
Efficient Core Decomposition over Large
Heterogeneous Information Networks

Yucan Guo, Chenhao Ma†, Yixiang Fang
The Chinese University of Hong Kong, Shenzhen

{guoyucan, machenhao, fangyixiang}@cuhk.edu.cn

Abstract—Core decomposition is a critical metric for evaluat-
ing the vertex importance and analyzing graph structure. Given
a graph G, a k-core is the largest subgraph of G where each
vertex has at least k neighbors. Most existing works mainly focus
on homogeneous graphs in which edges are of the same type
and cannot be applied to heterogeneous information networks
(HINs) directly. However, most real-world networks are HINs
which consist of different vertex types and edge types.

To reveal the cohesive subgraphs with hierarchical relations
on HINs, we adopt the well-known (k,P)-core model to compute
coreness over HINs, where P is a meta-path, i.e., a sequence of
relations defined between different types of vertices. Hence, the
(k,P)-core is a subgraph where each vertex is connected to at
least k other vertices via instances of P . Based on two kinds
of sparse matrix products, we propose two kinds of algebraic
core decomposition algorithms, which are suitable for general
HINs and locally dense HINs, respectively. We have performed
extensive empirical evaluations of our algorithms on six large
real-world HINs. The results show that the proposed solutions
are highly efficient for core decomposition and achieve up to
258.84× speedup than the state-of-the-art parallel algorithm on
20 cores. Moreover, other HIN tasks that involve homogeneous
graph construction can also benefit from our algorithms.

Index Terms—cohesive subgraphs, dense subgraphs, heteroge-
neous information networks, matrix computation, parallelization

I. INTRODUCTION

Heterogeneous information networks (HINs) are networks
with vertices and edges that are classified into multiple types.
Many real systems can often be modeled as HINs to enrich
semantics [1], such as bibliographic networks, communication
and computer systems, and social media. As shown in Figure
1(a), a toy HIN is constructed for the DBLP network, which
consists of vertices of different types (i.e., author, paper,
conference, and topic), as well as edges of various types (i.e.,
write, present, and mention). The directed lines denote their
semantic relationships. For example, the authors a1 and a2
have written a paper p1 together, which was presented in the
conference c1.

Cohesive subgraph search is a fundamental problem in
network analysis and has drawn much attention and bene-
fitted many applications among different domains [2, 3, 4].
Among typical cohesive subgraph models (e.g., k-core [5],
k-truss [6, 7], and k-clique [8]), k-core is one of the most
commonly used ones. A k-core is a graph (or subgraph)
where each vertex has at least k neighbors, which plays a
critical role in revealing the hierarchical structure of networks,
while a larger k value denoting a more cohesive graph (or
subgraph). The coreness of a vertex v in a graph G is

† Corresponding author.

a1 a2 a3 a4 a5 a6

p1 p2 p3 p4 p5

c1 t1 t2

(a) An HIN

A

P

C T

�����

�����	�
�	���	

(b) Schema

Fig. 1: An example HIN with the DBLP network schema.

the largest value of k such that there is a k-core of G
containing v. The goal of the k-core decomposition problem is
to compute the coreness of each vertex, while the computation
of larger coreness naturally depends on the computation of
smaller coreness due to the properties of k-core. Extensive
studies [9, 10, 11] have been conducted to design efficient k-
core decomposition algorithms. However, these studies mainly
focus on homogeneous networks, and applying them directly
to HINs would be unsuitable since all types of edges would
be treated as the same type.

The (k,P)-core model. To extend the k-core model to
HINs, Fang et al. [12] proposed a core model based on the
well-known concept of meta-path [13], namely (k,P)-core. A
meta-path P is a sequence of vertex types and edge types
between two given vertex types. For a specific edge type
R, R−1 denotes the inverse edge type of R. Based on a
specific meta-path P , the (k,P)-core is a set of vertices where
each vertex is connected to at least k different vertices via
instances of P . For example, in Figure 2(a), a meta-path P1,
defined on authors (A) and papers (P), represents the co-
authorship between two authors. In Figure 1(a), the authors
{a1, a2, a3, a4} form a cohesive community, in which each
pair of authors can be connected by a path instance of P1.
Hence, {a1, a2, a3, a4} is a (3,P1)-core. By replacing edges
with instances of meta-path P1 on Figure 1(a), we can build a
homogeneous graph GP1

, as shown in Figure 2(a), and the 3-
core of GP1 is the same with the (3, P1)-core of Figure 1(a).

The (k,P)-core decomposition has a wide range of applica-
tions: (1) Community detection. Core decomposition can reveal
the hierarchical relations of an HIN, which can be used to
accelerate the community detection process [14]. Communities
in an HIN can be detected by finding (k,P)-cores in the net-
work, where k is a variable threshold. The larger the value of k,
the more cohesive the community. (2) Recommendation. Many
E-commerce platforms use HINs to store customer, merchant,
and product information. The platform can send advertisement

2393

2024 IEEE 40th International Conference on Data Engineering (ICDE)

2375-026X/24/$31.00 ©2024 IEEE
DOI 10.1109/ICDE60146.2024.00189

20
24

 IE
EE

 4
0t

h
In

te
rn

at
io

na
l C

on
fe

re
nc

e
on

 D
at

a
En

gi
ne

er
in

g
(IC

DE
) |

 9
79

-8
-3

50
3-

17
15

-2
/2

4/
$3

1.
00

 ©
20

24
 IE

EE
 |

 D
O

I:
10

.1
10

9/
IC

DE
60

14
6.

20
24

.0
01

89

Authorized licensed use limited to: The Chinese University of Hong Kong CUHK(Shenzhen). Downloaded on November 14,2024 at 12:49:04 UTC from IEEE Xplore. Restrictions apply.

A P
�����

A
������

a1 a2

a3

a4a5

a6

(a) P1 and GP1

A P
�����

C

a1 a2

a3

a4a5

a6

P
�����	��

A
������
�����	�

(b) P2 and GP2

Fig. 2: Illustrating meta-paths and GPs.

messages about a specific product to a group of users with
similar consumer preferences if one of them has purchased this
product before. User groups with similar consumer preferences
can be found by (k,P)-core decomposition, using meta-paths

such as “customer
buy−→ product

buy−1

−→ customer” and

“customer
consume in−→ merchant

consume in−1

−→ customer”.
(3) Ecosystem analysis. For example, in an HIN of plants and
pollinators, core decomposition can point out key species (i.e.,
species with high coreness in the network) whose stability
would prevent cascading extinctions of the ecosystem [15].

Linear algebra for HINs. Although various applications
can benefit from the (k,P)-core decomposition, existing
(k,P)-core decomposition algorithms [12] are inefficient on
large HINs or long meta-paths due to the tremendous cost of
breadth-first search. Hence, the goal of this paper is to design
efficient parallel (k,P)-core decomposition algorithms. Our
solution is based on linear algebra and matrix multiplication,
as matrix multiplication is quite parallel-friendly and can enjoy
the speedup by boolean matrix multiplication, which will be
explained later. Linear algebra plays an important role in
graph theory, by which we can investigate adjacency matrices
of graphs to help us understand them better [16]. Unlike a
homogeneous network which only has one adjacency matrix,
an HIN has a series of adjacency matrices, each of which
represents a specific type of edge. For example, Figure 3(a)
shows the adjacency matrix of the edge type “write” for the
DBLP network in Figure 1(a).

Large-scale networks can be processed efficiently by a lim-
ited number of matrix multiplications based on their adjacency
matrices. When a network is represented by adjacency matri-
ces, matrix-matrix multiplication can be treated as a breadth-
first search [17]. For example, co-writers in Figure 1(a) can be
searched by matrix multiplication Mwrite×MT

write, as shown
in Figure 3(b). We can find that each off-diagonal non-zero
entry in Mwrite ×MT

write denotes that the corresponding two
vertices are connected in the induced homogeneous graph GP1

in Figure 2(a).
Challenges and contributions. Based on the above discus-

sions, we adopt the two-stage method to compute the (k,P)-
core decomposition. We build the induced homogeneous graph
GP first and then compute the coreness of those vertices with
target type by using k-core decomposition algorithms on GP .
However, GP is often much denser than the original HIN, as
reported in [12], which imposes great challenges for (k,P)-
core decomposition, especially for the first stage, i.e., the con-
struction of GP . As shown in Table I, the current state-of-the-
art (k,P)-core decomposition algorithm, HomBCore [12],

1 1 1

1 1 1 1

1 1

1 1 1

1

1

p2 p3 p4p1 p5a1

a1

a2

a3

a4

a5

a6

t2... ...

..
.

t2

(a) Mwrite

2 2

2 3 1

2 2

2 3 1

1 1

1

a4 a5 a6a3a1

a1

a2

a3

a4

a5

a6

t2

3

2

3

2

a2 ...

