the
set of hyperedges containing a specific vertex v as E(v). Two
hyperedges e1 and e2 are considered neighbors if they share
at least one common vertex. We use M and M(G) to denote
the set of such neighboring pairs.
Terminologies. e1 connect e2 if they share at least one
common vertex, i.e., e1 and e2 are neighbors.

Definition 1 (Structural Similarity of Hyperedge). Given two
hyperedges e1 and e2, the structural similarity between two
hyperedges e1 and e2, denoted by σ(e1, e2), is defined as the
number of common vertices between hyperedge e1 and e2,
normalized by the geometric mean of their cardinalities of the
vertices they contain. That is

σ(e1, e2) =
|V (e1) ∩ V (e2)|√
|V (e1)| · |V (e2)|

.

Definition 2 (Structural Neighborhood). The structural neigh-
bor for a hyperedge e, denoted by N [e], is defined as N [e] =
{e′ ∈ E|V (e) ∩ V (e′) ̸= ∅} ∪ {e}.

Definition 3 (ϵ-Neighbor). The ϵ-neighborhood for a hyper-
edge e, denoted by Nϵ[e], is defined as the subset of N [e],
in which every hyperedge e′ satisfies σ(e, e′) ≥ ϵ. That is,
Nϵ[e] = {e′ ∈ N [e]|σ(e, e′) ≥ ϵ}.

Definition 4 (Core Hyperedge). Given a similarity threshold
ϵ(0 < ϵ ≤ 1) and an integer µ(µ ≥ 2), a hyperedge e is a
core hyperedge if |Nϵ[e]| ≥ µ.

Definition 5 (Structural Reachablity). Given two hyperedges e
and e′, e′ is structurally reachable from e if there is a sequence
of hyperedges e1, e2, ...el ∈ E(l ≥ 2) such that: (i) e1 =
e, el = e′; (ii) for all 1 ≤ i ≤ l − 1,ei is core, and ei+1 ∈
Nϵ[ei].

Definition 6 (Core Subgraph). Given the set of core hy-
peredges Ecore, the core subgraph is a subgraph Gcore =
(Vcore, Ecore) of input graph G where Vcore = {v ∈ V (e)|e ∈
Ecore}.

Definition 7 (Cluster). A cluster C ∈ E is a non-empty subset
of E such that:

• (Connectivity.) For any two hyperedges e1, e2 ∈ C, there
exists a hyperedge e ∈ C such that both e1 and e2 are
structurally reachable from e.

• (Maximality.) For a core hyperedge e ∈ C, all hyperedges
that are structurally reachable from e belong to C.

Definition 8 (Cluster Subgraph). Given a cluster C, the cluster
subgraph is a subgraph GC = (VC , EC) of the input graph
G where (i) EC = {e ∈ C}; (ii) VC = {v ∈ V (e)|e ∈ C}.

Definition 9 (Hub and Outlier). Given a hyperedge e that
does not belong to any cluster, e is a hub if it has neighbors
belonging to two or more different clusters. Otherwise,e is an
outlier.

Problem statement (HSCAN or (ϵ, µ)-HSCAN). Given a
hypergraph G = (V,E) and two parameters 0 < ϵ ≤ 1 and

TABLE I
FREQUENTLY-USED NOTATIONS.

Notation Definition
G = (V,E) A hypergraph with its vertex set and hyperedge set

N [e] The set of structural neighbors for a hyperedge e
ϵ, µ Two input parameters
Nϵ[e] The set of ϵ-neighbors for a hyperedge e

M,M(G) Set of neighboring hyperedges of G
C,Cϵ,µ A cluster for parameters ϵ, µ

Gcore, G
ϵ,µ
core A core subgraph for parameters ϵ, µ

GC , Gϵ,µ
C The cluster subgraph of Cϵ,µ

C, Cϵ,µ The set of clusters for parameters ϵ, µ
Gcore,Gϵ,µ

core The union of core subgraphs for parameters ϵ, µ
GC ,Gϵ,µ

C The union of all cluster subgraphs of for parameters ϵ, µ

µ ≥ 2, in this paper, we aim to efficiently compute the set of
all clusters Cϵ,µ in G and identify the corresponding role of
each hyperedge.

Theorem 1 (Nested property of HSCAN). Given two pairs
of parameters ϵ1,µ1 and ϵ2,µ2, if ϵ1 ≤ ϵ2 and µ1 ≤ µ2, we
have that for any cluster Cϵ1,µ1

∈ Cϵ1,µ1
, there exist a cluster

Cϵ2,µ2
∈ Cϵ2,µ2

such that Cϵ2,µ2
⊆ Cϵ1,µ1

.

Proof. The theorem directly follows the definitions of
HSCAN.

Example 2. As shown in Fig. 2. Given two small parameters
ϵ = 0.5 and µ = 2. With using HSCAN, we can obtain two
clusters C1 and C2 in G and their corresponding cluster sub-
graphs are GC1

= {{v1, v2, v3, v4, v5}, {e1, e2, e3, e4}} and
GC2

= {{v5, v6, v7, v8, v9}, {e5, e6, e7}}. C1 and C2 cannot
form a large cluster together because the only connection
between two clusters is e4 ↔ v5 ↔ e7, and σ(e4, e7) =

1√
5·5 = 0.2 < 0.5.

B. Related Work
To the best of our knowledge, this paper is the first work

focused on structural clustering on hypergraphs.
The concept of structural graph clustering and the fun-

damental model SCAN is first introduced by Xu et al. in
[16]. Subsequent works have built upon this foundation to
enhance efficiency and scalability. [50] proposes SCAN++ by
reducing unnecessary similarity computations, while pSCAN
[51] designs a new clustering paradigm to accelerate struc-
tural clustering. GPUSCAN [52] leverages GPU technology
to implement SCAN more efficiently, and [53] presents an
I/O-efficient algorithm designed to address the challenge of
handling large graphs that cannot be fully loaded into main
memory. Parallel and distributed approaches have also been
explored, such as ppSCAN [54], which parallelizes pruning-
based algorithms, and [55], which designs a distributed SCAN
algorithm. Dong et al. [56] proposes an efficient index called
GS∗-index for SCAN.

