
Scalable Algorithms for Densest Subgraph
Discovery

Wensheng Luo1, Zhuo Tang1, Yixiang Fang2, Chenhao Ma2, Xu Zhou1

1College of Computer Science and Electronic Engineering, Hunan University, China
2School of Data Science, The Chinese University of Hong Kong, Shenzhen, China

Email:{luowensheng, ztang}@hnu.edu.cn, {fangyixiang, machenhao}@cuhk.edu.cn, zhxu@hnu.edu.cn

Abstract—As a fundamental problem in graph data mining,
Densest Subgraph Discovery (DSD) aims to find the subgraph
with the highest density from a graph. It has been studied
for several decades and found a large number of real-world
applications, such as network community detection, regulatory
motif discovery in DNA, graph index construction, and fake
follower detection. Although there are many existing DSD
algorithms, they are often not scalable or efficient to process
large-scale graphs, since most of them are serial algorithms and
can only leverage the computing resource of a single CPU core.
To tackle these issues, in this paper we propose efficient parallel
algorithms for solving the DSD problems on both undirected
and directed graphs at scale. Our main idea is to use the k-cores
(a kind of dense subgraph) to approximate the densest subgraph
in the undirected graphs, and then propose efficient parallel
algorithms for computing the cores by optimizing the iterative
process and also reducing the number of iterations. We further
extend this idea for directed graphs by introducing a novel
concept, named w-induced subgraph, to avoid unnecessary
enumerations of x or y when searching [x, y]-cores (a kind of
directed dense subgraph to approximate the densest). To verify
the scalability and efficiency of the proposed algorithms, we
have conducted extensive experiments on 12 large real-world
graphs, and four of them are billion-scale. The experimental
results show that our proposed algorithms outperform the state-
of-the-art algorithms on both undirected and directed graphs,
in terms of scalability and efficiency.

I. INTRODUCTION

As a fundamental problem in graph data mining, Densest
Subgraph Discovery (DSD) aims to find the subgraph with
the highest density from a graph. It has been studied for
several decades [1]–[9] and found a large number of real-
world applications in various areas. For example, in network
science area, DSD can be used for mining community [10];
in biology area, it can be leveraged to identify regulatory
motifs in genomic DNA network [11], [12]; in web mining
area, it can be applied to link spam detection [13]; in system
optimization area, DSD has been used in social piggybacking
for improving the throughput of social networking sys-
tems [14], [15]; in social media area, it is exploited for fake
follower detection [7] and fraud detection [16], [17]; in graph
database area, it is used to support many operations such
as reachability query [18], and distance queries [19], graph
visualization [20], [21], and large near-clique detection [22].
Actually, the exact solutions to the DSD problem are time-
consuming, and the more efficient approximation approaches
can provide high-quality results to meet the actual needs.
Thus, approximation solutions are more widely used in these
applications.

Most of the existing DSD works focus on undirected
graphs and directed graphs, and they often use the number of
edges “allocated” by each vertex to measure the density of
a subgraph. More precisely, for an undirected graph G=(V ,

v1

v5

v2

v4

v6

v3

(a) An undirected graph

v2

v4

v3

v5

v6

v1

 T

 S

(b) A directed graph

Fig. 1: Illustrating DSD on undirected and directed graphs.

E), its density is measured by the number of edges over

the number of vertices, i.e., ρ(G)= |E|
|V | . For example, in the

undirected graph of Fig. 1(a), the density of the subgraph in
the dashed ellipse is 5/4, since there are five edges and four
vertices, and this subgraph is densest because its density is
the highest among all possible subgraphs. For the directed
graph D=(V , E), its density is defined over two vertex
sets; that is, given two vertex sets (not necessarily disjoint)
S, T ∈ V , the density of the subgraph induced by S and
T is the number |E(S, T)| of edges linking vertices from S
to the vertices in T over the geometric mean of their sizes,

i.e., ρ(S, T)= |E(S,T)|√
|S||T | . For instance, in the directed graph of

Fig. 1(b), for the two vertex sets S={v4, v5} and T={v2, v3},
the density of the directed subgraph induced by S and T is
ρ(S, T)= 4√

2×2
= 2, since there are four edges linking from

S to T , and this subgraph is the densest subgraph because
no other two vertex sets are having a higher density. We
can observe that when S = T , the density of the induced
directed graph reduces to the above notion of the density of
undirected graphs. In other words, the density of directed
graphs naturally generalizes the notion of the density of
undirected graphs [7].

Prior works. Despite its importance, DSD is technically
challenging on both undirected graphs and directed graphs.
The exact DSD algorithms, which often involve solving the
maximum flow problem or linear programming [1], [2], [6],
[7], [9], [23], are very inefficient even on moderate-sized
graphs [6], [7]. Thus, to achieve higher efficiency, many
approximation algorithms are developed by trading accuracy
with theoretical guarantee on the approximation ratio. Note
that the approximation ratio is often defined as the density of
the densest subgraph over the density of the subgraph found
by an approximation algorithm, which is at least 1.0.

Specifically, for undirected graphs, Charikar [3] proposed
the first 2-approximation algorithm, by iteratively peeling the
vertex with the lowest degree and returning the subgraph with
the highest density during this process. Bahmani et al. [5]

285

2023 IEEE 39th International Conference on Data Engineering (ICDE)

2375-026X/23/$31.00 ©2023 IEEE
DOI 10.1109/ICDE55515.2023.00029

presented a parallel 2(1+ε)-approximation algorithm based
on a streaming model (ε >0). Fang et al. [6] proved that
the k-core with the maximum core number of the graph,
also called k∗-core, is a 2-approximation solution, where a
k-core is the largest subgraph in which each vertex’s degree
is at least k, and developed efficient algorithms. For directed
graphs, Charikar [3] also proposed a 2-approximation algo-
rithm following the peeling paradigm above. Khuller and
Saha [4] developed an algorithm with linear time cost, but its
approximation ratio is larger than 2 [7]. Bahmani et al. [5]
presented a parallel 2(1+ε)-approximation algorithm based
on a streaming model. Ma et al. [7], [9] introduced the [x, y]-
core on the directed graph, or a subgraph in which the out-
degrees of vertices in S are at least x and the in-degrees of
vertices in T are at least y, and proved that the core with the
largest x · y among all [x, y]-cores, i.e., [x∗, y∗]-core, offers
a 2-approximation solution.

Although there are many existing DSD algorithms, they
often scale poorly as the size of graphs grows, because most
of them are serial algorithms and can only leverage the
computing resource of a single CPU core, except the parallel
algorithms developed by Bahmani et al. [5] which solve the
DSD problems on both undirected and directed graphs in
parallel using MapReduce. For example, the peeling-based
approximation algorithms in [3] have a strong dependency
in their steps; that is, when a vertex is peeled, all its
neighbors’ information needs to be updated synchronously
before subsequent computation can be performed, making
it hard to work in parallel. Besides, as shown by our later
experiments in Section VI, the parallel algorithms in [5] are
still inefficient for processing large-scale graphs, and their
approximation ratios are larger than 2. Hence, it is desirable
to develop more scalable and efficient DSD algorithms on
both undirected and directed graphs at scale.

Our technical contributions. To alleviate the issues
above, in this paper we aim to develop scalable and efficient
DSD algorithms for both undirected and directed graphs.
Our main idea is to develop efficient parallel approximation
algorithms based on the shared-memory model that can work
on massive graphs at scale. Specifically, for the undirected
graph, we propose an efficient parallel algorithm by comput-
ing the k∗-core, which offers a 2-approximation solution [6].
We follow the h-index-based core decomposition approaches
in [24], [25], which iteratively compute the h-indices of
neighbor vertex degrees to obtain the core number of each
vertex in a local and parallel manner. Instead of computing
the core numbers of all vertices like these approaches, we
only focus on computing the core numbers of vertices in
the k∗-core, and thus avoid such redundant computation
for all the other k-cores, thereby improving the efficiency
significantly.

For the directed graph, we also develop an efficient parallel
algorithm by computing the [x∗, y∗]-core, which provides a
2-approximation solution [7]. To facilitate the computation,
we introduce a novel subgraph model, namely w-induced
subgraph, by using an edge weight threshold w (w >0). More
precisely, we first define the weight of each directed edge (u,
v) as the product of the out-degree of u and in-degree of v,
and then the w-induced subgraph can be induced by using
all the edges with weights being at least w. After that, we
present an approach to computing the w-induced subgraph
with the maximum edge weight, also called w∗-induced
subgraph, and theoretically prove that the [x∗, y∗]-core can

be easily derived through the w∗-induced subgraph. Since
our approach only needs to compute a single w∗-induced
subgraph, it runs much faster than the original algorithm
of computing the [x∗, y∗]-core which computes a list of
[x, y]-cores [7]. Besides, the approach does not require any
synchronization among vertices during computation. Thus, it
can be easily parallelized.

In addition, we have implemented all the proposed al-
gorithms using OpenMP1, a popular parallel computing
framework based on the shared-memory model. To evaluate
the scalability and efficiency of our algorithms, we have
conducted extensive experiments using 12 real large graphs,
and four of them are billion-scale. Our experiments show
that compared to state-of-the-art algorithms on undirected
and directed graphs, our proposed parallel algorithms could
achieve up to 20× and 30× speedup with 32 threads,
respectively.