..
.

t2

1

3

2

4

3

(b) Mwrite ×MT
write

Fig. 3: An example of using matrix product to find co-writers

in Figure 1(a).

expends a considerable amount of time in the first stage. In
addition, two P-connected vertices are always connected by
several path instances and result in the redundancy of the
search process. To overcome those obstacles that hinder the

Datasets GP Construction Coreness Computing
Movielens 99.4% 0.6%

Amazon 96.2% 3.8%

Freebase 96.3% 3.7%

DBLP 93.4% 6.6%

Higgs 97.7% 2.3%

ConceptNet 90.6% 9.4%

TABLE I: The respective average proportions of running time

for the first stage and the second stage in HomBCore.

efficient (k,P)-core decomposition, especially the bottleneck
of time-consuming construction of the GP , we have made the
following contributions:
• Considering the sparsity of most real-world HINs, we

develop a novel sparse boolean matrix data structure called
DP-SpGEM to store the adjacency matrices of HINs. We then
develop a sparse boolean matrix multiplication operator ×G

bool
to accelerate the multiplication process with the DP-SpGEM
data structure. An (k,P)-core decomposition algorithm named
BoolAPCoreG that uses operator ×G

bool to compute matrix mul-
tiplication is then proposed based on the symmetry of meta-
paths and the properties of the transposed matrix. Besides,
some other HIN tasks, e.g., (k, P)-truss decomposition [18],
can also benefit from our fast construction of GP , as they
also adopt a two-stage paradigm that will build the induced
homogeneous graph at the first stage.
• To reduce the redundant computations for HINs with

locally dense regions, e.g., Movielens, we develop a sparse
boolean matrix data structure called DP-SpLDM. Based on
this data structure, we design a parallel sparse boolean matrix
multiplication operator ×D

bool, which can further accelerate the
multiplication process when the HIN has locally dense areas.
Based on operator ×D

bool, an algorithm called BoolAPCoreD is
proposed.
• We have experimentally compared our algorithms with the

state-of-the-art algorithm on six real-world large HINs. Both
theoretical analysis and empirical evaluation validate that our
algorithms are up to 258.84× faster than the state-of-the-art
algorithm on 20 cores for (k,P)-core decomposition.

Outline. The rest of the paper is organized as follows.
We review the related work in Section II. In Section III, we

2394

Authorized licensed use limited to: The Chinese University of Hong Kong CUHK(Shenzhen). Downloaded on November 14,2024 at 12:49:04 UTC from IEEE Xplore. Restrictions apply.

formally present the (k,P)-core decomposition problem. We
present our boolean algebraic algorithm for general HINs in
Section IV, and boolean algebraic algorithm for HINs with
locally dense areas in Section V. In Section VI, we show the
experimental results. Section VII concludes the paper.

II. RELATED WORK

Cohesive subgraph detection is a fundamental topic in
network science that has drawn much attention in academia
and industry for decades. To detect the cohesive subgraphs in
an effective way, many cohesive subgraph models have been
formulated, including k-core [5], k-truss [6, 7], k-clique [8],
and k-edge-connected component (k-ECC) [19]. Among these
models, k-core, or more generally, k-core decomposition,
plays a critical role in revealing the cohesiveness of subgraphs.
Existing works on core decomposition can usually be classified
into core decomposition over homogeneous graphs (k -core
decomposition) and core decomposition over heterogeneous
graphs.
k-Core Decomposition. The classical method to perform

k-core decomposition in the homogeneous graph is based on
a peeling process. Batagelj et al. [20] introduced an algorithm
with O(n+m) time cost. In [20], k is iterated from 1 to the
maximum degree, and for each k, the vertices with degrees no
greater than k are iteratively removed, where k is the coreness
of those vertices. Batagelj and Zaveršnik [21] optimized this
peeling algorithm with O(m) time complexity based on bin-
sort. The peeling algorithms require global information on
the entire graph at each step. Thus it is not suitable for
parallelization.

In 2016, Linyuan Lü and Stanley [22] introduced a decen-
tralized local method to calculate coreness values in parallel
through the connection between H-index, degree, and core-
ness. Ahmet Erdem Sarıyüce and Pinar [23] generalize Lü et
al.’s work for any nucleus decomposition, including k-core and
k-truss. However, all the works above focus on homogeneous
graphs, and it is unclear how to adapt them for the core
decomposition problem over HINs.

Core Decomposition over HINs. Fang et al. [12] were the
first to define a notion of (k,P)-cores for HINs, generalized
from the k-core model on homogeneous graphs. Here, P de-
notes a meta-path specified by the users. In [12], they proposed
a batch search strategy to build an induced homogeneous
graph GP via a symmetric meta-path P and extended it for
core decomposition, which is named HomBCore. They also
proposed a fast algorithm called FastBCore to compute the
coreness of a specific query vertex, but it is not specifically
designed for core decomposition and performs slower than
HomBCore for this purpose. In HomBCore, vertices search
for their P-neighbors one by one in a batch fashion with

O(n1 · d1,2 + n1

∑l
i=1 ni · di,i+1) time complexity, in which

ni is the number of vertices whose types match with i-th
vertex in meta-path, di,i+1 is the maximum number of vertices
with (i+1)-th vertex type that are connected to a vertex with
i-th vertex type in meta-path. This approach is well-suited
for parallelization at the vertex level, as the batch search
process of each vertex can be executed without interference,
and without requiring the use of mutex. However, as the graph
becomes denser and larger, the efficiency of HomBCore may

TABLE II: Notations used in this paper.

Notation Meaning
H = (V,E) an HIN with vertex set V and edge set E

ψ(v) (φ(e))
the vertex (edge) type of a vertex v (edge

e)

P a symmetric meta-path defined on an HIN

schema

l the length of P
l(P) (r(P)) the left (right) half of a meta-path P

GP
a homogeneous graph induced by a meta-

path P on G

Ck (Ck,P) a (k,P)-core

d(v) (d(v, S))

degree number of vertex v, i.e., number of

path instances starting from the vertex v
and ending at vertex u ∈ S

c(v) (c(v, S)) coreness of vertex v

MR an adjacency sparse matrix for relation R

MT
R the transpose of matrix MR

MR[u, v]

an element in matrix MR, the value of

which is the number of edges with type R
that start from vertex u and end at vertex

v

decrease due to the increased overhead of the search process
and the frequently repeated access to the same intermediate
vertices. This redundancy can result in numerous unnecessary
computations across different vertices, underscoring the need
for efficient and innovative solutions that can be parallelized
in a scalable manner.

The major bottleneck of HomBCore lies in the significant
amount of time required for constructing the homogeneous
graph. In 2023, Chatzopoulos et al. [24] proposed a new
algorithm for finding P-neighbors based on sparse matrix
multiplication and intermediate result caching, namely Atra-
pos, which can be used to construct GP in a more efficient
way. However, Atrapos opts to directly invoke existing ma-
trix operation libraries for matrix multiplication, limiting its
functionality to a serial algorithm. Additionally, generic matrix
multiplication may not be perfectly suited for HIN scenarios.

Another core-based model on HINs is the relational com-
munity model (r-com) proposed by Jian et al. [25]. The r-com
model detects cohesive subgraphs based on a set of relational
constraints (e.g., a vertex of type A must have k1 neighbors
of type P). The r-com model aims to find the cohesive
subgraph consisting of vertices of different types. However,
the relational constraints only restrict the vertices with direct
edges on HINs, and it is hard to provide a meaningful topic
for the community, which is the focus of the meta-path-based
core model [12] adopted in this paper.

III. PROBLEM DEFINITION

A. Preliminaries

We summarize the frequently used notations in Table II.

2395

Authorized licensed use limited to: The Chinese University of Hong Kong CUHK(Shenzhen). Downloaded on November 14,2024 at 12:49:04 UTC from IEEE Xplore. Restrictions apply.

Definition 3.1 (HIN [13]): An HIN is a directed graph H =
(V,E) with a vertex type mapping function ψ : V→A and
an edge type mapping function φ : E→R, where each vertex
v ∈ V belongs to a vertex type ψ(v) ∈ A, and each edge
e ∈ E belongs to an edge type (also called relation) φ(e) ∈ R,
and |A|+ |R| > 2.

Definition 3.2 (HIN schema [13]): Given an HIN H =
(V,E) with mappings ψ : V→A and φ : E→R, its schema
TG is a directed graph defined over vertex types A and edge
types (as relations) from R, i.e., TG = (A,R)

The HIN schema shows all allowable edge types, vertex
types, and the relation between each edge type and its vertex
types. Figure 1(b) shows the DBLP network schema, in which
the vertex types “A”, “P”, “C”, and “T” denote author, paper,
conference, and topic, respectively. Note that if there is an
edge R from vertex type A to vertex type B, there naturally
exists an inverse edge R−1 from vertex type B to vertex type
A. Here we use lower-case letters (e.g., a1) to denote vertices
and upper-case letters (e.g., A) to denote vertex types.

Definition 3.3 (Meta-path [13]): A meta-path P is a path
defined on an HIN schema TG = (A,R), and is denoted in

the form A1
R1−→ A2

R2−→ · · · Rl−→ Al+1, where l is the length
of P , Ai ∈ A, and Ri ∈ R(1 ≤ i ≤ l).

We also use vertex type names to denote a meta-path, i.e.,
P = (A1A2 · · ·Al+1), if there exist no multiple relation types
between the same pair of vertex types. The left and right half

of a meta-path P are denoted by l(P) = A1
R1−→ A2

R2−→
· · · R�(l−1)/2�−→ A�(l+1)/2� and r(P) = Al+1

R−1
l−→ Al

R−1
l−1−→

· · ·
R−1
�(l+1)/2�−→ A�(l+1)/2�. The reverse meta-path of a meta-

path P is denoted by P−1 = Al+1
R−1

l−→ Al

R−1
l−1−→ · · · R−1

1−→ A1.
We say a meta-path P is symmetric if l(P) is the same as
r(P). For example, the meta-path P2 in Figure 2(b) can be
written as P2 = (APCPA). The left half, right half, and

reverse meta-path of P2 are l(P2) = A
write−→ P

present−→ C,

r(P2) = A
write−→ P

present−→ C, and P−1
2 = A

write−→ P
present−→

C
present−1

−→ P
write−1

−→ A, respectively. Since l(P2) = r(P2),
meta-path P2 is a symmetric meta-path. While the focus
of this paper is on symmetric meta-paths, it is important
to note that our algorithms can also be extended to handle
asymmetric meta-paths, as we demonstrate in our experimental
results presented in Section VI. It is worth noting that unless
otherwise stated, all the meta-paths mentioned later in this
paper are symmetric.

We call a path p = a1 → a2 · · · → al+1 a path instance
of P if ∀i, satisfy ψ(ai) = Ai and φ(ei = (ai, ai+1)) = Ri.
Vertex type A1 is also called the target type. For example, in
Figure 1(a), the path a1 → p1 → c1 → p2 → a2 is a path
instance of P2, and a1-a6 are vertices with the target type.