Building on GS∗-index, [57] presents a parallel algorithm
based on the GS∗-index and its approximation using locality-
sensitive hashing. Ruan et al. [58] study the maintenance of
computed structural similarity between vertices and propose
an approximate algorithm for graph updates. Additionally,
DSCAN [59] extends SCAN to directed graphs, while [60]
explores structural clustering in uncertain graphs. Li et al.
[61] prove the NP-hardness of manipulating SCAN and solve
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Algorithm 1: GetSimNei OI
Input : A hyperedge e, a parameter ϵ, a hypergraph

G = (V,E), and Neighbor-Order NO
Output: the set S of ϵ-neighbors of e

1 S ← ∅;
2 foreach (e′, σ(e, e′)) in NOe do
3 if σ(e, e′) < ϵ then
4 break;

5 S ← S ∪ {e′};
6 return S

it by identifying two key sub-problems: local promotion and
global selection. Zhang et al. [62] introduce a bottom-k
sketch to implement the approximate computation of Jaccard
similarity, which can accelerate constructing and maintaining
an index similar to the GS∗-index. [63] extends the bottom-k
sketch to d-hop neighbors to facilitate distance-based structural
clustering.

There are also several other graph clustering works [64]–
[72] on hypergraphs. However, they are not related to Struc-
tural Graph Clustering and cannot be utilized to process our
HSCAN problem directly.

III. STRUCTURAL GRAPH CLUSTERING INDEXES

In this section, we first design the Order-Index (OI) to
enhance performance. Then, to reduce the space and time cost
of constructing the index, we further present the lightweight
similarity-bucket index (LSBI).
A. Order-Index

Order-Index (OI) is extended from the best index GS∗-
index [56] of structural clustering pairwise graph. OI consists
of Neighbor-Order (NO) and Core-Order (CO). NO is an
adjacency table that stores (id, similarity) pairs instead of
id. Moreover, for each e ∈ E, NO sorts its neighbors in
descending order of similarity. NO is designed to fetch similar
neighbors quickly. Differently, CO collects the max value of
ϵ for each hyperedge e ∈ E under each possible µ, such that
e ∈ Gϵ,µ

core. After that, CO stores the (id, ϵ) pairs in descending
order of ϵ. Based on the above, the structure of OI is defined
as follows:

Definition 10. Given a hypergraph G = (V,E), the Order-
Index of G, denoted by OI , consists of Neighbor-Order and
Core-Order. The Neighbor-Order for a hyperedge e, denoted
by NOe, contains all the pairs (e′, σ(e, e′)). For two hy-
peredges e1, e2 ∈ NOe, e2 appears after e1 if σ(e, e2) ≤
σ(e, e1). The Core-Order for a parameter µ, denoted by COµ,
contains all the pairs (e, ϵe,µmax) such that ϵe,µmax = max{ϵ|e ∈
Gϵ,µcore}. For two hyperedges e1, e2 ∈ NOe, e2 appears before
e1 if ϵe1,µmax ≤ ϵe2,µmax.

Once Order-Index has been constructed, we can quickly
obtain core hyperedges and similar neighbors via OI. The
details for collecting ϵ-neighbors using OI are outlined in
Algorithm 1. For a given hyperedge e and a parameter ϵ, we
collects each pair (e′, σ(e, e′)) from NOe until σ(e′, e) < ϵ
(Lines 2-5). In addition, Algorithm 2 shows the pseudo-code

Algorithm 2: GetCore OI
Input : Two parameters ϵ and µ, a hypergraph

G = (V,E), and Core-Order CO
Output: Hash table H of the set of core hyperedges

1 H ← an empty hash table;
2 foreach (e, ϵe,µmax) in COµ do
3 if ϵe,µmax < ϵ then
4 break;

5 Add e to H;

6 return H

NO1
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e4
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Fig. 3. Part of Order-Index (NO and CO) for hypergraph in Fig. 2(a).

of collecting core hyperedges. For two given parameters ϵ and
µ, we iterate over each pair (e, ϵe,µmax) of COµ and add e to a
hash table when ϵe,µmax ≥ ϵ (Lines 2-5).

Theorem 2. For a given hyperedge e and a parameter ϵ,
the time complexity of Algorithm 1 is bounded by O(|Nϵ[e]|).
For two given parameters ϵ and µ, the time complexity of
Algorithm 2 is bound by O(|E(GC)|).

Theorem 3. For a given hypergraph G, the space complexity
of Neighbor-Order is bounded by O(M(G)), and the space
complexity of Core-Order is also bounded by O(M(G)).

Example 3. Fig. 3 shows a part of Order-Index (NO and CO)
for hypergraph in Fig. 2(a). Given two parameters ϵ = 0.85
and µ = 3, we can obtain the set of ϵ-neighbors for hyperedge
e2 is {e2, e3} from NO2, and we can obtain the set of core
hyperedges is {e3, e6} from CO3.

B. Lightweight Similarity Bucket Index
To reduce the space cost of Order-Index, we propose a

Lightweight Similarity Bucket Index: LSBI. LSBI comprises
two sub-indexes: Similarity-Index (SI), and Core-Index (CI).

1) Similarity-Index
The Similarity-Index (SI) is primarily designed to obtain

ϵ-neighbors of each hyperedge quickly. For each hyperedge
e ∈ E, we pre-calculate its similarity to each neighbor,
then sort these neighbors in descending order of similarity.
We use τ buckets to store the sorted neighbors of e. These
buckets divide the similarity scores into τ separate ranges.
Each bucket represents a specific range of similarity scores,
i.e., ith corresponds to the range [1− i

τ , 1−
i−1
τ ). Each bucket

stores the neighbors of e whose similarity with e falls within
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Algorithm 3: GetSimNei LSBI
Input : A hyperedge e, a parameter ϵ, a hypergraph

G = (V,E), and the Similarity-Index SI
Output: the set S of ϵ-neighbors of e

1 k ← ⌈(1− ϵ) · τ⌉, S ← ∅;
2 if ϵ = 1− k

τ then
3 S ←

⋃k
i=1 SIe[i];

4 else
5 S ←

⋃k−1
i=1 SIe[i];

6 return S

the corresponding range. The hyperedges within a bucket are
sorted in descending order by similarity score.

Definition 11 (Similarity-Index). Given a hypergraph G =
(V,E), the Similarity-Index of G, denoted by SI , consists of
|E| entries. The entry for a given hyperedge e, denoted by
SIe, consists of τ buckets. The ith bucket in SIe, denoted by
SIe[i], contains all the hyperedges e′ that satisfy e′ ∈ N [e] and
σ(e, e′) ∈ [1− i

τ , 1−
i−1
τ ). For two hyperedges e1, e2 ∈ SIe[i],

e2 appears after e1 if σ(e, e2) ≤ σ(e, e1).