In summary, our principal contributions are listed as fol-
lows:

• For undirected graphs, we present an efficient parallel
algorithm to compute the k∗-core as an approximate
solution, by avoiding computing the core numbers of
all the vertices.

• For directed graphs, we devise a fast parallel algorithm
to compute the [x∗, y∗]-core by introducing the w-
induced subgraph and also establishing its theoretical
connection with [x∗, y∗]-core.

• We implement our algorithms using OpenMP and con-
duct extensive experiments on 12 real large graphs
to test the scalability and efficiency of our proposed
algorithms.

Outline. Section II reviews the existing DSD works. We
introduce the preliminaries with formal problem definitions
in Section III. Sections IV and V present our proposed
parallel DSD algorithms on undirected graphs and directed
graphs respectively. We report the experimental results in
Section VI, and conclude the paper in Section VII.

II. RELATED WORK

We mainly review the existing DSD works as shown in
Table 1. We also briefly discuss other related works.
• DSD on undirected graphs. Goldberg [1] first in-

troduced the problem of DSD on undirected graphs, and
designed an exact DSD algorithm based on flow network.
Charikar [3] introduced a linear programming (LP) approach
for solving the DSD problem. Fang et al. [6] improved the
efficiency by locating the densest subgraph in some specific
k-cores. These exact algorithms can process small graphs
in reasonable time cost, but they are inefficient and scales
poorly on large graphs. To alleviate the issues above, many
approximation algorithms have been proposed. Charikar [3]
proposed a peeling-based 2-approximation algorithm with
O(m+n) time cost. Bahmani et al. [5] proposed a 2(1+ ε)-
approximation algorithm based on MapReduce and streaming
model (ε > 0). Boob et al. [26] proposed a 2-approximation
approach based on a greedy strategy. Fang et al. [6] devised a
fast 2-approximation algorithm based on the k-core. Bahmani
et al. [27] and Su et al. [28] proposed (1+ ε)-approximation
algorithms based on dual LP respectively. Chekuri et al. [29]
designed a flow-based (1+ ε)-approximation algorithm with
Õ(mε) time cost.

1https://www.openmp.org/

286

TABLE 1: Classification of existing DSD algorithms.

Graph type Exact algorithms Approx. algorithms
Undirected

graph
[1], [3], [6]

2-approximation: [3], [6], [8], [26]
2(1+ε)-approximation: [5]

Directed
graph

[2]–[4]
2-approximation: [3], [7], [9]

2(1+ε)-approximation: [5]

Besides, there are many variants of DSD on undirected
graphs. Tsourakakis et al. introduced the k-clique-density by
extending classic graph density, and the DSD problem using
k-clique-density has been extensively studied recently [6],
[8], [22], [30], [31]. Sawlani and Wang [32] presented a
(1 + ε)-approximation algorithm for dynamic graphs. Qin
et al. [33] studied the top-k locally DSD problem. Tatti
et al. [34] and Danisch et al. [23] studied the density-
friendly decomposition problem to obtain a series of nested
dense subgraphs. Galbrun et al. [35] and Dondi et al. [36],
[37] studied the top-k densest subgraphs with minimum
overlapping. Another variant is the densest k-subgraph search
problem, which finds the densest subgraph with only k
vertices [38]–[42].
• DSD on directed graphs. Kanan and Vinay [2] first

introduced the notion of the density of a directed graph.
Charikar [3] proposed an LP-based exact algorithm. Khuller
and Saha [4] proposed a max-flow-based exact algorithm.
Ma et al. [7], [9] introduced the [x, y]-core on directed
graphs, which can be computed by iteratively peeling vertices
whose in-degrees and out-degrees are less than x and y
respectively, and proposed a fast exact core-based algorithm
with divide-and-conquer strategy. Similar to exact algorithms
for undirected graphs, the exact algorithms above also suffer
from the issues of low efficiency and poor scalability, so
many approximation algorithms have been developed. Kanan
and Vinay [2] proposed a O(log n)-approximation algorithm.
Charikar [3] proposed a peeling-based 2-approximation al-
gorithm. Khuller and Saha [4] proposed an approximation
algorithm with linear time cost, but its approximation ratio is
misclaimed to be 2 [7]. Bahmani et al. [5] proposed a parallel
2(1+ε)-approximation algorithm based on MapReduce and
the streaming model (ε > 0). Ma et al. [7], [9] proved that
the [x, y]-core that maximizes the value of x · y is a 2-
approximation solution to the DDS problem, which can be
identified by enumerating all the [x, y]-cores that achieve the
maximum values of x and y respectively.

In addition, the DSD problem has been studied on bipartite
graphs [22], [43], [44], uncertain graphs [45], [46], and
multilayer graphs [47]–[49]. Due to the different attributes
and structures of these graphs, the solutions of these works
cannot be applied to the problems studied in this paper.
• Other dense subgraphs. Recently, many other dense

subgraph models have been studied [50], such as k-core [25],
[51], k-truss [52], clique, quasi-clique [53], (α, β)-core [54],
bitruss [55], biclique [56], [57], and quasi-bicliques [58].
More details can be found in [59], [60]. These dense sub-
graphs are different from UDS and DDS, which attain the
highest density. Among them, the k-core is closely related to
UDS, since the k-core with the largest k is a 2-approximation
solution to the UDS problem [6]. Thus, existing parallel k-
core decomposition approaches [25], [50], [61] can be used
for finding UDS. In [25], Sariyuce et al. developed a local
core decomposition algorithm on the multi-core platform,
which iteratively updates the h-index of each vertex until
it converges to its core number in a parallel manner. In [61],
Kabir et al. divided all the vertices into k∗ levels according

to their degrees, and then computed the core numbers of
vertices by processing vertices level by level in parallel.

In summary, most of the existing DSD algorithms scale
poorly on large graphs except the parallel DSD algorithms
developed in [5], since they are serial algorithms and can
only leverage the computing resource of a single CPU core,
thus calling for more scalable and efficient DSD algorithms.

III. PRELIMINARIES

In this section, we formally introduce the DSD prob-
lems on undirected and directed graphs, also called undi-
rected densest subgraph (UDS) and directed densest sub-
graph (DDS) problems respectively. Table 2 summarizes the
frequently-used notations and their meanings.

TABLE 2: Frequently-used notations.

Notation Definition
G=(V,E) An undirected graph with vertex set V and edge set E
D=(V,E) A directed graph with vertex set V and edge set E

ρ Graph density
NG(v) The neighbors of v in G
dG(v) The degree of vertex v in G

N+
D (v), N−

D (v) The out/in-neighbors of v in D, respectively

d+D(v), d−D(v) The out/in-degree of v in D, respectively
h(v) The h-index of v in G

k∗-core The k-core of G with the maximum k
[x∗, y∗]-core The [x, y]-core of D with the maximum x · y

N+
D (v), N−

D (v) The out/in-neighbors of v in D, respectively

A. Problem statement

We denote an undirected graph by G = (V,E), where
|V | = n and |E| = m are the numbers of vertices and
edges of G, respectively. For each vertex v ∈ V , NG(v)
is the neighbors of v and dG(v) denotes the degree of v,
i.e., dG(v) = |NG(v)|. Given a vertex subset S ⊆ V , the
subgraph induced by S, or G[S], includes the vertex set S
and the edge set E(S) = E ∩ (S × S). The density, UDS,
and UDS problem are formally defined as follows.

Definition 1 (Density of undirected graphs [1]). Given an
undirected graph G = (V,E) and a vertex subset S ⊆ V ,
the density of the subgraph G[S] induced by S is defined as
ρ(G[S]) = |E(S)|

|S| .

Definition 2 (Undirected densest subgraph (UDS) [1]).
Given an undirected graph G = (V,E), an UDS of G is
the subgraph of G with the maximum density among all the
possible subgraphs.

Problem 1 (UDS problem [1], [3], [5], [6], [26]). Given
an undirected graph G, return a subgraph of G with the
maximum density.

Let D = (V,E) be a directed graph. For each vertex v ∈
V , denote by N+

D (v) and N−
D (v) the out and in-neighbors

of v, respectively, and correspondingly denote by d+D(v) and
d−D(v) the out and in-degree of v, respectively. Given two
vertex subsets S, T ⊆ V that are not necessarily disjoint,
E(S, T) = E ∩ (S × T) denotes the set of all edges from
S to T in the graph D. The (S, T)-induced subgraph of
D contains the vertex sets S, T and the edge set E(S, T).
The density of the (S, T)-induced subgraph, directed densest
subgraph (DDS), and DDS problem are defined as follows.

Definition 3 (Density of directed graphs [2]). Given a
directed graph D = (V,E) and two vertex subset S, T ∈ V ,

287

the density of the (S, T)-induced subgraph is defined as
ρ(S, T) = |E(S,T)|√

|S||T | .

Definition 4 (Directed densest subgraph (DDS) [2]). Given
a directed graph D = (V,E), a DDS of D is the (S, T)-
induced subgraph of D with the maximum density among all
the possible (S, T)-induced subgraphs.

Problem 2 (DDS problem [2], [4], [5], [7], [9]). Given a
directed graph D, return an (S, T)-induced subgraph of D
having the maximum density.