Definition 3.4 (P-neighbor [18]): Given an HIN H =
(V,E) and a meta-path P , a vertex u is a P-neighbor of a
vertex v if there is a path instance of P between u and v,
where u �= v. We also say u and v are P-connected, and
(u, v) is called a P-pair.

Definition 3.5 (P2 -neighbor [18]): Given an HIN H =
(V,E) and a meta-path P , a vertex u is a P

2 -neighbor of

a vertex v if there is a path instance of l(P) or r(P) between
u and v, and (u, v) is called a P

2 -pair.

Example 3.1: Consider the HIN in Figure 1(a) with meta-
paths P1 and P2 in Figure 2(a) and Figure 2(b). Table III
shows the P-neighbors and P

2 -neighbors of each vertex with
target type A.

TABLE III: Results of P-neighbors and P
2 -neighbors on a

small DBLP network.

Vertex
P1 = (APA) P2 = (APCPA)

P-neighbors P
2 -neighbors P-neighbors P

2 -neighbors

a1 {a2, a3, a4} {p1, p2, p3} {a2, a3, a4} {c1}
a2 {a1, a3, a4, a5} {p1, p2, p3, p4} {a1, a3, a4} {c1}
a3 {a1, a2, a4} {p2, p3} {a1, a2, a4} {c1}
a4 {a1, a2, a3, a5} {p2, p3, p4} {a1, a2, a3} {c1}
a5 {a2, a4} {p4} ∅ ∅
a6 ∅ {p5} ∅ ∅

B. Problem Definition

In this paper, we aim to compute the coreness of each vertex
with a specific target type over HINs. To connect the vertices
with the target type, we adopt a symmetric meta-path P , who
is starting and ending with the target type, following the well-
known (k,P)-core1 model on HINs [12].

Definition 3.6 ((k,P)-core [12]): Given an HIN H, an inte-
ger k, and a meta-path P , a (k,P)-core of H is a maximal set
Ck,P of P-connected vertices, s.t. ∀v ∈ Ck,P , d(v,Ck,P) ≥
k, where vertices of Ck,P are with the type linked by P .

The (k,P)-cores have some interesting properties.

Proposition 1 ([12]): Given an HIN H and a meta-path
P , the (k + 1,P)-core is contained in the (k,P)-core, i.e.,
Ck+1 ⊆ Ck.

Proposition 2 ([12]): Given an HIN H, a meta-path P and
an integer k, for any two (k,P)-core Ck and C′k, if Ck∩C′k �=
∅, then Ck = C′k.

Based on the above properties, the core decomposition over
HINs can be defined as follows.

Definition 3.7 ((k,P)-core decomposition): Given an HIN
H and a meta-path P , a (k,P)-core decomposition is a
partition, where vertices with target type are partitioned into
layers such that a vertex v is in layer k if it belongs to a
(k,P)-core but does not belong to a (k + 1,P)-core. k is
called the coreness of v if v is in layer k.

We now formally define the (k,P)-core decomposition
problem.

Problem 1 ((k,P)-core decomposition problem): Given an
HIN H and a meta-path P , return the coreness of each vertex
with the target type of P .

Example 3.2: Consider the HIN in Figure 1(a) with meta-
path P1 in Figure 2(a). Vertices with target type A are a1, a2,
a3, a4, a5, and a6, the coreness values of them are c(a1) = 3,
c(a2) = 4, c(a3) = 3, c(a4) = 4, c(a5) = 2, and c(a6) = 0,
respectively.

1We use “(k,P)-core” to mean “Basic (k,P)-core” in this paper.

2396

Authorized licensed use limited to: The Chinese University of Hong Kong CUHK(Shenzhen). Downloaded on November 14,2024 at 12:49:04 UTC from IEEE Xplore. Restrictions apply.

IV. BOOLEAN ALGEBRAIC (k, P)-CORE DECOMPOSITION

ALGORITHMS FOR GENERAL HINS

In this section, we present a boolean algebraic algorithm for
(k, P)-core decomposition that is suitable for general HINs.
The main idea of our algebraic algorithms is to construct
the induced homogeneous graph GP via adjacency matrix
multiplication and perform the k-core decomposition on GP .

An HIN H can be represented by a series of adjacency
matrices, MR, R ∈ R, where the element MR[u, v] is one
when there exists an edge with type R from u to v, and zero
when there is no such edge. To reduce space complexity, we
only build one matrix MR for each pair of inverse relations R
and R−1, since matrix MR−1 is the same as MT

R . For example,
Figure 3(a) shows an adjacency matrix Mwrite, which denotes
the edges of type write in Figure 1(a), and the edges of type
write−1 can be represented by MT

write. Next, we show that
the induced homogeneous graph GP can be computed via
adjacency matrix multiplication by the following lemma.

Lemma 4.1 ([26]): Given an HIN H = (V,E) with three
vertex types A, B, and C, suppose that adjacency matrices

MR1 and MR2 denote relation A
R1−→ B and B

R2−→ C

respectively. For the meta-path P = A
R1−→ B

R2−→ C, the
adjacency matrix of the induced homogeneous graph GP can
be obtained by MR12 = MR1 ×MR2 . MR12 [i, j] denotes the
number of path instances of P between vertex i and vertex j.

According to Lemma 4.1, we can build the induced homo-
geneous graph GP by matrix chain multiplication, following
the order of the relation sequence in meta-path P . To our
knowledge, earlier studies like [26, 27, 24] identified P-
neighbors using either coordinate (COO) or compressed sparse
row (CSR) matrix multiplication. However, multiplying the
adjacency matrices in the COO format is both time and space-
intensive as it retains each element as a triple. Utilizing the
CSR format for multiplication is also time-consuming. Given
that HINs tend to be sparse, many empty rows appear in
the adjacency matrix, thereby causing unnecessary overhead
during row-wise multiplication.

Moreover, when building GP , the non-zero nature of an
element is of primary concern, rather than its exact value.
Given that matrix multiplication to compute exact values can
be notably demanding when vertices with the target type in
HINs are linked by numerous path instances of P , opting
for sparse boolean matrix multiplication is a more efficient
approach for the construction of GP .

A. Sparse Boolean Matrix Multiplication in DP-SpGEM For-
mat

To speed up the adjacency matrix multiplication process
and reduce memory usage, we build a new sparse boolean
matrix format based on the well-known sparse boolean matrix
format [28] and design a parallel sparse boolean matrix mul-
tiplication operator to compute the adjacency matrix product
for general HINs.

1) Data Structure of Sparse Matrix in DP-SpGEM Format:
To adapt the classical CSR format for general HINs (i.e.,
sparse HINs), we introduce a novel sparse boolean matrix
format named Double Pointer Sparse General Matrix (DP-
SpGEM). When compared to the CSR format, DP-SpGEM
incorporates two primary modifications:

1Mwrite.idx

Mwrite.elements

2 3 4 5 6 -1

Mwrite.row = Mwrite.col = 14

Mwrite.nnzRows

··· -1

7

8

9

[1]

7

8

9

10

[2]

8

9

[3]

8

9

10

[4]

10

[5]

11

[6]

1 2 3 4 5 6

Fig. 4: Illustrating the DP-SpGEM format of Mwrite.

1) DP-SpGEM constructs an additional index,
M.nnzRows[·]. M.nnzRows[·] retains the original
row index of each nonzero row, while M.idx[·] stores
the row index of each row in M.element[·] with −1
denoting zero row. Consequently, when the matrix is
positioned on the left side of a multiplication, only
the nonzero rows are accessed based on the index
M.nnzRows[·] and M.idx[·]. Meanwhile, when the
matrix is on the right side, each row can be accessed
directly using the index M.idx[·].

2) Instead of storing it as a monolithic structure, DP-SpGEM
accommodates each nonzero row separately within a two-
dimensional vector, M.elements[j][·]. This design choice
ensures parallel computation and insertion for each row.

Table IV shows our data structure of a sparse matrix M in
DP-SpGEM format. Each element in M.elements[j][·] with
M.idx[i] = j is an integer k, which denotes M [i, k] = 1.

TABLE IV: Data structure of a sparse matrix M in DP-

SpGEM format.

Member Variable Meaning
M.row (M.col) the number of rows (columns) in M

M.nnzRows[·] an array storing row indices of all nonzero

rows in M

M.elements[j][·] an array storing all nonzero elements of

the j-th (candidate) nonzero row in M

M.idx[i]

the index in M.elements of the i-
th row in M . If the i-th row is a

nonzero row, then its nonzero elements

are stored in M.elements[M.idx[i]], oth-

erwise M.idx[i] = −1

Example 4.1: Figure 4 shows the DP-SpGEM format of
Mwrite in Figure 3(a), where Mwrite.nnzRows stores all the
nonzero rows of Mwrite, and Mwrite.idx[i] stores the index in
Mwrite.elements of the i-th row in Mwrite. Mwrite.idx[1] =
1 since the first row of Mwrite is also the first nonzero row
of Mwrite, Mwrite.idx[7] = −1 since the 7-th row of Mwrite

is not a nonzero row.

2) Sparse Boolean Matrix Multiplication Operator ×G
bool:

Based on the DP-SpGEM store of sparse boolean matrices, we
design a parallel sparse boolean matrix multiplication operator

2397

Authorized licensed use limited to: The Chinese University of Hong Kong CUHK(Shenzhen). Downloaded on November 14,2024 at 12:49:04 UTC from IEEE Xplore. Restrictions apply.

×G
bool to compute the matrix product, as shown in Algorithm 1.