Once SI has been constructed, obtaining the ϵ-neighbors
of a specified hyperedge e for a given ϵ becomes straight-
forward. Moreover, SI can also expedite the identification of
core hyperedges. The details for collecting ϵ-neighbors are
outlined in Algorithm 3. Given the input parameters ϵ and
µ, GetSimNei LSBI algorithm firstly determines the bucket k
such that ϵ falls within the range [1− k

τ , 1−
k−1
τ ) and initializes

the set S as empty (Line 1). Then, we need to consider the
following two cases:

Case 1: ϵ = 1 − k
τ , k ∈ {[1, τ ] ∩ Z} (Lines 2-3).

For a hyperedge e, all ϵ-neighbors are stored in SIe[i] for
i = 1, 2, · · · , k. Thus, it collects all the hyperedges from these
buckets to obtain the ϵ-neighbors of e (Line 3). The hyperedge
e is identified as a core hyperedge if

∑k
i=1 |SIe[i]| ≥ µ.

Case 2: ϵ ∈ (1− k
τ , 1−

k−1
τ ), k ∈ {[1, τ ]∩Z} (Lines 4-5).

For a hyperedge e, it is certain that all hyperedges stored in
SIe[i] for i = 1, 2, · · · , k−1 are ϵ-neighbors of e and the other
ϵ-neighbors of e may only be stored in SIe[k]. Then, it directly
collects all the hyperedges from SIe[i] for i = 1, 2, · · · , k− 1
and e is identified as a core hyperedge if

∑k−1
i=1 |SIe[i]| ≥ µ.

It is evident that we cannot obtain the exact clusters in
Case 2. However, we can provide an approximation guarantee
similar to that in [62] of the approximate solution for SCAN.

Theorem 4 (Approximation Guarantee for Approximate
ϵ-neighbors). Given two parameters ϵ and µ, for the clusters
Cϵ,µ generated by executing HSCAN using approximate ϵ-
neighbors, we have

• For every cluster Cϵ+ 1
τ ,µ ∈ Cϵ+ 1

τ ,µ, there exists a cluster
Cϵ,µ ∈ Cϵ,µ such that Cϵ+ 1

τ ,µ ⊆ Cϵ,µ.
• For every cluster Cϵ− 1

τ ,µ ∈ Cϵ− 1
τ ,µ, there exists a cluster

Cϵ,µ ∈ Cϵ,µ such that Cϵ,µ ⊆ Cϵ− 1
τ ,µ.

Proof. In Case 2, we directly get its approximate ϵ-neighbors
of a hyperedge e from SIe[i] for i = 1, 2, · · · , k − 1. In fact,

SI1

SI2

SI3

SI4

SI5

[0.75,1] [0.5,0.75) [0.25,0.5) [0,0.25)

e1 e2e3 e4

e2 e3 e4

e5

1 2 3 4

1 2 3 e1 4

1 e3 e2e4 2 3 4e1

1 2 3 4e4 e3 e2 e7e1

1 2 3 4e6 e7

Fig. 4. Part of Similarity-Index (SI) for hypergraph in Fig. 2(a) with τ = 4.

these hyperedges are e’s 1 − k−1
τ -neighbors. Consequently,

after executing the (ϵ, µ)-HSCAN, we actually obtain clusters
C1− k−1

τ ,µ. Then we have ϵ − 1
τ < 1 − k−1

τ < ϵ + 1
τ because

ϵ ∈ (1− k
τ , 1−

k−1
τ ) in Case 2. Thus, according to Theorem

1, this theorem holds.
Theorem 5. The time complexity of the GetSimNei LSBI
algorithm is bounded by O(|Nϵ[e]|).

Space complexity. The space cost of Similarity-Index (SI)
is clearly given by

∑|E|
i=1 Nϵ[ei], which is bounded by

O(|M(G)|), where M(G) is the set of structural neighbor
pairs. Additionally, we provide the following guarantee re-
garding τ :

Theorem 6 (Space cost guarantee of Similarity-Index). The
number of buckets in each entry of Similarity-Index, denoted
by τ , is independent of the space complexity of Similarity-
Index, i.e., the space cost of SI remains unchanged regardless
of the value of τ .

Example 4. Given τ = 4, Fig. 4 shows a part of the similarity
index for the example graph in Fig. 2(a). Each entry of SI
contains 4 buckets. Assume that ϵ = 0.75 and µ = 2 (Case
1), the ϵ-neighbors of e3 are all hyperedges in SI3[1] and
e3 is a core hyperedge because |SI3[1]| = 3 > µ. Assume
that ϵ = 0.7 and µ = 2 (Case 2), the hyperedges {e4, e3, e2}
in SI4[1] are e4’s ϵ-neighbors and the hyperedges in SI4[3]
and SI4[4] are not. The relationships between hyperedges in
SI4[2] and e4 need further detection.

2) Core-Index
The Core-Index (CI) is designed to obtain the core hy-

peredges for HSCAN efficiently. Similar to SI, CI utilizes a
series of buckets to divide the similarity score equally. To
ensure that the same value of ϵ corresponds to the same
bucket location in both the SI and CI structures, the number of
buckets in the CI is kept as τ . However, CI does not maintain
individual buckets for each hyperedge. Instead, it maintains
a total of τ buckets. In the ith bucket, which represents the
similarity range [1 − i

τ , 1 −
i−1
τ ), CI stores an ordered set

of (e,|N1− i
τ
[e]|) pairs, where e is a hyperedge and |N1− i

τ
[e]|

is the number of its ϵ-neighbors with ϵ = 1 − i
τ . The pairs

stored in each bucket are sorted in descending order according
to |N1− i

τ
[e]|. Considering the above, the structure of CI is

defined as follows:
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Algorithm 4: GetCore LSBI
Input : Two parameters ϵ and µ, a hypergraph

G = (V,E), the Core-Index CI , and the
Similarity-Index SI

Output: Hash table H of the set of core hyperedges
1 k ← ⌈(1− ϵ) · τ⌉, H ← an empty hash table;
2 if ϵ = 1− k

τ then
3 foreach (e, cnt) ∈ CIk do
4 if cnt < µ then break;
5 Add e to H;

6 else
7 foreach (e, cnt) ∈ CIk−1 do
8 if cnt < µ then break;
9 Add e to H;

10 return H
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Fig. 5. Core-Index (CI) for hypergraph in Fig. 2(a) with τ = 4.

Definition 12 (Core-Index). Given a hypergraph G = (V,E),
the Core-Index of G, denoted by CI , consists of τ buckets. The
ith bucket in CI , denoted by CIi, contains all the hyperedges
e′ that satisfy |N1− i

τ
[e]| ≥ 2. For two hyperedges e1, e2 ∈

CIi, e2 appears after e1 if |N1− i
τ
[e1]| ≥ |N1− i

τ
[e2]|.