Approximation ratio. Denote by ρ∗ the density of the
densest subgraph. An algorithm is called an α-approximation
solution to the UDS/DDS problem if the ratio of ρ∗ over the
density of the returned subgraph is not greater than α (α ≥
1.0). This paper focuses on the 2-approximation solutions to
the UDS and DDS problems.

OpenMP. Open Multi-Processing (or OpenMP in short) is
an application programming interface that supports shared-
memory multiprocessing programming on a wide range of
Symmetrical Multi-Processing architectures (e.g., multi-core
CPUs). It shares most of the data in the parallel region
by default, implying that all the branch threads can access
the data at the same time. Recently, OpenMP has been
widely used for implementing many graph algorithms, such
as PageRank [62], k-core decomposition [61], clique enu-
meration [63], and graph partitioning [64].

IV. ALGORITHMS FOR UNDIRECTED DENSEST SUBGRAPH

DISCOVERY

In this section, we first review a state-of-the-art 2-
approximation UDS algorithm [6] based on k-core, then
show our proposed parallel 2-approximation algorithm, and
finally present the parallel implementation using OpenMP.

A. State-of-the-art approximation algorithm
Before introducing the state-of-the-art 2-approximation

UDS algorithm [6], we first give the definitions of k-core
and core number.

Definition 5 (k-core [51], [65]). Given an undirected graph
G = (V,E), the k-core of G is the largest induced subgraph
G[S] = (S,E(S)) of G, where the degree of each vertex in
G[S] is not less than k, i.e., ∀v ∈ S, dG[S](v) ≥ k.

Definition 6 (Core number [51]). The core number of a
vertex is the largest value of k such that there is a k-core
containing it.

Among all the k-cores of G, the k-core with the largest k
value is called k∗-core. Fang et al. [6] proved that the k∗-core
provides a 2-approximation solution to the UDS problem.

Lemma 1 [6]. Given an undirected graph G, the k∗-core of
G is a 2-approximation solution to the UDS problem.

To obtain the k∗-core, the straightforward way is to per-
form the core decomposition on the given graph to compute
the core number for each vertex. Then, the vertices with
the largest core number (i.e., k∗) comprise the k∗-core. The
conventional method of k-core decomposition is to iteratively
delete the vertex with the minimum degree in G, which can
be done in O(m) time via binsort [66].

However, the approach to remove the vertex with the
smallest degree each time is not suitable for parallel comput-
ing, because every time the vertex is removed, it needs to wait

for the degree update of the remaining vertices. Sariyuce et
al. [25] proposed a parallel k-core decomposition algorithm,
named Local, which calculates the core number of each
vertex only based on the information of its neighbors. The
main idea of Local is similar to the computation of h-
index [67], which was initially used to measure the citation
impact of a scholar or a journal. For a scholar or journal, its
h-index is defined as the maximum value h such that there
exist at least h papers, each with a citation count at least h.
Analogously, the core number k of a vertex u can be viewed
as the largest k such that u has at least k neighbors whose
core numbers are also at least k.

As a result, the core number of each vertex can be obtained
by iteratively updating the h-indexes of all vertices in the
graph, until their values converge to their core numbers. For
example, as shown in Fig. 2, the h-index of each vertex is
initialized to its degree (i.e., h(0)). We first update the h-
index values of vertices in non-ascending order of degrees
(i.e., v4, v3, v2, v1, v5, v6, v7, v8). After the first iteration,
h(1)(v7) will be reduced from 2 to 1, because v7 does not
have 2 neighbors whose degrees are at least 2. By analogy,
after four rounds of iterations, the h-indexes of all vertices
do not change, which means that their values converge to
their core numbers.

Algorithm 1: Local [25]

Input: An undirected graph G = (V,E)
Output: The core number of all the vertices of G

1 foreach v ∈ V do h(0)(v) = dG(v);
2 t← 0, F ← True;
3 while F do
4 F ← False;
5 for v ∈ V in parallel do
6 h(t+1)(v)← the maximum k satisfying

|{h(t) ≥ k|u ∈ NG(v)}| ≥ k;

7 if h(t+1)(v) < h(t)(v) then F ← True ;

8 t← t+ 1 ;

9 return {h(t)(v)|v ∈ V } ;

Algorithm 1 presents the steps of the algorithm
Local [25]. Specifically, the h-index of each vertex in G is
initialized to its degree (line 1), and then each vertex updates
its h-index iteratively according to the h-index values of its
neighbors (lines 3-8). If the h-index values of all vertices
remain unchanged in two consecutive iterations, the h-index
of each vertex converges to its core number (line 7). Clearly,
the h-index value of a vertex provides an upper bound of
its core number. Since the h-index value of a vertex only
depends on its neighbors’ information, the h-index values
of all the vertices can be updated independently without
synchronization.

Note that the k∗-core may have multiple connected com-
ponents, and any one of them can be regarded as a 2-
approximation solution to the UDS problem.

Complexity. Local completes in O(t · m) time, where
t ≤ n is the number of iterations, and in practice t
 k∗ [25].

B. Our optimized k∗-core computation

Although the k∗-core can be obtained by using the core
decomposition algorithms above, these algorithms involve
much unnecessary computation, since they compute the core
numbers of all vertices, while for the UDS problem, we
only need the k∗-core by Lemma 1. In other words, for

288

v1 v4

v2

v3

v5 v6 v7

3, 3, 3, 3

3, 3, 3, 3

4, 3, 3, 3

2, 2, 2, 1

2, 2, 1, 1

2, 1, 1, 1

3, 3, 3, 3

order: v4, v3, v2, v1, v5, v6, v7, v8

h(0), h(1), h(2), h(3)

v8

1, 1, 1, 1

Fig. 2: Illustrating the optimized Local algorithm.

many vertices that are not in the k∗-core, their core numbers
have also been precisely computed. Therefore, to improve the
efficiency of solving the UDS problem, the main challenge is
how to reduce the computation of core numbers for vertices
that are not in the k∗-core, given that k∗ is unknown in
advance.

A simple method of computing the k∗-core without com-
puting all vertices’ core numbers is to perform core de-
composition with binary search on the possible values of

k∗. Specifically, for each guessed ̂k∗ of k∗, we first select

vertices with degrees of ̂k∗ or more, and then do the core
decomposition on the induced subgraph. If the maximum

core number obtained is at least ̂k∗, then it must be k∗ for
the entire graph G; otherwise, we need to reduce the value of
̂k∗ and repeat the above process. Nevertheless, the number
of binary search iterations could be O(logn) in the worst
case, making the overall time cost be O((m+n)logn). As a
result, this method may be even slower than the algorithms
above.

To alleviate the above issues, we first show some interest-
ing properties of k∗-core and Local (Algorithm 1), and then
use them to optimize Local, by significantly reducing the
number of its iterations and also trying to avoid computing
the core numbers for the vertices outside the k∗-core.

Proposition 1. There are at least k∗+1 vertices in k∗-core.

Proposition 2. Given an undirected graph G, the degrees/h-
indices of vertices outside the k∗-core have no effect on the
core number of its internal vertices.

Lemma 2. For the t-th iteration in Algorithm 1, if h(t)(v)
equals to the core number of v, then ∀q > t, h(q)(v) =
h(t)(v), i.e., the h-index value of v will not change in the
following iterations.

Through the above properties, we can make the following
conclusion: in an iteration of Algorithm 1, the k∗-core is
obtained if the h-index values of all vertices in k∗-core are
k∗ and the maximum h-index value of other vertices is less
than k∗. However, in practice, the value of k∗ and the number
of vertices in k∗-core are unknown in advance, so we cannot
get the k∗-core directly by using the conclusion. Luckily,
this conclusion inspires us to derive an interesting theorem
which provides an effective early stop criterion, allowing
us to obtain the k∗-core from the first a few iterations of
Local without running all the iterations. In other words,
equipped with this theorem, the optimized Local can report
the k∗-core immediately once it has been derived, so the
computation of other k-cores will be reduced significantly.

Theorem 1. In the t-th iteration of Algorithm 1, let h(t+1)
max =

maxv∈V {h(t+1)(v)} and h
(t)
max = maxv∈V {h(t)(v)}. If

h
(t+1)
max = h

(t)
max and |{v ∈ V |h(t+1)(v) = h

(t+1)
max }| = |{v ∈

V |h(t)(v) = h
(t)
max}|, then k∗ = h

(t)
max and the subgraph

induced by {v ∈ V |h(t)(v) = h
(t)
max} is the k∗-core of the

input graph.

Proof. We prove the theorem by contradiction. Assuming

that k∗ �= h
(t)
max if h

(t+1)
max = h

(t)
max and |{v ∈ V |h(t+1)(v) =

h
(t+1)
max }| = |{v ∈ V |h(t)(v) = h

(t)
max}|. That is, k∗ < h

(t)
max,

because for each vertex v ∈ V , ht(v) is the upper bound
of the core number of v. In the subgraph induced by

S = {v ∈ V |h(t)(v) = h
(t)
max}, each vertex has a degree

larger than or equal to h
(t)
max, according to the definition of

h-index and line 7 of Algorithm 1. Hence, the subgraph G[S]

is a h
(t)
max-core, which contradicts k∗ < h

(t)
max.

By Theorem 1, we can optimize Local by stopping
its iteration process directly, whenever we find that the
maximum values of h-index values in two adjacent iterations
are the same and meanwhile the number of corresponding
vertices remains unchanged, because the k∗-core has been
already derived from these iterations.