The main idea of our parallel multiplication operator is to
compute different rows in parallel based on Gustavson’s clas-
sical serial algorithm [28]. Given two sparse boolean matrices
MA and MB , the operator computes MC = MA × MB .
In Gustavson’s algorithm, the result matrix has to be calcu-
lated row-by-row in serial, regardless of whether the row is
empty, since this algorithm does not separately record nonzero
rows due to the single pointer structure of the CSR format,
and matrix elements are stored in a one-dimensional array
MC .elements[·] in row-major order. To ensure parallelism
and boost efficiency, we transform MC .elements[·] into a
two-dimensional vector MC .elements[·][·] and initialize an
array flag[·] to mark nonzero elements for each thread (lines
2-4). After that, each candidate nonzero row (i.e., rows in
MA.nnzRows[·]) is computed and nonzero elements are in-
serted into MC .elements[·][·] in parallel based on Gustavson’s
algorithm (lines 5-15). Finally, the array MC .nnzRows[·] is
constructed according to MC .elements[·][·] and the result
matrix MC is returned (lines 16-19).

Algorithm 1: Sparse Boolean Matrix Multiplication

Operator: ×G
bool

Input: two sparse matrices, MA and MB ;

Output: the result sparse boolean matrix,

MC = MA ×MB ;

1 MC .row ← MA.row, MC .col ← MB .col,
MC .idx[·] ← −1;

2 MC .elements[·] ← a vector of size(MA.nnzRows)

empty vectors;

3 foreach thread t do
4 flag[·] ← 0 ; // Initialize per thread

5 for i ← 1 to size(MA.nnzRows[·]) in parallel do
6 row ← MA.nnzRows[i], r ← MA.idx[row];
7 foreach j ∈ MA.elements[r] do
8 if MB .idx[j] = −1 then continue;

9 foreach k ∈ MB .elements[MB .idx[j]] do
10 if flag[k] = 0 then
11 flag[k] ← 1;

12 append k to MC .elements[i];

13 if MC .elements[i] �= ∅ then
14 MC .idx[row] ← i;
15 foreach e ∈ MC .elements[i] do flag[e] ← 0;

16 foreach i ← 1 to size(MA.nnzRows[·]) do
17 if MC .elements[i] �= ∅ then
18 append MA.nnzRows[i] to MC .nnzRows;

19 return MC ;

Figure 5 shows the process of computing the second row
of Mco−write in Figure 3(b) by sparse boolean matrix multi-
plication operator ×G

bool.

[1]

j

row 2 of Mwrite

Mwrite
-1.elements

row 2 of Mco-write

j 1 2 3 4 5

1 2 1 2 3 4 1 2 3 4 2 4 5 6

j 7 8 9 10

1 1 1 1flag 1 ··· 0

1 2 3 4 5 ··· 14

Mwrite
-1.idx -1 1 2 3 4 5··· -1 -1 -1 -1

[2] [3] [4] [5]

Fig. 5: Illustrating operator ×G
bool.

B. Boolean Algebraic (k, P)-Core Decomposition Algorithm
for General HINs

Based on the parallel sparse boolean matrix multiplica-
tion operator ×G

bool, we present an efficient algorithm in
this section, called BoolAPCoreG. Given a meta-path P , the
algorithm first builds the induced homogeneous graph GP
via sparse matrix multiplication and invokes the homogeneous
core decomposition algorithm, AND [23], on GP to compute
coreness of vertices with target type. BoolAPCoreG relies
on the following key observation. All the meta-paths are
symmetric, which makes MP = MR1 ×MR2 × · · · ×MR l

2

×
MT

R l
2

×· · ·×MT
R2

×MT
R1

= MR1×MR2×· · ·×MR l
2

×(MR1×
MR2

×· · ·×MR l
2

)T . Hence, we can compute Ml(P) first, and

then obtain MP by Ml(P) × MT
l(P), which will significantly

reduce the number of multiplications.

However, this solution is not suitable for every meta-path
since the overhead of matrix chain multiplications is not
always in proportion to the length of the matrix chain. Whether
obtaining MP by Ml(P) ×G

bool M
T
l(P) will reduce the running

time or not is mainly related to the densities of matrices we got
at each step before we obtain MP and the density of Ml(P).
Here, the density of a sparse matrix means the number of
nonzero elements over the matrix size. In some cases, the den-
sity of Ml(P) is much higher than those of other intermediate
matrices in the matrix chain, which makes the time cost of
computing Ml(P)×G

boolM
T
l(P) is even higher than the time cost

of computing Ml(P)×G
boolM

T
R l

2

×G
bool · · ·×G

boolM
T
R2

×G
boolM

T
R1

.

Hence, we will train a multiple linear regression model to
decide which multiplication plan to use.

Based on the discussions above, we develop the algorithm
BoolAPCoreG, shown in Algorithm 2. First, we initialize the
average density by 0 and the result matrix by the identity
matrix I (lines 1-2). Then, we compute MR1 ×G

boolMR2 ×G
bool· · · ×G

bool MR l
2

step-by-step and record the density of each

result matrix (lines 3-5). Next, we calculate the density of
Ml(P) and the mean density of (l

2 − 1) result matrices we got
before we obtain Ml(P), and then use a function F to evaluate

whether to adopt Ml(P) ×G
bool M

T
l(P) to compute MP or not

(lines 6-11). Finally, we construct the induced homogeneous
graph GP and compute the coreness for each vertex in GP
(lines 12-13).

2398

Authorized licensed use limited to: The Chinese University of Hong Kong CUHK(Shenzhen). Downloaded on November 14,2024 at 12:49:04 UTC from IEEE Xplore. Restrictions apply.

Algorithm 2: BoolAPCoreG

Input: H = (V,E), {MRi |Ri ∈ R}, P;

Output: c[·]: coreness for all vertices with target type;

1 ρavg ← 0;

2 M ← I ; // initialize M with identity
matrix

3 for i ← 1 to l
2 do

4 M ← M ×G
bool MRi ;

5 ρavg ← ρavg +Density(M);

6 ρavg ← ρavg/(
l
2 − 1);

7 ρmid ← Density(M);
8 if F (ρavg, ρmid) > 1 then
9 M ← M ×G

bool M
T ;

10 else
11 for i ← l

2 + 1 to l do M ← M ×G
bool MRi

;

12 Construct GP based on M ;

13 c[·] ← AND(GP) ; // call k-core decomp.
algo.

14 return array c[·];

Function F is developed to evaluate which method is more
suitable for a specific meta-path:

F (ρavg, ρmid) = c0
ρavg
ρmid

+ c1ρmid + c2ρavg + c3 (1)

Here, ρavg and ρmid are the densities collected in Algorithm
2, c0, c2, and c3 are positive constants, c1 is a negative
constant. The values of c0, c1, c2, and c3 are trained via
multiple regression analysis according to the ratio of running
times of the two plans. The result of F (ρavg, ρmid) is a

prediction about
runtime(

∏l
i=1 MRi

)

runtime(
∏ l

2
i=1 MRi

×G
bool(

∏ l
2
i=1 MRi

)T)
. So when

F (ρavg, ρmid) < 1, we compute GP in a matrix chain
multiplication manner (line 11 in Algorithm 2). Otherwise,
we obtain MP by Ml(P) ×G

bool M
T
l(P) (line 9 in Algorithm 2).

Lemma 4.2: If BoolAPCoreG use Ml(P) ×G
bool M

T
l(P) to

compute MP , it takes O((
∑ l

2−1
i=1 nnz(Mi) ·nnz(MRi+1

)/n+
nnz(Ml(P))

2/n+ l
2 ·np+tmP)/p) time, where l is the length

of meta-path P , n is the number of vertices in H, Mi =
MR1

×G
bool MR2

×G
bool · · · ×G

bool MRi
, nnz(Mi) is the number

of nonzero elements in Mi, t is the number of iterations when
computing coreness on GP , mP is the number of edges in
GP , and p is number of threads.

Proof 4.1: The computation of Ml(P) consists of l
2 −

1 times sparse matrix products, and each product takes
O((nnz(Mi) ·nnz(MRi+1)/n+np)/p) time, where np is the
time cost of initializing an array flag[·] for each thread. Thus,

building Gp takes O((
∑ l

2−1
i=1 nnz(Mi) · nnz(MRi+1)/n +

nnz(Ml(P))
2/n + l

2 · np)/p) time, as F is trained offline
with linear time, and the computation of ρavg , ρmid, and
F (ρavg, ρmid) can be done in constant time. The time cost
of computing coreness estimates for each vertex v ∈ GP
is O(size(Neighborv)) per iteration. Therefore, computing
coreness can be done in O(t(

∑
v∈GP size(Neighborv))/p) =

O(tmP/p). Hence, Lemma 4.2 holds.

V. BOOLEAN ALGEBRAIC (k, P)-CORE DECOMPOSITION

ALGORITHMS FOR LOCALLY DENSE HINS

In Section IV, we present a boolean algebraic algorithm that
is mainly inspired by the sparsity of HINs. However, though
real-world HINs are sparse overall, there still exists a number
of locally dense regions in some of them, indicating frequently
appeared relations.

A. Sparse Boolean Matrix Multiplication in DP-SpLDM For-
mat

To build a sparse matrix format that can support efficient
parallel boolean multiplications over sparse matrices with
several dense rows/columns, we modify the well-known sparse
boolean matrix format [28] by exploiting the locally dense
property of the matrices.

1) Data Structure of Sparse Boolean Matrix in DP-SpLDM
Format: To adapt the classical CSR format for HINs that are
locally dense but globally sparse, we proposed a novel data
structure, namely Double Pointer Sparse Locally Dense Matrix
(DP-SpLDM). Compared to the CSR format, DP-SpLDM
makes two major changes:

1) In DP-SpLDM, a matrix can be stored in both CSR for-
mat and CSC format, which reduces unnecessary compu-
tations when performing boolean matrix multiplications.
Note that it is optional whether to store a matrix in
two formats or not. In our algorithm, only those initial
adjacency matrices are stored in two formats, as all the
intermediate matrices in the matrix multiplication chain
are always on the left-hand side and only need to be
stored in the CSR format.