We can quickly obtain the core hyperedges using the CI. The
details of collecting core hyperedges are shown in Algorithm
4. Given two input parameters, ϵ and µ, GetCore LSBI
algorithm first determines the bucket k such that ϵ falls within
the range [1− k

τ , 1−
k−1
τ ) and initializes the hash table H as

empty (Line 1). It then considers the following two cases:
Case 1: ϵ = 1 − k

τ , k ∈ {[1, τ ] ∩ Z} (Lines 2-5). In
this case, core hyperedges can be directly obtained from
CIk. Specifically, if the pair (e,|N1− k

τ
[e]|) in CIk[i] satisfies

|N1− k
τ
[e]| < µ, then all the hyperedges stored in CIk[j] for

j = 1, 2, · · · , i− 1 are identified as core hyperedges.
Case 2: ϵ ∈ (1− k

τ , 1−
k−1
τ ), k ∈ {[1, τ ]∩Z} (Lines 6-9).

For a pair (e,|N1− k
τ
[e]|) stored in CIk, we cannot ensure e

is a core hyperedge, even if |N1− k
τ
[e]| ≫ µ. However, for a

pair (e′,|N1− k−1
τ

[e′]|) stored in CIk−1, e′ is certainly a core
hyperedge if |N1− k−1

τ
[e′]| ≥ µ. Like collecting ϵ-neighbors,

it directly collects the core hyperedges from CIk−1 and treats
them as the entire core hyperedges. If the pair (e,|N1− k−1

τ
[e]|)

∈ CIk−1 satisfies |N1− k−1
τ

[e]| ≥ µ, we identify e as a core
hyperedges.

We can also provide an approximation guarantee for the
approximate core hyperedges.

Theorem 7 (Approximation Guarantee for Approximate Core
Hyperedges). Given two parameters ϵ and µ, for the clus-
ters Cϵ,µ generated by executing HSCAN using approximate
core, we can give the same approximation guarantee as that
provided for approximate ϵ-neighbors.

• For every cluster Cϵ+ 1
τ ,µ ∈ Cϵ+ 1

τ ,µ, there exists a cluster
Cϵ,µ ∈ Cϵ,µ such that Cϵ+ 1

τ ,µ ⊆ Cϵ,µ.
• For every cluster Cϵ− 1

τ ,µ ∈ Cϵ− 1
τ ,µ, there exists a cluster

Cϵ,µ ∈ Cϵ,µ such that Cϵ,µ ⊆ Cϵ− 1
τ ,µ.

Proof. In Case 2, we directly obtain the approximate core
hyperedges e from CIk−1 if |N1− k−1

τ
[e]| ≥ µ. Essentially,

we obtain the core hyperedges for 1 − k−1
τ and µ. Since

ϵ ∈ (1− k
τ , 1−

k−1
τ ), it follows that ϵ− 1

τ ≤ 1− k−1
τ ≤ ϵ+ 1

τ .
Consequently, for any cluster Cϵ,µ ∈ Cϵ,µ, there must exist
two clusters Cϵ− 1

τ ,µ ∈ Cϵ− 1
τ ,µ and Cϵ+ 1

τ ,µ ∈ Cϵ+ 1
τ ,µ satisfy

the following: (i) G
ϵ+ 1

τ ,µ
core ⊆ Gϵ,µ

core ⊆ G
ϵ− 1

τ ,µ
core because Gϵ,µ

core

is actually G
1− k−1

τ ,µ
core and ϵ − 1

τ ≤ 1 − k−1
τ ≤ ϵ + 1

τ . (ii)

G
ϵ+ 1

τ ,µ

C \Gϵ+ 1
τ ,µ

core ⊆ Gϵ,µ
C \Gϵ,µ

core ⊆ G
ϵ− 1

τ ,µ

C \Gϵ− 1
τ ,µ

core , because
any non-core hyperedge in Gϵ,µ

C is an ϵ-neighbor of one of
the core hyperedges and ϵ − 1

τ < ϵ < ϵ + 1
τ . Thus, we can

conclude that Gϵ+ 1
τ ,µ

C ⊆ Gϵ,µ
C ⊆ G

ϵ− 1
τ ,µ

C , thereby proving this
theorem.

Theorem 8. The time complexity of the GetCore LSBI algo-
rithm is O(|E(GC)|).

Space complexity. The space consumption of CI depends on
the number of buckets and the number of hyperedges.

Theorem 9. The space cost of Core-Index is O(τ · |E|).

Example 5. Given τ = 4, the Core-Index for the example
hypergraph in Fig. 2(a) is shown in Fig. 5. The CI contains
four buckets, each representing a different range of similarity
scores, e.g., bucket CI1, which corresponds to the similarity
range [0.75, 1], includes all the pairs (e,|N0.75[e]|). Assuming
ϵ = 0.5 and µ = 4 (Case 1), we can easily obtain the set
of core hyperedges {e3, e4} from the CI2. Assume that ϵ =
0.4 and µ = 4 (Case 2), it is clear that e3 and e4 are core
hyperedges because |N0.5[e3]| = 4 ≥ µ and |N0.5[e4]| =
4 ≥ µ. Additionally, only e1 and e2 have the potential to be
identified as core hyperedges, as |N0.25[ei]| = 3 < µ (i =
5, 6, 7).

C. Remark.
Effect of the similarity bucket. Suppose that the float type

is used to store the similarity score. The technique of similarity
bucket affects space overhead from two aspects: (1) CO stores
core hyperedges of different µ and sorts them by ϵ. CI is
designed based on similarity buckets, stores core hyperedges
according to ϵ, and sorts them by µ. For a given hypergraph
G = (V,E), CO stores

∑
e∈E |N [e]|−1 = 2·|M| pairs which

need 16 · 2 · |M| bytes, and CI stores τ · |E| pairs which need
16 ·τ · |E| bytes. If τ < 2·|M|

|E| , CI requires less space than CO.
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(2) NO stores (id, similarity score) pairs, while SI only stores
ids in similarity buckets. Thus, the similarity bucket technique
on SI reduces the space overhead by half.