Since the original Local is a highly parallel algorithm
and we only use its first several iterations for computing
the k∗-core, the optimized algorithm is still a highly parallel
algorithm, allowing us to find a 2-approximation solution
to the UDS problem in parallel. We illustrate the optimized
Local algorithm by Example 1.

Example 1. We illustrate Theorem 1 by running Local on
an example graph in Fig. 2. Initially, the h-index values of all
vertices are their degrees, so h

(0)
max=4 and there is 1 vertex

with h-index values equal to h
(0)
max is 1. Next, we update the

h-index values of vertices in non-ascending order of degrees,
(i.e., v4, v3, v2, v1, v5, v6, v7, v8), and then get h(1)

max = 3 with
4 vertices whose h-index values equal to h

(1)
max. In the next

iteration, h(2)
max is still 3 and there are still 4 vertices with

h-index values equal to h
(2)
max. By Theorem 1, the k∗-core

has been obtained at this moment, which includes vertices
{v1, v2, v3, v4}.

Notice that the h-index values of other vertices still need
two more iterations to converge to their corresponding core
numbers, when there is no h-index update in the entire graph.
Hence, the optimized Local only needs 2 iterations, while
the original Local needs 4 iterations.

C. The overall algorithm

In this section, we present the optimized Local algorithm
with the parallel implementation using OpenMP, which es-
sentially is a parallel k∗-core computation (also abbreviated
as PKMC) algorithm. We show the pseudocodes of PKMC in
Algorithm 2.

Specifically, we first initialize the h-index value of each

vertex by its degree (line 1). h
(t)
max records the maximum

value of h(t)(v) in the t-th iteration, which is initialized to
the maximum degree of all vertices (line 2). s(t) denotes

the number of vertices whose h-index values equal to h
(t)
max

in the t-th iteration (line 3). Next, we update the h-index
values of all vertices iteratively (lines 6-9). Particularly, the h-
index update of each vertex can be performed independently
without synchronization (line 7). After each iteration, we

obtain the maximum value h
(t+1)
max of the (t + 1)-iteration,

and the number of corresponding vertices s(t+1) (lines 10-

11). By proposition 1, if s(t+1) ≤ h
(t+1)
max , then continue

289

the while-loop (line 12). Afterwards, if h
(t)
max = h

(t+1)
max

and s(t+1)=s(t), we can stop the loop directly by setting
F to False according to Theorem 1. Otherwise, we need to
continue the h-index update iterations (lines 13 – 14). Finally,

the subgraph induced by {v ∈ V |h(t)(v) = h
(t)
max} is the k∗-

core, which gives a 2-approximation solution to the UDS
problem.

Algorithm 2: Parallel k∗-core computation (PKMC)

Input: An undirected graph G = (V,E)
Output: The 2-approximation UDS, i.e., k∗-core

1 foreach v ∈ V do h(0)(v)← dG(v);

2 h
(0)
max ← maxv∈V {h(0)(v)};

3 s(0) ← |{v ∈ V |h(t)(v) = h
(t)
max}|;

4 t← 0, F ← True;
5 while F do
6 F ← False;
7 for v ∈ V in parallel do
8 h(t+1)(v)← the maximum k satisfying

|{h(t) ≥ k|u ∈ NG(v)}| ≥ k;

9 if h(t+1)(v) < h(t)(v) then F ← True ;

10 h
(t+1)
max ← maxv∈V {h(t+1)(v)};

11 s(t+1) ← |{v ∈ V |h(t+1)(v) = h
(t+1)
max }|;

12 if s(t+1) ≤ h
(t+1)
max then continue;

13 if h(t)
max = h

(t+1)
max then

14 if s(t+1)=s(t) then F ← False ;

15 t← t+ 1;

16 return the subgraph by {v ∈ V |h(t)(v) = h
(t)
max};

Time complexity. The worst case time complexity of
PKMC (Algorithm 2) is the same as that of Local (Algo-
rithm 1), i.e., O(t ·m). As analyzed by Sariyuce et al. [25],
there is no dependency on the update of the h-index of
vertices; that is, the order of the update of the h-index of
the vertices does not affect the correctness of the result.
Consequently, the span (depth) of each iteration is O(1), and
the span of PKMC is O(t). In practice, since the number of
iterations needed by PKMC is often much less than that of
Local, PKMC runs much faster than Local as shown by
our later experimental results in Section VI.

V. ALGORITHMS FOR DIRECTED DENSEST SUBGRAPH

DISCOVERY

In this section, we first review the state-of-the-art 2-
approximation DDS algorithm [7] based on the [x, y]-core.
Then, we propose a new subgraph model, called w-induced
subgraph, and a novel parallel 2-approximation DDS algo-
rithm based on the w-induced subgraph. Finally, we show
how to implement it using OpenMP.

A. State-of-the-art approximation algorithm

The state-of-the-art 2-approximation DDS algorithm is
mainly based on the concept of [x, y]-core [7]:

Definition 7 ([x, y]-core [7]). Given a directed graph D =
(V,E), an (S, T)-induced subgraph H = G[S, T] is called
an [x, y]-core, if it satisfies:

1) ∀u ∈ S, d+H(u) ≥ x and ∀v ∈ T, d−H(v) ≥ y;
2) H is maximal, i.e., �H ′, s.t., H is a subgraph of H ′

and H ′ also satisfies (1).

The integer pair [x, y] is also called the cn-pair of the
[x, y]-core. Among all the possible [x, y]-cores, the cn-pair

with the largest value of x ·y is called the maximum cn-pair,
and the corresponding [x, y]-core is denoted by [x∗, y∗]-core.

Lemma 3 [7]. Given a directed graph D, the [x∗, y∗]-core
of D is a 2-approximation solution to the DDS problem.

To obtain the [x∗, y∗]-core, Ma et al. [7] developed an
algorithm by enumerating O(

√
m) cn-pairs. Specifically, for

each possible x ∈ [1,
√
m] (resp. y ∈ [1,

√
m]), it iteratively

peels the vertices with the smallest in-degree (resp. out-
degree) to obtain the maximum y (resp. x) such that there
exists an [x, y]-core. Afterwards, the [x∗, y∗]-core is obtained
by selecting the largest value of all x·y. Therefore, its overall
time complexity is O(

√
m(m+n)).Similar to k∗-core, there

may exist several connected components in an [x∗, y∗]-core,
any of which can be regarded as a 2-approximation solution
to the DDS problem.

To achieve higher scalability, we can easily adapt the above
algorithm to run in parallel and the adapted algorithm is
termed as PXY. The main idea of PXY is to dynamically
assign each x to a specific thread for computing the cor-
responding cn-pairs. After that, we gather all the cn-pairs
and get the maximum cn-pair. Although PXY can accelerate
the computation of [x∗, y∗]-core, it still needs to decompose
the graph to get O(

√
m) [x, y]-cores. Besides, it may suffer

from the load imbalance issue since different cn-pairs have
different computational cost. To tackle these issues, in the
following we propose a novel subgraph model, called w-
induced graph, for the directed graph and then show that
the [x∗, y∗]-core can be easily computed in parallel by
establishing its relationship with the w-induced subgraph.
As a result, we obtain a novel scalable and efficient 2-
approximation algorithm to the DDS problem.

B. The w-induced graph and its computation
Recall that when computing an [x, y]-core, all the peeling

operations are restricted on the vertices. Then, a natural
question is that can we obtain a similar dense subgraph by
performing operations on edges? In the following, we show
that this is not only possible, but also can be done efficiently
in parallel.

Remember that for each edge e = (u, v) in an [x, y]-core
(denoted by H), we always have d+H(u) ≥ x and d−H(v) ≥ y.
Consequently, the product of degrees on both sides of each
directed edge in an [x, y]-core must be at least x ·y. Inspired
by this, for each edge, we can assign it a weight via the
degrees of its two endpoints.

Definition 8 (Edge weight). Given a directed graph D =
(V,E), for each edge e = (u, v) ∈ E, its assigned edge
weight w.r.t. D is defined as wD(e) = d+D(u) · d−D(v).

Based on the definition of edge weight, we introduce the
concepts of w-induced subgraph and induce-number.

Definition 9 (w-induced subgraph). Given a directed graph
D = (V,E) and an integer w, the w-induced subgraph is the
maximal subgraph H = (VH , EH) of D, such that the weight
of each edge w.r.t. H is at least w, i.e., ∀e = (u, v) ∈ EH ,
we have wH(e) = d+H(u) · d−H(v) ≥ w.

Definition 10 (Induce-number). Given a directed graph
D = (V,E) and an edge e ∈ E, the induce-number of
e is the largest value of w, such that that there exists a
w-induced subgraph containing it. We denote the maximum
induce-number of edges in D by w∗.