2) DP-SpLDM only builds indices for the rows or columns
with nonzero elements but not for every row and column,
to save space and avoid useless iterations over all-zero
rows or columns. To implement, we build an index to
record all the nonzero rows and columns, which are
named M.nnzRows[·] and M.nnzCols[·], respectively.

TABLE V: Data structure of a sparse boolean matrix M .

Member Variable Meaning
M.row (M.col) the number of rows (columns) in M

M.nnzRows[i] the row (column) number of the i-th
nonzero

(M.nnzCols[i]) row (column) in A

M.rowV al[·] an array store the indices of all nonzero

(M.colV al[·]) elements of M in CSR (CSC) order

M.rowIdx[i]
the index in array M.rowV al[·] of the first

element of the i-th nonzero row in M

M.colIdx[i]
the index in array M.colV al[·] of the first

element of the i-th nonzero column in M

The major difference between DP-SpGEM and DP-SpLDM
is that DP-SpLDM does not build an index for those empty
rows and can be stored in both CSR format and CSC format
simultaneously. Table V shows the data structure of a sparse
boolean matrix M in DP-SpLDM format. We abuse the
notation M to denote the DP-SpLDM matrix in this section.

2399

Authorized licensed use limited to: The Chinese University of Hong Kong CUHK(Shenzhen). Downloaded on November 14,2024 at 12:49:04 UTC from IEEE Xplore. Restrictions apply.

Example 5.1: Take the CSR format part in Mwrite as an ex-
ample. In Figure 6, Mwrite.nnzRows[·] stores the row number
of each nonzero row, Mwrite.rowIdx[·] stores the index of
the first element of each nonzero row, and Mwrite.rowV al[·]
stores the column indices for all nonzero elements in row-
major order. The CSC format part in Mwrite is omitted here,
as it has a similar structure.

1Mwrite.rowIdx

Mwrite.rowVal

4 8 10 13 14 15

7 8 9 7 8 9 10 8 9 8 9 10 10 11

Mwrite.row = Mwrite.col = 14

1Mwrite.nnzRows 2 3 4 5 6

Fig. 6: Illustrating the CSR part of DP-SpLDM Mwrite.

2) Sparse Boolean Matrix Multiplication Operator ×D
bool:

According to [29], the product of two boolean matrices, MC =
MA ×MB , is expressed as follows:

MC [i, j] =

m∨

k=1

MA[i, k] ∧MB [k, j], (2)

where m is the column number of MA. From the above
equation, we can find that as long as there exists a value of
k such that MA[i, k] ∧MB [k, j] is 1 (i.e., True), MC [i, j] is
1. This observation implies that once we encounter a k value
that satisfies the condition, we can cease exploring further k
values, preventing redundant computations.

Based on the above discussion, we design an efficient
parallel sparse boolean matrix multiplication operator, which
is shown in Algorithm 3. We first initialize an array of empty
sets to store nonzero elements in each row and initialize an
array flag[·] for each thread (lines 2-4). Nonzero elements’
computation for each row in MC can be executed in parallel
(lines 5-16). To compute each row in MC , we set flag[a.j] =
1 for every nonzero element a within the row (lines 6-8).
Subsequently, the element MC [r, c] for every nonzero row r
in MA and column c in MB is determined based on flag[·]
as per Equation (2); post-processing the entire row, nonzero
elements in flag[·] revert to zero (lines 9-16). Notably, if
MA[r, i] ∧ MB [i, c] = 1 holds true, the nonzero element c
is added to elements[r] and the for loop terminates (lines
12-14). Afterward, we use a for loop (lines 17-19) to merge
those nonzero elements row-by-row and compute indices for
each nonzero row. Finally, the result matrix is returned (line
20).

Example 5.2: Consider the sparse boolean matrix multipli-
cation Mco−write = Mwrite ×D

bool Mwrite−1 . The process of
computing the second row of Mco−write is shown in Figure 7.
Each element ∈ flag[1 : 14] is initialized as 0 at first. Then,
each element ∈ flag[7 : 10] is set as 1 since there are four
nonzero elements in the second row: (2, 7), (2, 8), (2, 9),
and (2, 10). After that, we compute Mco−write[2, 1 : 6]
since columns 1-6 of Mwrite−1 have nonzero elements. As
shown in Figure 7, the computation of Mco−write[2, 1 : 5]
has been stopped at the very beginning. This is because

Algorithm 3: Boolean Matrix Multiplication: ×D
bool

Input: two sparse boolean matrices, MA and MB ;

Output: the result sparse boolean matrix,

MC = MA ×MB ;

1 MC .row ← MA.row, MC .col ← MB .col;
2 elements[·] ← ∅ ; // elements[·] is an array

of sets
3 foreach thread t do
4 flag[·] ← 0 ; // Initialize per thread

5 foreach row r ∈ MA.nnzRows[·] in parallel do
6 lr ← MA.rowIdx[r], ur ← MA.rowIdx[r+1]−1;

7 foreach j ∈ MA.rowV al[lr : ur] do
8 flag[j] ← 1;

9 foreach column c ∈ B.nnzCols[·] do
10 lc ← MB .colIdx[c], uc ← MB .colIdx[c+1]−1;

11 foreach i ∈ MB .colV al[lc : uc] do
12 if flag[i] = 1 then
13 append c to elements[r];
14 break;

15 foreach j ∈ MA.rowV al[lr : ur] do
16 flag[j] ← 0;

17 foreach elements[i] �= ∅ do
18 MC .rowV al[·] ← MC .rowV al[·] ∪ elements[i];
19 update MC .nnzRows and MC .rowIdx;

20 return MC ;

7

1

8

1

9

1

7

2

8

2

9

2

j

2

10

3

8

3

9

4

8

4

9

4

10

5

10

6

11

7 8 9 10

i

j

row 2 of Mwrite

Mwrite
-1.colVal

row 2 of Mco-write j 1 2 3 4

0 0 ... 1flag 1 1 1 0 0 0 0

1 2 ... 7 8 9 10 11 12 13 14

5

Fig. 7: Illustrating operator ×D
bool.

for each column c ∈ Mwrite−1 .nnzCols[·] with the first
nonzero element (i, j), we have flag[i] = 1. Finally, ele-
ments (2, 1), (2, 2), (2, 3), (2, 4), and (2, 5) are added to
elements[·], which forms the second row of Mco−write.

Reviewing the sparse boolean matrix multiplication in Al-
gorithm 3, we can find the result of M ×MT is a symmetric
matrix. Based on this finding, we can derive the following
lemma.

Lemma 5.1: Given an HIN G and a symmetric meta-path
P , the adjacency matrix M of the induced homogeneous graph
GP will be a symmetric matrix.

Proof 5.1: The lemma follows from M = Ml(P) ×MT
l(P).

Motivated by Lemma 5.1, we propose a novel transpose
boolean matrix multiplication operator ×trans to compute
Ml(P)×MT

l(P) by only computing the lower triangular part of

2400

Authorized licensed use limited to: The Chinese University of Hong Kong CUHK(Shenzhen). Downloaded on November 14,2024 at 12:49:04 UTC from IEEE Xplore. Restrictions apply.

the result matrix, shown in Algorithm 4. It consists of three
steps: (1) compute the lower triangular part of Ml(P)×MT

l(P)
in parallel as Algorithm 3 do (lines 1-2); (2) construct the
upper triangular part by transposing the lower triangular part
row-by-row (lines 3-5); and (3) merge the nonzero elements
and build the row index for the result matrix, then return it
(lines 6-7). Note that though MB in Algorithm 4 is the trans-
pose of MA, it does not need to be attained by transposing.
This is because MB needs to be stored in column-major order
in this algorithm, which is the same as MA in row-major order.
Hence, we can attain the i-th nonzero column of MB directly
by visiting the i-th nonzero row of MA.

Algorithm 4: Transpose Boolean Matrix Multiplica-

tion: ×D
trans

Input: a sparse boolean matrix, MA;

Output: the result symmetric sparse boolean matrix

MC = MA ×MT
A ;

1 MB ← MT
A ;

2 reuse lines 1-14 from Algorithm 3 by restricting c ≤ r
to only compute the lower triangular part of Mc;

3 foreach elements[r] �= ∅ do
4 foreach c ∈ elements[r], where c ≤ r do
5 append r to elements[c];

6 reuse lines 15-17 in Algorithm 3 to build MC ;

7 return MC ;

B. Boolean Algebraic (k, P)-Core Decomposition Algorithm
Based on the parallel sparse boolean matrix multiplication

operators, ×D
bool and ×D

trans, we propose a (k, P)-core decom-
position algorithm, denoted by BoolAPCoreD.

Algorithm 5: BoolAPCoreD

Input: H = (V,E), {MRi |Ri ∈ R}, P;

Output: c[·]: coreness for all vertices with target type;

1 M ← I ; // initialize M with identity
matrix

2 for i ← 2 to l
2 do // l is the length of P

3 M ← M ×D
bool MRi

;

4 M ← M ×D
trans M

T ;

5 construct GP based on M ;

6 c[·] ← AND(GP) ; // call k-core decomp.
algo.

7 return array c[·];

Algorithm 5 gives the pseudo-code of BoolAPCore. First, it
initializes M by the identity matrix (line 1). Second, it com-
putes Ml(P) using the sparse boolean matrix multiplication

operator ×D
bool (Algorithm 3) (line 2-3). Next, it obtains MP

by Ml(P) ×MT
l(P) using the transpose multiplication operator

×D
trans (Algorithm 4) (line 4). Finally, the algorithm constructs

the induced homogeneous graph GP , computes the coreness
for each vertex in GP by AND, and returns the result (lines
5-7).

We have tried to build a similar multiple regression model
F ′(ρavg, ρmid) for BoolAPCoreD as we do for BoolAPCoreG.
However, the model shows that F ′(ρavg, ρmid) > 1 is true
for any possible variable with respect to the training data,
which implies that using the transpose multiplication operator
(Algorithm 4) to get GP is an optimal solution in most cases.