Relationships between our indexes and existing indexes.
OI is directly extended by GS∗-index [56] by changing the
stored element from vertices to hyperedges. LSBI is motivated
by BOTIN-index [62], and they both utilize the similarity
bucket technique. BOTIN-index additionally uses bottom-k-
sketch to obtain approximate Jaccard similarity, while LSBI
not only uses similarity buckets to store information about
core hyperedges but also uses similarity buckets to store
information about neighbors and similarity scores (this part
of BOTIN-index is the same as neighbor-order of GS∗-index).
Thus, LSBI can further reduce the space cost without reducing
the accuracy of the approximate guarantee and the query
efficiency.

Efficiency of queries using two indexes. It is noted that
the performance of the query with OI and the query with LSBI
is almost the same. Due to the space limitation, we provide
the comparison in our technical report [73].

Exact and approximate queries using LSBI. LSBI col-
lects approximate ϵ-neighbors and core hyperedges by default
in Case 2, while it also supports fetching exact ϵ-neighbors and
core hyperedges in Case 2, which requires additional time for
detection. We compare the clustering results of approximate
query and exact query in Exp-9, Section VI.D. The result indi-
cates that the approximate query can obtain similar clustering
results. Moreover, due to space limitations, the process of exact
query and the efficiency comparison between approximate
query and exact query are in our technical report.

IV. INDEX-BASED QUERY ALGORITHMS

In this section, we present two query algorithms for HSCAN
based on any index that speeds up core hyperedges and similar
neighbor fetching, e.g., OI (Section III-A) and LSBI (Section
III).
A. Sequential Query Algorithm

In this subsection, we propose the sequential query algo-
rithm (SQuery).

Algorithm 5 provides the pseudo-core of the SQuery. Given
the input parameters ϵ and µ, along with the index I and
the hypergraph G, the algorithm first initializes the clustering
result C, the labels of each hyperedge Label, and a queue Q as
empty(Line 1). It then retrieves all the core hyperedges stored
in a hash table. Next, for each unlabeled core hyperedges e,
it initializes a new cluster C = {e} to record the cluster
containing e and inserts e into queue Q (Line 4). It assigns
a new label l to the new cluster C and labels the hyperedges
in C with l (Line 5). Then, it iterates over the hyperedges
in Q to expand the cluster C using a BFS process, where
only hyperedges that are both core hyperedges and neighbors
of the hyperedges in Q are added into the Q (Lines 6-14).
Specifically, it firstly removes a hyperedge e1 from queue Q
and collects its ϵ-neighbors(Lines 7-8). Then, it iterates over
each hyperedge e2 in e1’s ϵ-neighbors, adding e2 into C and
labeling e2 with l (Lines 10-12). If e2 is a core hyperedge, it

Algorithm 5: Sequential query algorithm: SQuery
Input : Parameters ϵ and µ, an Index I , and

hypergraph G = (V,E)
Output: Clustering result and labels of each hyperedge

1 C ← ∅, Q← an empty queue, Label← an empty set;
2 H ←GetCore(ϵ,µ,G,I);
3 foreach unlabeled e ∈ H do
4 C ← {e}, Q.inqueue(e);
5 Assign a new label l to C and label e with l;
6 while Q is not empty do
7 e1 ← Q.dequeue();
8 Nϵ[e1]← GetSimNei(e1,ϵ,G,I);
9 foreach e2 ∈ Nϵ[e1] do

10 if Label[e2] is null then
11 C ← C ∪ {e2};
12 Label e2 with l;
13 if e2 ∈ H then
14 Q.inqueue(e2);

15 C ← C ∪ C;

16 foreach e ∈ E \H do
17 if e is unlabeled then
18 Label e as hub or outlier according to its

neighbor and Definition 9 ;

19 return C, Label

inserts e2 into Q (Lines 13-14). The BFS iteration continues
until the queue Q is empty (Line 6). The completed cluster
C is then added to the C (Line 15). Finally, SQuery identifies
the hubs and outliers and returns the results (Lines 16-19).

Theorem 10. The time complexity of SQuery is O(|M(G)|)
with using OI or LSBI, whereM(G) is the set of neighboring
hyperedges of G.

Due to space limitations, the proofs of Theorem 10 and the
following theorems can be found in our technical report [73].

Example 6. Consider the example hypergraph shown in Fig.
2(a), along with the Similarity-Index in Fig. 4 and the Core-
Index in Fig. 5. With ϵ = 0.75 and µ = 3, we can obtain the
set of core hyperedges {e2, e3, e4, e5, e6, e7} using Algorithm
4. Starting with e2, we expand a cluster C and add an edge e2
into Q. Subsequently, edges e3 and e4 are added to C and Q
because they are both e2’s ϵ-neighbors and core hyperedges.
Since there is no hyperedge that is the ϵ-neighbors of e3 or
e4, it has C={e2, e3, e4}. Similarly, we obtain the remaining
cluster {e5, e6, e7}. Finally, the edge e1 is identified as an
outlier hyperedge, and the entire query process finishes.

B. Parallel Query Algorithm

In this subsection, we propose the parallel query algorithm
(PQuery). Unlike SQuery, PQuery separates the process of
clustering Core hyperedges from the process of clustering non-
core hyperedges for better parallelism. The pseudo-code of
the parallel query algorithm is shown in Algorithm 6. First,
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Algorithm 6: Parallel query algorithm: PQuery
Input : Parameters ϵ and µ, an Index I , and

hypergraph G = (V,E)
Output: Clustering result and labels of each hyperedge

1 C ← ∅, H ←GetCore(ϵ,µ,G,I);
2 Label← {e ∈ E|Label[e] = e};
3 foreach e ∈ H in parallel do
4 Nϵ[e]←GetSimNei(e1,ϵ,G,I);
5 foreach e′ ∈ Nϵ[e] in parallel do
6 if e′.id < e.id and e′ ∈ H then
7 CCe ← Label.path compress find(e);
8 CCe′ ← Label.path compress find(e′);
9 Label.union(CCe, CCe′);

10 foreach e ∈ H in parallel do
11 Pe ← Label.path compress find(e);

12 foreach e ∈ H in parallel do
13 foreach e′ ∈ Nϵ[e] in parallel do
14 if e′ /∈ H then
15 Label.union(e′, e) ;

16 foreach e ∈ E \H in parallel do
17 if e is unlabeled then
18 Label e as hub or outlier according to its

neighbor and Definition 9 ;

19 return C, Label

PQuery initializes the clustering result C as an empty set
and stores all core hyperedges into a hash table H (Line
1). Then, it initializes the labels of hyperedges as a union-
find disjoint set [74], an efficient data structure to find the
connected component to which a vertex belongs and merge
different connected components (Line 2). Lines 3-11 perform
clustering core hyperedges. For each core hyperedge e, PQuery
iterates over hyperedge e′ that is both a core hyperedge e′ and
a ϵ-neighbor of e (Lines 3-6). To prevent duplicate calculation,
PQuery skips the hyperedge e′ with a larger id than e (Line
6). Next, it finds the connected components CCe and CCe′

to which e and e′ belong, respectively (Lines 7-8). Then,
PQuery merges two connected components (Line 9). Lines 10-
11 utilize the path compress find to ensure that hyperedges
within the same connected component use the same label.
After clustering all core hyperedges, PQuery assigns non-
core hyperedges to clusters (Lines 12-15) and classifies the
remaining hyperedges as a hub or outlier (Lines 16-18).