290

Example 2. Consider the directed graph D in Fig. 3(a).
The value on each edge denotes its assigned edge weight.
For instance, the weight of edge e = (u1, v3) is wD(e) =
d+D(u1)× d−D(v3) = 3× 3 = 9. After initializing the weights
of all edges, we iteratively remove the edge with the smallest
weight from the graph. First, we remove edge (u4, v4) and
record its induced number as 3. Since the in-degree of v4
decreases from 3 to 2, we update the weights of (u3, v4)
and (u2, v4) to 4 and 10 respectively. Afterward, there is no
edge with a weight of 3 in the remaining graph. Then, we
continue to find the smallest weight and the corresponding
edges in the graph, and repeat the above steps until the graph
is empty, and the induced numbers of all edges in the graph
are shown in Table 3. Clearly, the maximum induce-number
is w∗ = 6, and the w∗-induced subgraph contains vertices
{u1, u2, v1, v2, v3} as depicted in Fig. 3(b).

u1

v1 v2 v3 v4

6

6

9

u2 u3

10

10

15 15

66

v5

u4

35

(a) A directed graph D

u1

v1 v2 v3

u2

(b) The w∗-induced subgraph of D

Fig. 3: An example of w-induced subgraph.

TABLE 3: Induce-numbers of edges of the graph in
Fig. 3(a).

Edge(s) Induce-number
(u4, v4) 3

(u3, v3), (u3, v4) 4
(u2, v4), (u2, v5) 5

(u1, v1), (u1, v2), (u1, v3),
(u2, v1), (u2, v2), (u2, v3)

6

Next, we show that the w-induced subgraphs have some
interesting properties:

Proposition 3 (Nested Property). Given a directed graph
D, a w-induced subgraph is contained by a w′-induced
subgraph, if w ≥ w′ ≥ 0.

Proposition 4. Given a directed graph D and its w∗-induced
subgraph, removing all edges in w∗-induced subgraph with
weights being exactly w∗ will collapse the w∗-induced sub-
graph.

Similar to k-core decomposition, to decompose the graph
for getting all the possible w-induced subgraphs, we can
compute the induce-numbers of all the edges. This can be
done efficiently in parallel by following the k-core decom-
position algorithm; that is, we iteratively peel the edges with
the smallest weights, record their induce-numbers, and in the
meantime update the weights of their adjacent edges, until
the graph is empty.

Algorithm 3 presents the parallel algorithm for decompos-
ing the w-induced subgraphs. Specifically, we first use a set
N(v) to keep the out-neighbors of each vertex v, use another
set A to keep all vertices having out-neighbors, and initialize
a Boolean value F to be false (lines 1-2). Afterwards, we
iteratively remove the edges with the smallest weight by the
outer while-loop (lines 3-15). In each iteration t, we first
induce a subgraph by using edges which connect vertices of
A (line 4), then get the minimum edge weight w(t) (line 5),

Algorithm 3: Parallel w-induced subgraph decomposition

Input: A directed graph D = (V,E)
Output: Induce-numbers of all the edges of D

1 foreach v ∈ A do N(v) ← N+
D (v);

2 A ← {v ∈ V |d+D(v) > 0}, F ← True, t ← 0;
3 while A is not empty do
4 H ← the subgraph induced by the edges implied

by neighbors of each v ∈ A;

5 w(t) ← the minimum weight of edges in H;
6 while F do
7 F ← False;
8 for u ∈ A in parallel do
9 foreach v ∈ N(u) do

10 if d−H(v) ≤ w(t)/d+H(u) then
11 record the induce-number of (u, v)

as w(t);
12 remove v from N(u);
13 update d+H(u), d−H(v) atomically;
14 F ← True;

15 if d+H(u) = 0 then remove u from A;

16 t ← t+ 1;

17 return the induce-number of all edges of D;

and finally peel all the edges with such a weight using the
inner while-loop (lines 6-15). In the inner while-loop, when
removing an edge (lines 9-14), we record its induce-number
and meanwhile decrease the weights of its adjacent edges by
1. Finally, the induce-numbers of all the edges are returned
(line 17).

Time complexity. Let dmax be the maximum in-
degree/out-degree of vertices in D. In the worst case, Al-
gorithm 3 takes O(m · dmax) time, since the weight of each
edge will be decreased dmax times, but in practice it is much
faster.

Remark. Note that we aim to obtain the w∗-induced
subgraph of D, and for the directed graph D, there must be
an induced subgraph consisting of the vertex with the largest
out/in-degree and its neighbors. Therefore, w∗ ≥ dmax =
maxu∈D{d+(u), d−(u)}. Then we can set w(0) to dmax to
speed up the w∗-induced subgraph computation.

C. Deriving [x∗, y∗] from w∗-induced subgraph
In this subsection, we theoretically establish the relation-

ship between the maximum cn-pair [x∗, y∗] and the w∗-
induced subgraph, and then discuss how to derive [x∗, y∗]
from the w∗-induced subgraph.

Intuitively, an [x, y]-core is a subgraph of a w-induced
subgraph. For example, as shown in Fig. 4, a [4, 3]-core is
contained in a 12-induced subgraph. However, there may be
some edges in the w-induced subgraph that do not belong to
the [x, y]-core.

Example 3. Take the directed graph D in Fig. 4 as an
example. Note that the whole graph D is a w∗-induced
subgraph with w∗ = 12. The [x∗, y∗]-core of D is the (S, T)-
induced subgraph with vertex sets S = {u1, u2, u3} and
T = {v1, v2, v3, v4}, which means that x∗=4 and y∗=3. In
the 12-induced subgraph, the weights of four edges (u2, v6),
(u4, v6), (u3, v7), and (u4, v7) are 12, but they do not belong
to [x∗, y∗]-core, since the in-degrees of v6 and v7 are less
than 3.

291

u1

v1 v2 v3 v4

12 16 16 16

u2 u3

18 24 24 24 24

24
18

24

v5 v6

u4

18

1224

2424

18 12

v7

121218

Fig. 4: An example of w∗-induced subgraph and
[x∗, y∗]-core, where w∗=12, x∗=4, and y∗=3.

To establish a theoretical connection between the two
subgraph models, we begin with two interesting lemmas
about the [x, y]-core:

Lemma 4. Given a directed graph D, for any [x, y]-core in
D, it must be contained by the xy-induced subgraph, but an
xy-induced subgraph may include multiple [x, y]-cores.

Lemma 5. Given a directed graph D, removing all the edges,
whose weights are exactly x∗ · y∗, from its [x∗, y∗]-core will
collapse the entire [x∗, y∗]-core.

Proof. We prove the lemma by contradiction. Assuming that
there exists a subgraph H after removing all edges with
weights being exactly x∗·y∗ from [x∗, y∗]-core, which is
an (S, T)-induced subgraph. Essentially, removing all the
edges of the [x∗, y∗]-core with weights being exactly x∗·y∗
is equivalent to removing all the vertices with out-degrees
being exactly x∗ and in-degrees being exactly y∗ from S
and T , respectively. This implies that H is an [x′, y′]-core
with x′·y′ > x∗·y∗, which contradicts the fact that x∗·y∗
is the largest value among all [x, y]-cores of D. Hence, the
lemma holds.

By Lemma 4, we know that the [x∗, y∗]-core is a subgraph
of (x∗ · y∗)-induced subgraph. According to Lemma 5, the
minimum weight of edges in the [x∗, y∗]-core is exactly x∗ ·
y∗, which also implies that the induce-number of each edge in
[x∗, y∗]-core is at least x∗ ·y∗. Next, we formally establish the
relationship between [x∗, y∗]-core and w∗-induced subgraph:

Theorem 2. Given a directed graph D, the w∗-induced sub-
graph of D, and the [x∗, y∗]-core of D, we have w∗=x∗·y∗.

Proof. We prove the theorem by contradiction. If w∗ �=x∗·y∗,
then there are two cases: w∗ > x∗·y∗ and w∗ < x∗·y∗.

(1) If w∗ > x∗·y∗, then according to Proposition 3, the w∗-
induced subgraph must be a subgraph of [x∗, y∗]-core. That
is, the w∗-induced subgraph can be obtained by removing the
edges with weights less than w∗ in [x∗, y∗]-core. According
to Lemma 5, [x∗, y∗]-core will collapse when removing the
edges with weights of x∗·y∗. Therefore, there is no subgraph
with higher induce-number, which however contradicts the
assumption that w∗ > x∗·y∗.

(2) If w∗ < x∗·y∗, then the [x∗, y∗]-core must be a
subgraph of w∗-induced subgraph. Removing all the edges
with weights less than x∗ · y∗ in the w∗-induced subgraph
can obtain [x∗, y∗]-core, which contradicts Proposition 4.

Therefore, we conclude w∗=x∗·y∗.

According to Theorem 2 and Proposition 4, we can
conclude that the [x∗, y∗]-core must be a subgraph of
w∗-induced subgraph. Besides, in the w∗-induced subgraph
H , there may exist some edges e = (u, v), which satisfy
d+H(u)·d−H(v) ≥ w∗ = x∗·y∗, but d+H(u) < x∗∧d−H(v) > y∗,

or d+H(u) > x∗ ∧ d−H(v) < y∗, as illustrated in Example 3.
Hence, it is a key issue to extract the edges related to the
[x∗, y∗]-core from the w∗-induced subgraph.

Given the w∗-induced subgraph of a graph, to obtain the
maximum cn-pair [x∗, y∗] , a simple method is to check each
possible cn-pair [x, y] such that x · y = w∗ and then select
the largest x ·y. Since we still need to enumerate all the x ∈
[1, w∗] and check the existence of corresponding [x, y]-cores,
this method is costly, especially when the value of w∗ is
very large. To improve the efficiency, we make an important
observation: among all the edges whose weights are exactly
w∗ in the w∗-induce subgraph, there must be some edges,
whose endpoints’ out-degrees and in-degrees are exactly x∗
and y∗ respectively. If we remove all such edges, the w∗-
induce subgraph will collapse, as indicated by Lemma 6.