Lemma 5.2: BoolAPCoreD takes O(((
∑ l

2−1
i=1 RMi

· (δ ·
nnz(MRi+1))) + RMl(P)

· (δ2nnz(Ml(P))) + nnz(Ml(P)) +
tmP)/p) time, where RM (CM) denotes the number of
nonzero rows (columns) of the matrix M , δ denotes the overall
percentage of vertices that have been visited before the early
stop during the matrix chain multiplication, n, nnz(M), l, t,
mP , and p follow the notation of Lemma 4.2.

Proof 5.2: The construction of Ml(P) consists of
l
2 − 1 times sparse boolean matrix products, and

each product takes O(
∑RMi

r=1 (nnz(Mi.nnzRowsr) +

δ
∑CMRi+1

c=1 nnz(MRi+1 .nnzColsc))/p) =

O(
∑RMi

r=1 (nnz(Mi.nnzRowsr) + δ · nnz(MRi+1))/p) =
O(RMi

· (δ · nnz(MRi+1
)) + nnz(Mi)) = O(RMi

· (δ ·
nnz(MRi+1

))) time, where Mi.nnzRowsr(Mi.nnzColsr)
denotes the r-th nonzero row (column) of matrix Mi.
The time cost of computing Ml(P) ×D

trans MT
l(P) is

O(
∑RMl(P)

r=1 (nnz(Ml(P).nnzRowsr) +
δ
2nnz(Ml(P)))/p) =

O((RMl(P)
· (δ2nnz(Ml(P))) + nnz(Ml(P)))/p). Hence,

Lemma 5.2 holds.
In an HIN with locally dense regions, both RMi and

δ are relatively small, leading to a significant decrease
in time complexity. Theoretically, as δMRi+1

∝ 1
ndMRi+1

,

nnz(Mi) = n2dMi , when avg(nnz(Mi) · nnz(MRi+1)/n) >
avg(RMi

· (δMRi+1
· nnz(MRi+1

))), i.e., avg(RMi
) <

avg(n2dMi ·dMRi+1
), where dMi is the density of matrix Mi,

BoolAPCoreD should be more efficient than BoolAPCoreG.
When comparing our BoolAPCoreD with HomBCore [12]
in terms of time complexity, we observe that HomBCore
needs to perform a BFS search for each target node of P
to find the P-neighbors of the current node. This process
can result in the repeated traversal of the same intermediate
nodes. In contrast, our BoolAPCoreD algorithm can reduce
redundant computations among different target nodes through
(transposed) matrix multiplications and early stops, leading to
significantly improved time efficiency.

VI. EXPERIMENTS

We now present the experimental results. We first introduce
the experimental setup in Section VI-A, then discuss the results
of efficiency evaluation in Section VI-B, and evaluate the
effectiveness in Section VI-C.

A. Setup
We use six real-world datasets, encompassing domains such

as e-commerce, academia, social networks, and knowledge
bases: Movielens2 [30], Amazon3 [31], Freebase [32, 33],
DBLP4, Higgs [34], and ConceptNet [35]. Freebase and

2https://grouplens.org/datasets/movielens/100k/
3http://jmcauley.ucsd.edu/data/amazon/
4https://dblp.org/xml/

2401

Authorized licensed use limited to: The Chinese University of Hong Kong CUHK(Shenzhen). Downloaded on November 14,2024 at 12:49:04 UTC from IEEE Xplore. Restrictions apply.

(a) Movielens (b) Amazon (c) Freebase (d) DBLP (e) Higgs (f) Conceptnet

Fig. 8: Single-threaded running times for HomBCore, BoolAPCoreG and BoolAPCoreD on 6 datasets.

(a) Movielens (b) Amazon (c) Freebase (d) DBLP (e) Higgs (f) Conceptnet

Fig. 9: Average parallel speedup of HomBCore, BoolAPCoreG and BoolAPCoreD, w.r.t. single-threaded running times.

ConceptNet are knowledge bases with rich schemas, while
the other four datasets have relatively simple schemas. Their
statistics, such as the number of vertices, the number of
edges, the maximum number of edges among the induced
homogeneous graphs, the number of edge types, and their
domains, are reported in Table VI.

TABLE VI: Datasets used in our experiments.

Dataset Vertices Edges
Maximal Edges Edge

Domain
in GPs types

Movielens 2,672 104,777 2,642,090 4 movie

Amazon 13,136 209,746 37,979,370 4 e-commerce

Freebase 75,043 316,232 688,378,491 13 knowledge base

DBLP 135,527 459,444 576,675,971 4 academia

Higgs 456,626 15,367,315 187,911,587 4 social network

ConceptNet 20,967,586 34,030,244 459,754,404 34 knowledge base

We compare the following algorithms in our experiments:

1) HomBCore [12] is the state-of-the-art (k,P)-core de-
composition algorithm.

2) Atrapos [24] is the state-of-the-art P-neighbors searching
algorithm based on sparse matrix multiplication. We
mainly compare it with our algorithms in the context of
GP construction.

3) BoolAPCoreG is our proposed boolean algebraic (k,P)-
core decomposition algorithm for general HINs (Sec-
tion IV-B).

4) BoolAPCoreD is our proposed boolean algebraic (k,P)-
core decomposition algorithm for locally dense HINs
(Section V-B).

We evaluate the algorithms w.r.t. in total 58 meta-paths
for all datasets. Specifically, for each of Movielens, Amazon,
DBLP, and Higgs, we collect 4 frequently-used meta-paths
with path lengths varying from 2 to 6, and 20 meta-paths with
path lengths varying from 2 to 8 for Freebase and ConceptNet,
which contain more vertex and edge types, denoted as P1-P56.
Besides, P57 and P58 denote two asymmetric meta-paths from
Movielens and Freebase, respectively. All the algorithms are

implemented in C++ with STL used. The source codes for
our algorithms are publicly available5. We run experiments
on a machine having an Intel(R) Xeon(R) Gold 6338 CPU
@ 2.00GHz processor and 512GB of memory, with Ubuntu
installed.

B. Efficiency Evaluation
In this section, we mainly compare our algorithms with the

state-of-the-art (k,P)-core decomposition algorithm HomB-
Core and the state-of-the-art P-neighbors searching algorithm
Atrapos.

1) Serial Performance: In this experiment, we evaluate the
serial efficiency of our algorithms. The single-threaded run-
ning times of HomBCore, BoolAPCoreG and BoolAPCoreD

are reported in Figure 8. Note that we do not run BoolAPCoreD

on ConceptNet since this graph is too sparse and not suitable
for it. From Figures 8(a)-8(f), we make the following obser-
vations:
• BoolAPCoreG outperforms HomBCore in all cases, while
BoolAPCoreD outperform HomBCore in most meta-paths,
except meta-paths with path length 4 in Freebase dataset. The
degeneration of BoolAPCoreD in this case is caused by the
sparsity of the corresponding GPs (less than 0.1‰ edges exist
among all possible edges in average). Such sparsity results in
an inflated δ value, representing many vertices that cannot be
pruned by early stop.
• Compared with HomBCore, BoolAPCoreG achieves 14.69-
114.15×, 2.15-49.84×, 9.66-15.07×, 6.64-49.63×, 7.45-
60.97×, and 3.20-11.36× speedups on Movielens, Amazon,
Freebase, DBLP, Higgs, and ConceptNet datasets, respec-
tively; while BoolAPCoreD achieves 25.38-258.44×, 1.97-
32.64×, 0.08-10.85×, 3.21-28.48×, and 0.81-8.84× speedups
on the former five datasets, respectively.
• BoolAPCoreD outperforms BoolAPCoreG and HomBCore
significantly on Movielens dataset, this is because Movielens
is the densest dataset among all six datasets, which will fully

5https://github.com/Yucan-G/parallel-k-P-core-decomposition-code

2402

Authorized licensed use limited to: The Chinese University of Hong Kong CUHK(Shenzhen). Downloaded on November 14,2024 at 12:49:04 UTC from IEEE Xplore. Restrictions apply.

(a) Movielens (b) Amazon (c) Freebase (d) DBLP (e) Higgs (f) Conceptnet

Fig. 10: Parallel running times for HomBCore, BoolAPCoreG and BoolAPCoreD on 6 datasets with 20 threads.

utilize the early stop mechanism of BoolAPCoreD.
In summary, the choice of algorithm depends on the sparsity

of the HIN and the presence of locally dense areas. For HINs
with locally dense areas, BoolAPCoreD is the best choice.
For sparse HINs without locally dense areas, BoolAPCoreG is
the better choice. For most HINs, BoolAPCoreG is a suitable
choice, except for those that are extremely dense.

2) Parallel Performance: Figure 9 presents the speedups
of HomBCore, BoolAPCoreG and BoolAPCoreD by multi-
thread parallel compared to serial computation, respectively.
Here, BoolAPCoreD use matrix multiplication operator ×D

bool
to compute M (line 4 in Algorithm 5), since matrix multipli-
cation operator ×D

trans is not suitable for parallelization due
to the unbalance of workloads between different threads. The
thread numbers tested are 4, 8, 16, and 20. The results reveal
that both BoolAPCoreG and BoolAPCoreD achieve more pro-
nounced overall speedups in comparison to HomBCore. As
shown in Figures 9(a)-9(e), BoolAPCoreG and BoolAPCoreD

obtain significant speedups in all cases with 20 threads and
already achieve a relatively high speedup with eight threads.
This is reasonable since BoolAPCoreG and BoolAPCoreD only
process those rows/columns with nonzero elements, which
makes the workloads of each thread more balanced than those
in HomBCore. We can also observe that BoolAPCoreG and
BoolAPCoreD scale well with the number of threads. However,
the speedups of BoolAPCoreG in ConceptNet are relatively
low, primarily due to the sparsity of the dataset, which leads
to the suboptimal utilization of the array flag[·].