Theorem 11. For a single thread, the time complexity of
PQuery is O((M(G)+|E|)·α(|E|)), where α(·) is the inverse
Ackermann function and M(G) is the set of neighboring
hyperedges of G.

V. INDEX CONSTRUCTION

In this section, we propose the algorithms to construct two
indexes presented in Section III.

Algorithm 7: OI-Construction
Input : A hypergraph G = (V,E)
Output: The index OI for G

1 NO ← ∅, CO ← ∅ ;
2 foreach hyperedge e ∈ E do
3 N [e]← {e′|e′ ∈

⋃
v∈V (e) E(v)}, cnt = 0;

4 foreach e′ ∈ N [e] do
5 Compute σ(e, e′) using hash table;
6 Add pair (e′, σ(e, e′)) into sorted NOe;

7 foreach µ ∈ [2, |N [e]|] do
8 ϵe,µmax ← NOe[µ].σ(e, e

′);
9 Add pair (e, ϵe,µmax) into sorted COµ;

10 return OI(NO,CO)

A. Similarity Computation
Before the construction of indexes, we need to obtain the

pairs of neighboring hyperedges and compute the similarity
score between hyperedges. The state-of-the-art structural clus-
tering algorithm pSCAN [51] utilizes a sort-and-merged-based
set intersection approach for similarity computations and only
computes the similarity score once for a pair of neighbors.
These techniques can be applied to our work, but we introduce
an alternative method for computing similarity. For each hy-
peredge e, its neighbor set is given by {e′|e′ ∈

⋃
v∈V (e) E(v)}.

For each neighboring hyperedge pair (e1, e2), we compute
σ(e1, e2) according to Definition 1, and use the temporary hash
table to accelerate the similarity computation. In particular, we
hash the vertices in V (e1) and look up the vertices of V (e2)
in the temporary hash table when computing the similarity
between e1 and e2. Thus, a single similarity computation is
bounded by O(|V (e1)|+ |V (e2)|).
B. OI construction algorithm

The pseudo-code for constructing Order-Index is shown
in Algorithm 7. OI-Construction initializes NO and CO as
empty (Line 1). Then, for each hyperedge e, OI-Construction
iterates each of its neighbors, computes the structural similarity
score, and adds them into NOe (Lines 4-6). Next, for each
hyperedge e, OI-Construction iterates each possible µ, sets
ϵe,µmax as the σ(e, e′) stored in NOe[µ], and inserts the pair
(e, ϵe,µmax) into COµ (Lines 7-9).

Theorem 12. The time complexity of OI-construction is
bounded by O(M(G) · (|V |+ log |E|2)), where M(G) is the
set of neighboring hyperedges of G.

C. LSBI construction algorithm
Algorithm 8 presents the pseudo-code for the LSBI-

Construction algorithm. Given a hypergraph G = (V,E),
LSBI-construction first initializes SI and CI as empty sets
(Line 1). Lines 2-13 construct both the Similarity-Index and
Core-Index. For each e ∈ E, LSBI-construction fetches its
neighbors (Lines 2-3). Then, for each e’s neighbor e′, the
similarity between them is computed only if e has a smaller
id than e′, thereby preventing duplicate calculations (Line 5).
The similarity score is then calculated (Line 6). Subsequently,
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Algorithm 8: LSBI-Construction
Input : A hypergraph G = (V,E)
Output: The index LSBI for G

1 SI ← ∅, CI ← ∅ ;
2 foreach hyperedge e ∈ E do
3 N [e]← {e′|e′ ∈

⋃
v∈V (e) E(v)}, cnt = 0;

4 foreach e′ ∈ N [e] do
5 if e.id < e′.id then
6 Compute σ(e, e′) using hash table;
7 k ← ⌈(1− σ(e, e′)) · τ⌉;
8 Add e′ into sorted set SIe[k];
9 Add e into sorted set SIe′ [k];

10 for i from 1 to τ do
11 cnt = cnt+ |SIe[i]|;
12 if cnt < 2 then continue;
13 Add (e, cnt) into sorted set CIi;

14 return LSBI(SI ,CI)

e′ is added into kth bucket in SIe, and e is added into kth

bucket in SIe′ , where k is determined based on the similarity
score (lines 7-9). Once SIe has been constructed, Lines 10-
13 insert the pairs (e, |N1− i

τ
[e]|) into ith bucket in CI for

i = 1, 2, · · · , τ .

Theorem 13. The time complexity of LSBI-Construction algo-
rithm (Algorithm 8) is bounded by O(|E|·τ ·log |E|+|M(G)|·
(log |E| + |V |)), where M(G) is the set of neighboring
hyperedges of G.

VI. EXPERIMENTS

A. Experimental Settings

Datasets. We use seven real hypergraphs in the experiment.
All the real hypergraphs are collected from [8], [47]. Addition-
ally, the synthetic dataset rpah is generated by the Random-
Preferential-Attachment-Hypergraph model [75]. The details
of all datasets are shown in Table II.
Competitors. Our empirical studies are conducted against the
following designs:

• Clustering quality. We compare the clustering result of
HSCAN with two prior structural clustering models:
SCAN [16] and WSCAN [76]. Referring to the previous
works [77]–[79], the measure is Modularity [70].

• Query performance. We primarily compare the following
three methods: (i) pHSCAN: the hypergraph-extended
version of the state-of-the-art exact structural clustering
algorithm [51], (ii) SQuery: the sequential query algo-
rithm in Section IV-A, and (iii) PQuery: the parallel query
algorithm in Section IV-B.

• Index cost. We primarily compare OI and LSBI with the
following aspects: (i) Space cost, (ii) Construction cost,
(iii) Considering that the query from LSBI is approxi-
mate, referring to the previous works [62], [63], we use
Adjusted Rand Index (ARI) [80] to compare approximate
query from LSBI and exact query from OI.