Lemma 6. Given a directed graph D, removing all edges,
whose endpoints’ out-degrees and in-degrees are exactly
x∗ and y∗ respectively, from its w∗-induced subgraph will
lead to the collapse of the entire w∗-induced subgraph
immediately.

Proof. According to Theorem 2, there must be edges in
D whose endpoints’ out-degrees and in-degrees are exactly
x∗and y∗ respectively. These edges are also in the [x∗, y∗]-
core, and according to Lemma 5, removing them will lead to
the collapse of the [x∗, y∗]-core. Note that the [x∗, y∗]-core
is a subset of the w∗-induced subgraph, so the collapse of
the [x∗, y∗]-core will result in the collapse of the w∗-induced
subgraph. Thus, Lemma 6 holds.

Inspired by the observation above, we propose a fast
algorithm to obtain the maximum cn-pair directly from the
w∗-induced subgraph, without computing any [x, y]-core.
The key idea is that for all edges in the w∗-induced subgraph
H whose weights are exactly w∗, we iteratively consider each
degree pair [x, y] satisfying x · y=w∗. For each [x, y], we
delete all the edges whose endpoints have out-degrees and
in-degrees being x and y respectively, and then update the
weights of their adjacent edges. If the remaining subgraph
cannot form a w∗-induced subgraph, the current degree pair
[x, y] is the maximum cn-pair, i.e., x∗ = x and y∗ = y.

After obtaining [x∗, y∗], we can extract the [x∗, y∗]-
core from the w∗-induced subgraph directly as the 2-
approximation DDS. It is worth noting that in the above algo-
rithm, the subgraph revealing the maximum cn-pair [x∗, y∗]
may not be the [x∗, y∗]-core, since it does not impose any
constraint on vertices’ in-degrees and out-degrees. Therefore,
to get the [x∗, y∗]-core, we have to continue removing all the
vertices whose in-degrees and out-degrees are less than x∗
and y∗ respectively from the w∗-induced graph, until the
remaining graph is an [x∗, y∗]-core.

Example 4. Recall that in the graph of Fig. 4, we have
w∗=12. To derive [x∗, y∗], we first locate the five edges
whose weights are exactly 12, i.e., (u1, v1), (u2, v6), (u4, v6),
(u3, v7), and (u4, v7), where the first edge’s degree pair is
[4, 3] and the remaining four edges’ degree pairs are [6, 2].
Suppose we first remove all the edges whose degree pairs
are [6, 2], which mean that the vertices v6 and v7 will be
removed. After that, the remaining graph is still a 12-induced
graph. Hence, we continue removing all edges whose degree
pairs are [4, 3], which directly leads to the collapse of the
remaining graph, so the maximum cn-pair must be [4, 3].
Note that if we first remove the edge whose degree pair

292

is [4, 3], the graph will collapse immediately, which also
indicates that the maximum cn-pair is [4, 3].

D. The overall algorithm
To improve the parallelizability, we develop a novel ap-

proach. Instead of focusing on deleting edges in parallel,
we iterate on the vertices having out-neighbors in parallel.
Recall that each out-neighbor of a vertex corresponds to an
out-going edge adjacent to the vertex, and the product of
the two degrees (i.e., an out-degree and an in-degree) is
the weight of the edge. For example, the out-neighbor v1
of u1 in Figure 3(b) corresponds to the edge (u1, v1), and
the product of the two degrees is its weight 6. Consequently,
when an edge e = (u, v) is removed, we can simply remove
v from the out-neighbor set of u and update the degrees of
the two endpoints. In this way, each vertex only needs to take
actions based on its neighbor information, thereby improving
the parallelizability.

Algorithm 4: Parallel [x∗, y∗]-core computation (PWC)

Input: A directed graph D = (V,E)
Output: The [x∗, y∗]-core

1 H ← invoke Algorithm 3 to compute w∗-induced
subgraph;

2 A← {v ∈ H|d+H(v) > 0}, P ← ∅, F ← True;
3 foreach v ∈ A do N(v)← N+

H (v);
4 for u ∈ A in parallel do
5 foreach v ∈ N(u) do
6 if d−H(v) = w∗/d+H(u) then add d−H(v) to P ;

7 while F do
8 F ← False, d∗ ← P.pop();
9 for u ∈ A in parallel do

10 foreach v ∈ N(u) do
11 if d−H(v) < w∗/d+H(u) then
12 delete v from N(u), update d+H(u), d−H(v)

atomically;
13 F ← True;

14 if d−H(v)=d∗ and d+H(u) · d∗=w∗ then
15 x∗ ← d+H(u), y∗ ← d∗;
16 delete v from N(u), update d+H(u), d−H(v)

atomically;
17 F ← True;

18 if d+H(u) = 0 then remove u from A;

19 if A = ∅ then F ← False;

20 extract [x∗, y∗]-core from H;
21 return [x∗, y∗]-core;

Algorithm 4 presents the steps of our parallel implemen-
tation for the algorithm above, which is denoted by PWC. It
first computes the w∗-induced subgraph and collects a set
A of vertices with out-degrees larger than 0 (lines 1-2). For
each vertex v in A, we initialize its neighbor set N(v) as
the outgoing neighbors of v in H (line 3). Next, for each
vertex u with out-degree larger than 0, we iterate over each
of its out-neighbors v, and record the in-degree of v by P if
d+H(u) ·d−H(v) = w∗ (lines 4-6). Afterwards, we use a while-
loop to remove the edges corresponding to each in-degree in
P (lines 7-19). Specifically, we take the current d∗ from P
each time, for each vertex u ∈ A, we remove vertex v with
in-degree less than w∗/d+H(u) from its neighbors (lines 11-
13). If d−H(v) = w∗/d+H(u), we only remove vertices whose
in-degrees are equal to d∗, and (d+H(u), d∗) is taken as the
maximum cn-pair temporarily (lines 14-17). We update the
degrees of the affected vertices along with the vertex removal

(lines 12-16). After that, if the remaining graph is empty,
meaning that we find the maximum cn-pair, PWC terminates
the while-loop and returns the [x∗, y∗]-core (lines 19-21);
otherwise, it repeats the above steps.

Time complexity. For each vertex u in A, updating the
out-neighbors and degrees of u costs O(d+D(u)) time in the
worst case, so the total time cost of an iteration in the while-
loop is O(m). Assuming that there are t iterations, Algo-
rithm 4 takes O(t ·m) time. Notice that when d+H(u) = 0, u
will not be processed, so t is bounded by dmax, which is the
maximum out-degree/in-degree of all vertices in D. Since the
order of degree updates also does not affect the result, the
span of each iteration is O(1). Therefore, the span of PWC
is O(dm).

VI. EXPERIMENTS

We now present the experimental results. Section VI-A
shows the setup. We report the results in Sections VI-B and
VI-C.

A. Setup
Since we mainly focus on developing efficient parallel

approximation algorithms, all the compared algorithms in the
experiments are extended to their parallel versions. To make
a fair comparison, for the existing serial algorithms, we adapt
them such that they can be run in parallel. Specifically, for
UDS problem, we compare the performance of the following
algorithms:

• PFW [23], [28]: a (1+ε)-approximation UDS algorithm,
where ε is set to 1, and we parallelize the Frank-Wolfe
process in the algorithm;

• PBU [5]: a parallel 2(1+ε)-approximation UDS algo-
rithm, where ε is set to 0.5;

• Local [25]: the state-of-the-art parallel nucleus decom-
position approach, which can be used for parallel k-core
decomposition and getting the k∗-core;

• PKC [61]: the state-of-the-art parallel peeling algorithm
for k-core computation, which returns the k∗-core;

• PKMC: our proposed parallel k∗-core computation algo-
rithm, which is depicted in Algorithm 2.

Note that PBU is a parallel algorithm that can run on
MapReduce; Local and PKC are parallel algorithms based
on the shared-memory model.

For DDS problem, we compare the performance of the
following parallel algorithms:

• PBS [3]: it is a greedy-based 2-approximation algorithm
which needs n2 rounds of peeling, and we parallelize it
by using a thread to run each peeling round;

• PFKS [4]: it is a fixed version of the 2-approximation
DDS algorithm which needs n rounds of peeling, and
we parallelize it by using a thread to run each peeling
round;

• PFW [28]: a (1+ε)-approximation DDS algorithm,
where ε is set to 1, and we parallelize the Frank-Wolfe
process in the algorithm;

• PBD [5]: the parallel 2δ(1+ε)-approximation DDS al-
gorithm, where δ=2.0 and ε=1.0 by default;

• PXY [9]: it is adapted from the serial algorithm of
computing the [x∗, y∗]-core, called Core-Approx in
[7], which sequentially computes

√
m [x, y]-cores to get

the [x∗, y∗]-core and is parallelized by using a thread to
compute each [x, y]-core, and it is the state-of-the-art
2-approximation algorithm;

293

• PWC: our proposed 2-approximation DDS algorithm,
which is designed based on the w∗-induced subgraph
and returns the [x∗, y∗]-core, as summarized in Algo-
rithm 4.