The parallel running times for HomBCore, BoolAPCoreG

and BoolAPCoreD with 20 threads are shown in Figure 10.
We see that BoolAPCoreG outperforms HomBCore for all
datasets, while BoolAPCoreD outperforms HomBCore in 18
out of 20 cases. Compared with HomBCore, BoolAPCoreG

and BoolAPCoreD get a maximal of 126.65× and 258.84×
speedups, respectively.

Hence, we conclude that BoolAPCoreG and BoolAPCoreD

can be well parallelized, where BoolAPCoreG is a stable
algorithm that is suitable for almost all kinds of HINs,
BoolAPCoreD is more suitable for those dense HINs, which
follows the discussion in Section VI-B1.

3) GP Construction Performance: In this part, we examine
the GP construction performance of our algorithms against
Atrapos. The experiment is conducted on Movielens, Ama-
zon, and DBLP datasets since the implementation of Atrapos
only supports HINs where only one type of edge exists
between two distinct vertex types. This requirement excludes
datasets like Freebase, Higgs, and ConceptNet. Figure 11
shows serial running times for GP construction of Atrapos,

BoolAPCoreG and BoolAPCoreD. Our algorithms outperform
Atropos in 11 out of 12 meta-paths with up to 19.49×
speedup. Figure 12 presents the parallel GP construction times
of our algorithms against the serial running times of Atrapos,
as Atrapos is inherently a serial algorithm. BoolAPCoreD

outperforms Atrapos at a maximal of 53.58× speedup on
Movielens, while BoolAPCoreG outperforms Atrapos at a
maximal of 46.01× and 131.89× speedups on Amazon and
DBLP, respectively.

(a) Movielens (b) Amazon (c) DBLP

Fig. 11: Single-threaded GP construction times of algorithms.

(a) Movielens (20) (b) Amazon (64) (c) DBLP (64)

Fig. 12: Parallel GP construction times of algorithms (num-

bers in parentheses represent the number of threads).

4) Performance on Asymmetric Meta-paths: We examine
the performance of BoolAPCoreG and BoolAPCoreD with
asymmetric meta-paths in this part. Although our algorithms
are designed for symmetric meta-paths, they can also be
applied to asymmetric meta-paths by using MR1

×MR2
×· · ·×

MRl
to obtain MP . We demonstrate the running time of each

algorithm with two asymmetric meta-paths in Figure 13. Our
results clearly show that our methods outperform HomBCore
significantly in both cases, demonstrating the time efficiency
of our algorithms for asymmetric meta-paths.

5) Memory Usage: To evaluate the memory usage of our
algorithms, we present the single-threaded memory usage of
HomBCore, BoolAPCoreD, and BoolAPCoreG in Table VII.
Since meta-paths on Freebase and ConceptNet datasets were
tested in bulk by a program, only the maximum memory usage

2403

Authorized licensed use limited to: The Chinese University of Hong Kong CUHK(Shenzhen). Downloaded on November 14,2024 at 12:49:04 UTC from IEEE Xplore. Restrictions apply.

(a) Movielens with P57 (b) Freebase with P58

Fig. 13: Performance of algorithms on asymmetric meta-paths.

can be reported. Our results indicate that the average and the
maximal memory usage of BoolAPCoreD and BoolAPCoreG

are consistently lower than HomBCore in most datasets,
confirming that our algorithms are memory-efficient since we
use sparse matrices instead of dense matrices.

Furthermore, we examine the memory usage of the initial
adjacency matrices in BoolAPCoreD, given they are stored
in two formats. Despite this redundancy, our results show
that their memory overhead is relatively low, which further
demonstrates that GP is much denser than traditional graphs.

TABLE VII: Memory usage of our algorithms (MB).

Dataset
HomBCore BoolAPCoreD BoolAPCoreG

max mean max mean matrices max mean

Movielens 200 105 161 77 0.85 156 58.89

Amazon 2,439 1,633 2,115 1,318 1.75 2126 1,435

Freebase 18,975 - 19,542 - 4.79 24,729 -

DBLP 80,831 28,248 70,346 24,349 6.40 30,302 15,540

Higgs 9,792 4,016 6,258 2,666 126.99 6,339 2,816

ConceptNet 11,027 - - - - 36,025 -

C. Effectiveness Evaluation
1) Core Analysis: In this experiment, we examine the size

distribution of (k,P)-core, where k ranges from 0 to the
maximum coreness. Due to the space limitation, we only show
results of two meta-paths, i.e., P1 and P12 on Movielens
and Freebase, respectively, as BoolAPCoreD perform well
with P1 while the performance of BoolAPCoreG is close to
HomBCore with P12. We show the distribution of vertices
with coreness≤ k in Figure 14. The size distribution of P1 on
Movielens is different from that of P12 on Freebase. Coreness
values of vertices in Figure 14(a) range from 0 to 936, and
most vertices have a relatively high coreness, which means
that there exist some cohesive subgraphs in GP1 . However,
the maximum coreness value in Figure 14(b) is 11 with only
12 vertices, and most vertices have a coreness less than 4,
which makes GP12 extremely sparse. Thus, the breadth-first
search process to build GP12 is more like a chain structure
than a tree structure and there exist no local dense subgraphs
in the graph, which will cause our BoolAPCoreG algorithm to
degenerate.

2) Effectiveness of F (ρavg, ρmid): In this part, we examine
the effectiveness of function F (ρavg, ρmid) in BoolAPCoreG

by a case study. Take a deep look into the meta-path P6 =
(UIV IU), where “U”, “I”, “V” denote user, item, and view,
respectively. In this case, F (ρavg, ρmid) = 0.72 < 1, so MP6

is computed by Ml(P6)×G
boolM

T
R2

×G
boolM

T
R1

. In Figure 15, we

(a) P1 (b) P12

Fig. 14: Number of vertices with coreness ≤ k.

show the running times of two methods with different numbers
of threads, in which w/o Transpose denotes obtaining MP6

by Ml(P6) ×G
bool M

T
R2

×G
bool M

T
R1

, and Transpose denotes

obtaining MP6
by Ml(P6)×G

boolM
T
l(P6)

. We can find that in this

case, w/o Transpose outperforms Transpose with respect to
different numbers of threads, which proves the effectiveness
of function F (ρavg, ρmid) in BoolAPCoreG.

Fig. 15: Running times of 2 methods on Amazon with P6.

VII. CONCLUSION

In this paper, we study the core decomposition problem
over heterogeneous information networks (HINs). We adopt
the well-known (k,P)-core model [12] to model cohesive
subgraphs. For general HINs and HINs with locally dense
properties, we propose efficient boolean algebraic algorithms
that can be parallelized in a scalable manner and provide up
to two orders of magnitude speedup compared to the existing
algorithm on 20 cores. Experimental results on real networks
demonstrate that our algorithms are effective and efficient for
detecting cohesive subgraphs on HINs. We believe that our
algebraic algorithms for building the induced homogeneous
graph will be beneficial for many HIN-related problems and
make it possible to directly apply those homogeneous graph
algorithms over HINs at a small cost.

In future research, we will focus on how to develop parallel
algorithms for other cohesiveness models over HINs, e.g.,
(k,P)-truss [18]. It would also be interesting to explore some
new cohesive subgraph models for HINs, such as core models
with multiple meta-paths.

ACKNOWLEDGMENT

This work was supported in part by NSFC under Grant
62302421 and 62102341, Basic and Applied Basic Research
Fund in Guangdong Province under Grant 2023A1515011280,
Guangdong Talent Program under Grant 2021QN02X826, and
Shenzhen Science and Technology Program under Grants
JCYJ20220530143602006 and ZDSYS20211021111415025.
This paper was also supported by Shenzhen Science and Tech-
nology Program and Guangdong Key Lab of Mathematical
Foundations for Artificial Intelligence.

2404

Authorized licensed use limited to: The Chinese University of Hong Kong CUHK(Shenzhen). Downloaded on November 14,2024 at 12:49:04 UTC from IEEE Xplore. Restrictions apply.

REFERENCES

[1] C. Shi, Y. Li, J. Zhang, Y. Sun, and P. S. Yu, “A
survey of heterogeneous information network analysis,”
IEEE Transactions on Knowledge and Data Engineering,
vol. 29, no. 1, pp. 17–37, 2017.

[2] C. Shi, R. Wang, Y. Li, P. S. Yu, and B. Wu, “Ranking-
based clustering on general heterogeneous information
networks by network projection,” in Proceedings of the
23rd ACM International Conference on Conference on
Information and Knowledge Management, CIKM 2014,
Shanghai, China, November 3-7, 2014, J. Li, X. S.
Wang, M. N. Garofalakis, I. Soboroff, T. Suel, and
M. Wang, Eds. ACM, 2014, pp. 699–708. [Online].
Available: https://doi.org/10.1145/2661829.2662040

[3] Y. Sun, B. Norick, J. Han, X. Yan, P. S. Yu, and
X. Yu, “Integrating meta-path selection with user-
guided object clustering in heterogeneous information
networks,” in The 18th ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining,
KDD ’12, Beijing, China, August 12-16, 2012, Q. Yang,
D. Agarwal, and J. Pei, Eds. ACM, 2012, pp.
1348–1356. [Online]. Available: https://doi.org/10.1145/
2339530.2339738

[4] Y. Zhou and L. Liu, “Social influence based clustering
of heterogeneous information networks,” in The 19th
ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining, KDD 2013, Chicago, IL,
USA, August 11-14, 2013, I. S. Dhillon, Y. Koren,
R. Ghani, T. E. Senator, P. Bradley, R. Parekh,
J. He, R. L. Grossman, and R. Uthurusamy, Eds.
ACM, 2013, pp. 338–346. [Online]. Available: https:
//doi.org/10.1145/2487575.2487640

[5] S. B. Seidman, “Network structure and minimum de-
gree,” Social Networks, vol. 5, no. 3, pp. 269–287, 1983.