TABLE II
DATASETS: |V |#NODES, |E|#HYPEREDGES, d(v)#AVG. DEGREE OF A

NODE, |V (e)|#AVG. CARDINALITY OF A HYPEREDGE.

Graph Type |V | |E| d(v) |V (e)|
enron employee-email 4,423 5,734 6.8 5.2

contact person-clique 242 12,704 127 2.4
congress person-bill 1,718 83.105 426.2 8.8

drug NDCcode-substance 5,311 112,405 39.1 1.9
ubuntu users-posts 125,602 192,947 2.8 1.8
dblp author-publication 1,836,596 2,170,260 4 3.4

aminer author-publication 27,850,748 17,120,546 2.3 3.7
rpah Synthetic 91,002,133 104,003,058 3.4 3

enron contact congress drug ubuntu dblp
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Fig. 6. Maximum modularity score.

• Other hypergraph clustering models. We compare our
structural clustering model HSCAN with a classic hy-
pergraph clustering model LOUV [71] and the state-of-
the-art hypergraph clustering model PIC [72].

Environment and parameters. The code and datasets are
available at https://github.com/pardon-hnu/Hyper-SCAN. We
store all the graphs in memory and implement the algorithms
in C++. The experiments are conducted on a server with an
Intel(R) Xeon(R) Gold 5218R CPU @ 2.10GHz and 255 GB
memory. The server has 2 physical CPUs, and each CPU
contains 20 cores. The number of buckets, τ , is set to 10
by default.
Remark. Note that we only show results on partial datasets
in some experiments (Exp-2, Exp-4, Exp-5, and Exp-8) due
to space limitations. Other results are similar to results shown
in this paper and can be found in our technical report [73].

B. Clustering Quality

Referring to the previous works [63], [77]–[79], we use
modularity, a key measure for evaluating clustering quality, to
compare the clustering results between HSCAN and SCAN on
hypergraphs. Modularity does not require comparison with the
ground truth, making it widely applicable. The computation of
modularity for hypergraphs is referred to [70], and it represents
the quality of vertex clusters of the given hypergraph. Each
vertex cluster of HSCAN is

⋃
e∈C V (e) directly obtained

by its corresponding hyperedge set C. Additionally, we set
ϵ ∈ {0.1, 0.2, · · · , 0.9} and ϵ ∈ {2, 3, · · · , 9, 10, 15}.
Exp-1: Maximum Modularity. For the aminer and rpah
datasets, we generated clustering results under various param-
eters, but computing the modularity measures and the ARI
in Exp-10 took over 24 hours. Consequently, we excluded
these two hypergraphs from the evaluation and used the
remaining datasets. Fig. 6 shows the maximum modularity
score of the clustering results, where the maximum modularity
score means the best modularity of clustering results under
varying parameters. The results indicate that HSCAN achieves
a higher maximum modularity score than SCAN and WSCAN,
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Fig. 7. Two-dimensional heatmap (measure: modularity score).

suggesting its superior suitability for even clustering vertices
in hypergraphs.
Exp-2: Tuning parameters. In this experiment, we evaluate
the impact of ϵ and τ on the modularity of the clustering
results. Fig. 7 is a two-dimensional heatmap of each dataset
that shows modularity scores under all parameter pairs. As
shown in Fig. 7, we have the following observations: (1)
it is clear that the impact of ϵ is more significant than τ .
This is because ϵ directly affects both the compactness within
clusters and the looseness between clusters. (2) The modularity
scores show a trend of increasing first and then decreasing
with increasing ϵ. The trend is particularly evident in some
figures (e.g., Fig. 7(a) and Fig. 7(d)). This is likely due to the
existence of an optimal ϵ for each hypergraph. When ϵ is much
smaller than it, dissimilar vertices and hyperedges are included
in clusters, leading to poor clustering quality. When ϵ is much
larger than it, there are too few vertices and hyperedges within
the clusters, and the clustering quality is also poor. (3) The
modularity scores also show a trend of increasing first and then
decreasing with increasing µ. The trend is particularly evident
in some figures (e.g., Fig. 7(b) and Fig. 7(d)). This is likely due
to the existence of an optimal µ for each hypergraph, and the
optimal µ is 2 in many hypergraphs. When µ is smaller than
it, the compactness within the clusters decreases. When µ is
larger than it, the clusters have fewer vertices and hyperedges,
and the clustering quality deteriorates. (4) HSCAN does not
outperform SCAN and WSCAN under any pair of parameters.
This is because HSCAN majors in hyperedges, and the optimal
ϵ mentioned in (2) and the optimal µ mentioned in (3) of the
three models are not the same in most cases. Additionally,
according to the knee method, we find the ridge or knee-like
area in the heatmap and obtain the recommended parameters
ranges: ϵ ∈ [0.5, 0.8] and µ ∈ [2, 5] for HSCAN.
C. Query Performance

Referring to the previous work [56], we set ϵ ∈
{0.2, 0.3, · · · , 0.8} and µ ∈ {2, 5, 10, 15}. The default values
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Fig. 8. Average query time on all datasets.

of ϵ and µ are 0.6 and 5, respectively.
Exp-3: Average query time on all datasets. We compute
the average results to evaluate query efficiency. We set the
number of threads t of PQuery as {1, 8, 16, 32} and denote
this as PQuery(t). Fig. 8 reports the average running time
of pHSCAN, SQuery, and PQuery with different numbers of
threads. SQuery is up to three orders of magnitude faster than
pHSCAN. The running time of PQuery decreases with in-
creasing number of threads. PQuery(1) is slower than SQuery.
PQuery(8) is up to 1.27× faster than SQuery and PQuery(16)
is up to 2.27× faster than SQuery on large datasets such
as aminer, while they are not greater than SQuery on small
datasets. PQuery(32) is up to 3.2× faster than SQuery. To
summarize, PQuery is more suitable for large hypergraphs,
but it cannot offer a great improvement compared to SQuery
in small hypergraphs.