Data sets. We consider 12 real-world large graphs, includ-
ing 6 undirected graphs and 6 directed graphs, to evaluate
the proposed UDS and DDS algorithms respectively. Tables
4 and 5 summarize the details of these graphs respectively,
which cover a wide range of areas. Specifically, Petster is
a graph composed of family links between cats and dogs;
Twitter is a social media graph; Amazon is an e-commerce
graph; Baidu and Wiki are encyclopedia graphs; EU, IT, and
SK are graphs from the world wide web. All these graphs
are obtained from KONECT2 and LAW3.

TABLE 4: Undirected graphs used in the experiments.

Graphs (Abbr.) Category |V | |E| dmax

Petster (PT) Family link 623,766 15,699,276 80,637
eswiki-2013 (EW) Knowledge 972,933 23,041,488 145,031

eu-2015 (EU) Web 11,264,052 379,731,874 68,922
it-2004 (IT) Web 41,291,594 1,150,725,436 1,326,745

sk-2005 (SK) Web 50,636,154 1,949,412,601 8,563,808
uk-union (UN) Web 133,633,040 5,507,679,822 6,366,525

TABLE 5: Directed graphs used in the experiments.

Graphs (Abbr.) Category |V | |E| d+max d−max

Amazon (AM) E-commerce 403,394 3,387,388 10 2,751

Amazon ratings (AR) E-commerce 3,376,972 5,838,041 12,217 3,146

Baidu (BA) Knowledge 2,141,300 17,794,839 2,596 97,950

DBpedialinks (DL) Knowledge 18,268,992 136,537,566 9,300 631,415

Wikilink en (WE) Knowledge 13,593,032 437,217,424 9,534 1,052,128

Twitter (TW) Social 52,579,682 1,963,263,821 779,958 3,503,656

In the experiments, all the algorithms above are imple-
mented in C++, following the shared memory model on a
single server. Note, however, they can also be easily extended
for running on distributed parallel computing platforms and
we leave it as a future work. All the experiments are run
on a Linux server having dual Intel Xeon(R) Gold 5218R
2.10GHz processors (40 cores, 80 threads) and 255 GB
memory, with Ubuntu installed. The number of threads p
varies from 1 to 64, and its default value is set to 32.

Remark. Notice that the effectiveness of UDS and DDS
algorithms (i.e., the actual approximation ratios of the above
algorithms) are evaluated extensively in [6] and [7], respec-
tively, so we omit the detailed comparison of density values
in this paper.

B. Evaluation of UDS algorithms
In this section, we evaluate the four parallel UDS algo-

rithms on six real large undirected graphs.
Exp-1: Efficiency comparison. We run all the UDS

algorithms using 32 threads on six graphs and depict the
efficiency results in Fig. 5. We can observe that our algorithm
PKMC is at least 5× and up to 20× faster than the state-
of-the-art parallel UDS algorithm PBU. It is also up to
13× faster than the nucleus decomposition algorithm based
on the h-index. The main reason is that PBU needs to
synchronize vertex and edge information to calculate the
density of the remaining subgraph after peeling vertices in
each iteration which involves much time cost, while Local
needs to compute the core numbers of all vertices, causing
a lot of redundant computations. In contrast, our PKMC
algorithm does not need to compute the density and also

2http://konect.cc/networks/
3https://law.di.unimi.it/datasets.php

avoids computing the core numbers of all vertices by using
fewer iterations as shown by the next experiment. It is also
noted that our algorithm is up to two orders of magnitude
faster than PFW. The main reason is that PFW searches for
the maximum density of subgraphs in a binary search manner
by solving linear programmings, which is time-consuming.

PT EW EU IT SK UN
102

103

104

105

106

R
un

ni
ng

tim
e

(m
s)

PFW PBU Local PKC PKMC

Fig. 5: Efficiency of UDS algorithms on different data sets.

Exp-2: Comparing the number of iterations. We com-
pare the numbers of iterations in three core-based UDS
algorithms, including two h-index-based algorithms (i.e.,
Local and PKMC) and a peeling-based algorithm (i.e., PKC).
The numbers of iterations reflect the convergence speed of
the core number of the vertices in the k∗-core and the vertices
of the entire graph.

TABLE 6: Number of iterations in the core-based algorithms.

PT EW EU IT SK UN
PKC 1,159 17,153 19,332 6,396 9,004 7,133

Local 28 24 860 1,761 3,009 2,396

PKMC 5 4 4 3 3 3

Unlike the h-index-based approaches, PKC computes the
core number by peeling vertices in parallel. However, since
removing vertices of a specific degree may affect the degrees
of other vertices, it can only remove the vertices with a
specified degree in each iteration, making the total number
of iterations be k∗ +2 (the degrees range from 0 to k∗ +1).
Sariyuce et al. [25] proved that the number of iterations of
Local is bounded by the degree levels of the graph which
is bounded by the number of vertices, but it is much less
than the degree levels and k∗ in practice.

Table 6 reports the numbers of iterations of PKC, Local,
and PKMC on six graphs. We can see that compared to
Local, the number of iterations of PKMC on PT is reduced
by 60-70%, while the numbers of iterations on the other five
graphs are reduced by more than 99%. This indicates that
in the initial stage of Local, the maximum core number
and k∗-core have been obtained. The main reason is that the
degrees of the four graphs obey the power-law distribution,
and the vertices with large degrees are concentrated. In sum-
mary, since the number of iterations in PKMC is significantly
reduced, it clearly outperforms others in terms of efficiency.

Exp-3: Effect of the number of threads p. In Fig. 6,
we show the effect of p on the efficiency by varying it
from 1 to 64 on three datasets, and other datasets show
the same trend. With the increase of p, the running time of
our algorithm PKMC decreases linearly, which shows good
parallel scalability. For PKC, its running time is slightly less
than PKMC when the threads are less than 8 on PT, this
is because the time complexity of PKC is linear to k∗, so

294

PFW PBU Local PKC PKMC

1 2 4 8 16 32 64
10−1

100

101

number of threads

R
un

ni
ng

tim
e

(s
)

(a) PT

1 2 4 8 16 32 64

5

10

15

number of threads

Sp
ee

du
p

(b) PT

1 2 4 8 16 32 64

100

101

number of threads

R
un

ni
ng

tim
e

(s
)

(c) EW

1 2 4 8 16 32 64

5

10

15

number of threads

Sp
ee

du
p

(d) EW

1 2 4 8 16 32 64

101

102

103

number of threads

R
un

ni
ng

tim
e

(s
)

(e) SK

1 2 4 8 16 32 64

5

10

15

number of threads

Sp
ee

du
p

(f) SK

Fig. 6: Effect of the number of threads p.

it is a bit faster when the k∗ of the dataset is relatively
small. Although it runs faster, the decrease of its running
time is not obvious with the increase of p, especially when p
increases from 32 to 64 on PT and EW. We conjecture that
there are two reasons, (1) there exists a strong dependency on
algorithms based on PKC, so the threads that have completed
the tasks must synchronize other threads to prevent errors,
thereby reducing their parallelism; and (2) the amount of
computation in each iteration of the PKC algorithm on these
data sets is relatively small, and the creation of threads
during OpenMP runtime has an invisible time overhead,
so increasing p will cause additional overhead to schedule
threads. Local also faces a similar issue since the amount of
computation processed decreases as the number of iterations
increases.

Exp-4: Scalability test. To evaluate the scalability of all
the parallel UDS algorithms, for each graph, we randomly
select 20%, 40%, 60%, 80%, and 100% of its edges, and then
obtain four subgraphs induced by these edges respectively.
Afterwards, we run all the algorithms on these graphs with
p=32, and show the efficiency results on SK and UN in
Fig. 7. We omit the results on other graphs since their trends
are similar. The results show that the running time of all
algorithms increases stably as the number of edges increases,
and PKMC has the best performance among all algorithms,
showing that it achieves good scalability.

C. Evaluation of DDS algorithms
In this section, we evaluate the five algorithms for DDS

on six large-scale directed graphs.
Exp-5: Efficiency comparison. We run all the DDS

algorithms using 32 threads on five graphs and 4 threads

PFW PBU Local PKC PKMC

20% 40% 60% 80% 100%

101

102

R
un

ni
ng

tim
e

(s
)

(a) SK

20% 40% 60% 80% 100%
101

102

103

R
un

ni
ng

tim
e

(s
)

(b) UN

Fig. 7: Scalability of parallel UDS algorithms.

on TW. This is because PXY and PBD cannot run due to
memory overflow on TW, since in these algorithms each
thread needs to process the entire graph, implying that the
memory consumption grows rapidly with the increase of the
number of threads. We depict the efficiency results in Fig. 8,
where bars touching the upper boundaries mean that the
corresponding algorithms cannot finish within 105 seconds
(around 27.8 hours).

Clearly, both PBS and PFSK cannot obtain results within
105 seconds on all datasets, because their time complexities
are very high, i.e., O(n2(n + m)) and O(n(n + m)). PFW
can only obtain results on two datasets, AR and BA, and
it is 4 orders of magnitude slower than our algorithm. Be-
sides, PBD is much faster than the greedy-based algorithms
PBS and PFKS, since it uses two parameters δ and ε to
reduce the number of iterations significantly. Nevertheless,
its theoretical approximation ratio is 2δ(1 + ε)=8, leading
to a poorer accuracy guarantee. Among all these algorithms,
our proposed PWC is up to 30× faster than the state-of-the-
art algorithm PXY, since it only needs to decompose the
whole graph once, while PBD and PXY need to decompose
the graph multiple times.