[6] J. Cohen, “Trusses: cohesive subgraphs for social net-
work analysis,” National Security Agency, Tech. Rep.,
2008.

[7] J. D. Cohen, “Graph twiddling in a mapreduce world,”
Comput. Sci. Eng., vol. 11, no. 4, pp. 29–41, 2009.
[Online]. Available: https://doi.org/10.1109/MCSE.2009.
120

[8] J. W. Moon and L. Moser, “On cliques in graphs,” Israel
Journal of Mathematics, vol. 3, no. 1, pp. 23–28, 1965.
[Online]. Available: https://doi.org/10.1007/BF02760024

[9] H. Esfandiari, S. Lattanzi, and V. S. Mirrokni,
“Parallel and streaming algorithms for k-core
decomposition,” in Proceedings of the 35th International
Conference on Machine Learning, ICML 2018,
Stockholmsmässan, Stockholm, Sweden, July 10-
15, 2018, ser. Proceedings of Machine Learning
Research, J. G. Dy and A. Krause, Eds., vol. 80.
PMLR, 2018, pp. 1396–1405. [Online]. Available:
http://proceedings.mlr.press/v80/esfandiari18a.html

[10] W. Khaouid, M. Barsky, S. Venkatesh, and A. Thomo,
“K-core decomposition of large networks on a single
PC,” Proc. VLDB Endow., vol. 9, no. 1, pp. 13–23,
2015. [Online]. Available: http://www.vldb.org/pvldb/
vol9/p13-khaouid.pdf

[11] N. S. Dasari, R. Desh, and M. Zubair, “Park: An effi-
cient algorithm for k-core decomposition on multicore
processors,” in 2014 IEEE International Conference on
Big Data (Big Data), 2014, pp. 9–16.

[12] Y. Fang, Y. Yang, W. Zhang, X. Lin, and X. Cao,
“Effective and efficient community search over large het-
erogeneous information networks,” Proc. VLDB Endow.,
vol. 13, no. 6, pp. 854–867, 2020.

[13] Y. Sun, J. Han, X. Yan, P. S. Yu, and T. Wu,
“Pathsim: Meta path-based top-k similarity search
in heterogeneous information networks,” Proc. VLDB
Endow., vol. 4, no. 11, pp. 992–1003, 2011. [Online].
Available: http://www.vldb.org/pvldb/vol4/p992-sun.pdf

[14] C. Peng, T. G. Kolda, and A. Pinar, “Accelerating
community detection by using k-core subgraphs,”
CoRR, vol. abs/1403.2226, 2014. [Online]. Available:
http://arxiv.org/abs/1403.2226

[15] J. Garcı́a-Algarra, J. M. Pastor, J. M. Iriondo, and
J. Galeano, “Ranking of critical species to preserve the
functionality of mutualistic networks using the k-core
decomposition,” PeerJ, vol. 5, p. e3321, 2017. [Online].
Available: https://europepmc.org/articles/PMC5438587

[16] F. Geerts, “On the expressive power of linear algebra
on graphs,” Theory Comput. Syst., vol. 65, no. 1, pp.
179–239, 2021. [Online]. Available: https://doi.org/10.
1007/s00224-020-09990-9

[17] T. A. Davis, “Algorithm 1000: Suitesparse:graphblas:
Graph algorithms in the language of sparse linear
algebra,” ACM Trans. Math. Softw., vol. 45, no. 4,
dec 2019. [Online]. Available: https://doi.org/10.1145/
3322125

[18] Y. Yang, Y. Fang, X. Lin, and W. Zhang, “Effective
and efficient truss computation over large heterogeneous
information networks,” in 36th IEEE International
Conference on Data Engineering, ICDE 2020, Dallas,
TX, USA, April 20-24, 2020. IEEE, 2020, pp. 901–912.
[Online]. Available: https://doi.org/10.1109/ICDE48307.
2020.00083

[19] L. Chang, J. X. Yu, L. Qin, X. Lin, C. Liu, and
W. Liang, “Efficiently computing k-edge connected
components via graph decomposition,” in Proceedings
of the ACM SIGMOD International Conference on
Management of Data, SIGMOD 2013, New York, NY,
USA, June 22-27, 2013, K. A. Ross, D. Srivastava, and
D. Papadias, Eds. ACM, 2013, pp. 205–216. [Online].
Available: https://doi.org/10.1145/2463676.2465323

[20] V. Batagelj, A. Mrvar, and M. Zaveršnik, “Partitioning
approach to visualization of large graphs,” in Graph
Drawing, J. Kratochvı́yl, Ed. Berlin, Heidelberg:
Springer Berlin Heidelberg, 1999, pp. 90–97.

[21] V. Batagelj and M. Zaveršnik, “Fast algorithms for de-
termining (generalized) core groups in social networks,”
Advances in Data Analysis and Classification, vol. 5,
no. 2, pp. 129–145, July 2011.

[22] Q.-M. Z. Linyuan Lü, Tao Zhou and H. E. Stanley, “The
h-index of a network node and its relation to degree
and coreness,” Nature communications, vol. 7, p. 10168,
January 2016.

[23] C. S. Ahmet Erdem Sarıyüce and A. Pinar, “Local

2405

Authorized licensed use limited to: The Chinese University of Hong Kong CUHK(Shenzhen). Downloaded on November 14,2024 at 12:49:04 UTC from IEEE Xplore. Restrictions apply.

algorithms for hierarchical dense subgraph discovery,”
Proceedings of the VLDB Endowment, vol. 12, no. 1,
pp. 43–56, 2018.

[24] S. Chatzopoulos, T. Vergoulis, D. Skoutas, T. Dalamagas,
C. Tryfonopoulos, and P. Karras, “Atrapos: Real-time
evaluation of metapath query workloads,” in Proceedings
of the ACM Web Conference 2023, ser. WWW ’23.
New York, NY, USA: Association for Computing
Machinery, 2023, p. 2487–2498. [Online]. Available:
https://doi.org/10.1145/3543507.3583322

[25] X. Jian, Y. Wang, and L. Chen, “Effective and
efficient relational community detection and search in
large dynamic heterogeneous information networks,”
Proc. VLDB Endow., vol. 13, no. 10, pp. 1723–1736,
2020. [Online]. Available: http://www.vldb.org/pvldb/
vol13/p1723-jian.pdf

[26] X. Wang, H. Ji, C. Shi, B. Wang, Y. Ye, P. Cui,
and P. S. Yu, “Heterogeneous graph attention network,”
in The World Wide Web Conference, ser. WWW ’19.
New York, NY, USA: Association for Computing
Machinery, 2019, p. 2022–2032. [Online]. Available:
https://doi.org/10.1145/3308558.3313562

[27] S. Yun, M. Jeong, R. Kim, J. Kang, and H. J.
Kim, “Graph transformer networks,” in Advances in
Neural Information Processing Systems, H. Wallach,
H. Larochelle, A. Beygelzimer, F. d'Alché-Buc, E. Fox,
and R. Garnett, Eds., vol. 32. Curran Associates, Inc.,
2019.

[28] F. G. Gustavson, “Two fast algorithms for sparse
matrices: Multiplication and permuted transposition,”
ACM Trans. Math. Softw., vol. 4, no. 3, pp. 250–
269, 1978. [Online]. Available: https://doi.org/10.1145/
355791.355796

[29] R. D. Luce, “A note on boolean matrix theory,” Proceed-
ings of the American Mathematical Society, vol. 3, no. 3,
pp. 382–388, 1952.

[30] F. M. Harper and J. A. Konstan, “The movielens
datasets: History and context,” ACM Trans. Interact.
Intell. Syst., vol. 5, no. 4, pp. 19:1–19:19, 2016.
[Online]. Available: https://doi.org/10.1145/2827872

[31] J. J. McAuley, C. Targett, Q. Shi, and A. van den
Hengel, “Image-based recommendations on styles and
substitutes,” in Proceedings of the 38th International
ACM SIGIR Conference on Research and Development
in Information Retrieval, Santiago, Chile, August 9-13,
2015, R. Baeza-Yates, M. Lalmas, A. Moffat, and B. A.
Ribeiro-Neto, Eds. ACM, 2015, pp. 43–52. [Online].
Available: https://doi.org/10.1145/2766462.2767755

[32] K. D. Bollacker, C. Evans, P. K. Paritosh, T. Sturge,
and J. Taylor, “Freebase: a collaboratively created
graph database for structuring human knowledge,”
in Proceedings of the ACM SIGMOD International
Conference on Management of Data, SIGMOD 2008,
Vancouver, BC, Canada, June 10-12, 2008, J. T. Wang,
Ed. ACM, 2008, pp. 1247–1250. [Online]. Available:
https://doi.org/10.1145/1376616.1376746

[33] R. Socher, D. Chen, C. D. Manning, and A. Y. Ng,
“Reasoning with neural tensor networks for knowledge
base completion,” in Advances in Neural Information

Processing Systems 26: 27th Annual Conference on Neu-
ral Information Processing Systems 2013. Proceedings
of a meeting held December 5-8, 2013, Lake Tahoe,
Nevada, United States, C. J. C. Burges, L. Bottou,
Z. Ghahramani, and K. Q. Weinberger, Eds., 2013, pp.
926–934.

[34] M. De Domenico, A. Lima, P. Mougel, and M. Musolesi,
“The anatomy of a scientific rumor,” Scientific Reports,
vol. 3, no. 2980, 2013. [Online]. Available: https:
//doi.org/10.1038/srep02980

[35] R. Speer, J. Chin, and C. Havasi, “Conceptnet 5.5:
An open multilingual graph of general knowledge,” pp.
4444–4451, 2017.

2406

Authorized licensed use limited to: The Chinese University of Hong Kong CUHK(Shenzhen). Downloaded on November 14,2024 at 12:49:04 UTC from IEEE Xplore. Restrictions apply.