This phenomenon occurs for the following reasons: (1) To
implement and improve the parallelism, PQuery introduces
extra computations such as checking labels (Lines 10-11 in
Algorithm 5) and path compress find (Lines 7-8 in Algorithm
5). Thus, PQuery has a higher time complexity than SQuery.
(2) Some unavoidable atomic operations in PQuery affect par-
allelism, such as the Union operation. (3) PQuery needs more
cores to achieve higher parallelism and thus gain performance
beyond SQuery. Additionally, PQuery performs better in large
hypergraphs where the extra computation is a lower percentage
of the total computation.
Exp-4: Impact of ϵ. In this experiment, we evaluate the
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Fig. 9. Impact of ϵ: query time.
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impact of ϵ on query time. We use three algorithms: pHSCAN,
SQuery, and PQuery(32). As shown in Fig. 9, the query time
of SQuery and PQuery(32) decreases as ϵ grows. This is
because the clusters have fewer hyperedges when ϵ increases.
In addition, the performance gap between PQuery(32) and
SQuery is minimally affected by epsilon and more strongly
affected by hypergraph size.
Exp-5: Impact of µ. In this experiment, we evaluate the
impact of µ on query time. We also use three algorithms:
pHSCAN, SQuery, and PQuery(32). Since there is no clus-
tering for rpah under the default ϵ, we set ϵ to 0.3 for the
rpah dataset. The result is shown in Fig. 10. As µ increases,
the query times for SQuery and PQuery decrease, but not as
significantly as the decrease observed when ϵ increases. This
is because a small increase in µ does not significantly reduce
the number of edges in the clusters. Like ϵ, the performance
gap between PQuery(32) and SQuery is minimally affected by
epsilon and strongly affected by hypergraph size.
D. Index Cost
Exp-6: Space cost of index. In this experiment, we compare
the space cost of LSBI to that of OI. Fig. 11 shows the space
cost of these two indexes, indicating that LSBI requires only
25% ∼ 31% of the space needed by OI. Moreover, both
CI and SI cost less space than NO and CO, respectively,
which indicates the great effectiveness of the similarity bucket
technique. Additionally, the space overhead ratio of LSBI to
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OI decreases on sparser hypergraphs (e.g., dblp, aminer, and
rpah). This is because τ ·|E| is closer toM(G) on these sparse
hypergraphs.
Exp-7: Construction cost of index. In this experiment, we
evaluate the cost of constructing OI and LSBI. Fig. 12 reports
the running time of OI-Construction and LSBI-Construction.
We observe that LSBI-Construction can be up to 2.05× faster
than OI-Construction, and the increase in running time is
affected by both increasing hypergraph size and density.
Exp-8: Impact of τ . In this experiment, we evaluate the
impact of τ on index cost. Fig. 13 shows the construction
and space costs of OI and LSBI on each dataset with varying
τ ∈ {5, 10, 50, 100, 200}. The cost of OI is constant because
it is independent of τ , and the missing data on rpah is due to
memory limitations. The space and construction overhead of
LSBI increase with τ , but very slowly for small hypergraphs.
This is because the only hypergraph-related parameter affected
by τ in the space and construction complexity is |E|. LSBI
has a lower index cost than OI in most cases, but there is
a risk that the index cost of LSBI exceeds that of OI when
τ > 100. This indicates that we can set τ in the range [10, 100]
considering the approximate guarantee and the index cost.
Exp-9: Evaluate the approximate query. In this experiment,
we use Adjusted Rand Index (ARI) [80] with exact results
serving as the ground truth to compare the approximate
query from LSBI and the exact query from OI. We set
ϵ ∈ {0.25, 0.35, 0.45, 0.55, 0.65, 0.75} for approximate query
and evaluate the ARI score. Fig. 14 reports the max, mean, and
median values of ARI scores. This illustrates that the clustering
results obtained from the LSBI-based approximate query are
almost identical to those from the OI-based exact query. When
we need to reduce the index cost, we can use LSBI to obtain
consistent query performance and similar clustering results.
E. Comparison with Other Models

In this subsection, we compare our structural hypergraph
clustering model HSCAN with two modularity-based hyper-
graph clustering models: LOUV [71] (code provided by [81])
and PIC [72]. LOUV is a classic model, and PIC is the state-
of-the-art hypergraph clustering model. Table III shows the
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comparison between three models in modularity and time cost.
‘\’ denotes no results due to time out (over 24 hours) in
clustering or modularity computation. The top-1 score for each
dataset is highlighted with bold&underline. On modularity,
HSCAN and PIC perform better than each other on differ-
ent datasets, but both are better than LOUV. On clustering
efficiency, HSCAN outperforms other models on all datasets
except for the drug, and HSCAN can be up to 85× faster than
PIC. Thus, HSCAN delivers high-quality clustering results in
a short amount of time.
F. Case Study

In this subsection, we provide a case study based on a
real dataset with ground-truth MAG. MAG is downloaded
from [67], and collected from Microsoft-Academic-Graph
[82]. Each node in MAG represents an author, and each
hyperedge in MAG represents a paper with some coauthors
who published this paper together in a conference. We cluster
it with HSCAN and other compared clustering models in
this paper and show the results on 30 vertices in Fig. 15
due to the limited space. We use the clustering results with
the best modularity for structural clustering models (HSCAN,
SCAN, and WSCAN). There are four ground-truth clusters,
as shown in Fig. 15(a), corresponding to four conferences:
STOC (in green), VLDB (in orange), ICML (in blue), and
CVPR (in violet). Each author belongs to one cluster, which is
determined by the conference in which he/she has published
the most papers. There is a line between two vertices if they
share at least one hyperedge.

We observe that HSCAN produces the most accurate clus-
ters among all models, and PIC is close to HSCAN. WSCAN

TABLE III
COMPARISON BETWEEN HSCAN, LOUV, AND PIC.

Dataset Modularity Clustering Time (sec.)
LOUV PIC HSCAN LOUV PIC HSCAN

enron 0.48 0.76 0.70 0.41 0.07 0.01
contact 0.59 0.80 0.72 0.07 0.36 0.02

congress 0.47 0.59 0.91 4.09 1.17 0.32
drug 0.71 0.78 0.97 1.04 0.21 1.49

ubuntu 0.21 0.91 0.48 3.66 1.31 0.49
dblp 0.05 0.78 0.68 81.39 53.00 2.17

aminer \ \ \ 1005.08 810.985 9.59
rpah \ \ \ 5968.92 \ 85.85
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Fig. 15. Case study

and SCAN struggle to effectively differentiate between distinct
groups. LOUV generates many small-sized clusters. This is
because both HSCAN and PIC fully consider the unique
structure of the hypergraph, i.e., HSCAN obtains clusters
centered on the hyperedges, while PIC designs a new model
based on the relevance of the hyperedges.

VII. CONCLUSION

In this paper, we present a new and effective structural
clustering model for hypergraphs, along with a comprehen-
sive index-based approach for the new model, verified with
extensive experiments. The index-based approach concludes
with two indexes, two query algorithms, and construction
algorithms for two indexes. In further work, we will inves-
tigate FPGA-based parallel algorithms for HSCAN to further
accelerate the query.
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