AM AR BA DL WE TW
102

103

104

105

106

107

108

R
un

ni
ng

tim
e

(m
s)

PBS PFKS PFW PBD PXY PWC

Fig. 8: Efficiency of DDS algorithms on different data sets.

Exp-6: Comparing the sizes of the graphs processed.
We analyze the sizes of graphs processed by two core-based
algorithms, i.e., PXY and PWC. For PXY, to get [x∗, y∗]-
core, all possible cn-pairs need to be calculated, and each
corresponding [x, y]-core needs to be calculated from the
entire graph. In PWC, to compute the w∗-induced subgraph,
we reduce the size of the graph in each iteration where
initially w is set to the maximum degree of the graph.

TABLE 7: The sizes of the graphs processed in PWC and PXY.

AM AR BA DL WE TW
PXY 3,387,388 5,838,041 17,794,839 136,537,566 437,217,424 1,963,263,821

PWC1 2,751 12,180 193,814 612,308 3,207,622 329,371,005

PWCw∗ 2,751 12,180 191,732 612,308 1,865,208 23,032,588

PWCD∗ 2,751 12,180 191,732 612,308 1,865,208 22,739,610

295

Table 7 shows the sizes of the graphs processed by PWC
and PXY, where the size means the number of edges in the
graph. Here, PWC1 and PWCw∗ represent the sizes of the
graphs in the first and last iterations respectively, and the
size of the densest graph is denoted as PWCD∗ . Clearly, on
AM and AR, since the w-induced subgraphs corresponding to
the maximum degree are the [x∗, y∗]-core, the results can be
obtained immediately. Besides, for other larger graphs (e.g.,
TW), even the first iteration can reduce the size of the graph
by nearly 50%, which greatly improves the efficiency of PWC.

PBD PXY PWC

1 2 4 8 16 32 64

10−1

100

101

number of threads

R
un

ni
ng

tim
e

(s
)

(a) BA

1 2 4 8 16 32 64

2

4

6

8

number of threads

Sp
ee

du
p

(b) BA

1 2 4 8 16 32 64

100

101

102

number of threads

R
un

ni
ng

tim
e

(s
)

(c) DL

1 2 4 8 16 32 64

2

4

6

8

number of threads

Sp
ee

du
p

(d) DL

1 2 4 8 16 32 64
100

101

102

103

104

number of threads

R
un

ni
ng

tim
e

(s
)

(e) WE

1 2 4 8 16 32 64

2

4

6

8

number of threads

Sp
ee

du
p

(f) WE

Fig. 9: Effect of the number of threads p.

Exp-7: Effect of the number of threads p. In Fig. 9, we
show the effect of p on the efficiency by varying it from 1 to
64 on three datasets, and other datasets show the same trend.
Note that since PBS and PFKS cannot obtain results within
105 seconds on all graphs and PFW only obtain results on
a few graphs, we omit them here. When p=1, our algorithm
PWC is 7-10 times faster than PXY. When p increases from 1
to 64, the running time of PWC decreases linearly, while the
running time of PBD first decreases and then increases, and
achieves the best performance when p=16, since more threads
cause thread switching to consume more system resources.
In particular, even with 16 threads, the running time of our
algorithm is still up to 50× faster than that of PBD. The self-
relative speedup of our algorithm is better than that of PXY.
The main reason is that in PXY, each cn-pair is calculated
independently, where each thread is allocated a specified x
(or y) to calculate the corresponding maximum value of y (or
x). Since the computational cost of different x(y) values is
different, it is easy to cause load imbalance among threads,
thereby reducing the parallelism. In addition, on TW, when
p ≥ 4, both PBD and PXY cannot run due to their high

memory cost, since both of them run on the entire graph,
meaning that larger p will consume more memory.

Exp-8: Scalability test. In this experiment, we evaluate
the scalability of PBD, PXY, and PWC on WE and TW. All the
subgraphs are sampled in the same way as Exp-4. Since PBD
and PXY cannot run due to memory overflow on TW when
p>4, we compare the scalability of three parallel algorithms
on each graph by setting p=4. As shown in Fig. 10, the time
cost of all the algorithms increases when varying the number
of edges, which verifies that our algorithm performs well as
the graph size grows.

PBD PXY PWC

20% 40% 60% 80% 100%

100

101

102

R
un

ni
ng

tim
e

(s
)

(a) WE

20% 40% 60% 80% 100%
102

103

104

R
un

ni
ng

tim
e

(s
)

(b) TW

Fig. 10: Scalability of parallel DDS algorithms.

VII. CONCLUSION

In this paper, we study the densest subgraph discovery
problem on both undirected and directed graphs, and develop
scalable and efficient parallel algorithms. Specifically, for
undirected graphs, we propose an efficient 2-approximation
algorithm by computing the k∗-core where k∗ is the maxi-
mum core number and avoiding computing the core numbers
of all the vertices. For directed graphs, we propose a new
dense subgraph model, namely w-induced subgraph, and
theoretically establish that the [x∗, y∗]-core, which offers
a 2-approximation solution, can be easily derived from the
w∗-induced subgraph, where w∗ is the maximum weight.
We also propose a fast algorithm to compute the w-induced
subgraphs. Experiments on 12 real large graphs show that
our proposed algorithms clearly outperform the state-of-the-
art algorithms on both undirected and directed graphs, in
terms of scalability and efficiency.

In the future, we will implement our algorithms on a
distributed computing platform (e.g., GraphX), and test their
performance on a cluster. This would be very useful when
the graph is too large to be kept by a single machine. Another
interesting research direction is to explore the theoretical
relationship between other dense subgraphs (e.g., k-truss and
k-clique) and densest graph, and then solve DSD problem by
exploiting these dense subgraphs.

ACKNOWLEDGEMENTS

This work was supported by the National Key R&D
Program of China under Grant 2020YFB2104000, NSFC un-
der Grants 62202412, 62102341, 62172146, and 62102143,
the Natural Science Foundation of Hunan Province
under Grant 2022JJ30009, Basic and Applied Basic
Research Fund in Guangdong Province under Grant
2022A1515010166, Shenzhen Science and Technology Pro-
gram ZDSYS20211021111415025, and CUHK-SZ under
Grant UDF01002775. Xu Zhou is the corresponding author
of this paper.

296

REFERENCES

[1] A. V. Goldberg, Finding a maximum density subgraph. University of
California Berkeley, 1984.

[2] R. Kannan and V. Vinay, Analyzing the structure of large graphs.
Forschungsinst. für Diskrete Mathematik, 1999.

[3] M. Charikar, “Greedy approximation algorithms for finding dense
components in a graph,” in International Workshop on Approximation
Algorithms for Combinatorial Optimization. Springer, 2000, pp. 84–
95.

[4] S. Khuller and B. Saha, “On finding dense subgraphs,” in International
colloquium on automata, languages, and programming. Springer,
2009, pp. 597–608.

[5] B. Bahmani, R. Kumar, and S. Vassilvitskii, “Densest subgraph in
streaming and mapreduce,” Proc. VLDB Endow., vol. 5, no. 5, pp.
454–465, 2012.

[6] Y. Fang, K. Yu, R. Cheng, L. V. S. Lakshmanan, and X. Lin, “Efficient
algorithms for densest subgraph discovery,” Proc. VLDB Endow., pp.
1719–1732, 2019.

[7] C. Ma, Y. Fang, R. Cheng, L. V. S. Lakshmanan, W. Zhang, and X. Lin,
“Efficient algorithms for densest subgraph discovery on large directed
graphs,” in SIGMOD 2020. ACM, pp. 1051–1066.

[8] B. Sun, M. Danisch, T. Chan, and M. Sozio, “Kclist++: A simple
algorithm for finding k-clique densest subgraphs in large graphs,”
Proceedings of the VLDB Endowment (PVLDB), 2020.

[9] C. Ma, Y. Fang, R. Cheng, L. V. Lakshmanan, W. Zhang, and
X. Lin, “On directed densest subgraph discovery,” ACM Transactions
on Database Systems (TODS), vol. 46, no. 4, pp. 1–45, 2021.

[10] J. M. Kleinberg, “Authoritative sources in a hyperlinked environment,”
in Proceedings of the Ninth Annual ACM-SIAM Symposium on Discrete
Algorithms, 25-27 January 1998, San Francisco, California, USA, H. J.
Karloff, Ed. ACM/SIAM, 1998, pp. 668–677.

[11] E. Fratkin, B. T. Naughton, D. L. Brutlag, and S. Batzoglou, “Motif-
cut: regulatory motifs finding with maximum density subgraphs,” in
Proceedings 14th International Conference on Intelligent Systems for
Molecular Biology 2006, Fortaleza, Brazil, August 6-10, 2006, 2006,
pp. 156–157.

[12] B. Saha, A. Hoch, S. Khuller, L. Raschid, and X. Zhang, “Dense sub-
graphs with restrictions and applications to gene annotation graphs,”
in Research in Computational Molecular Biology, 14th Annual Inter-
national Conference, RECOMB 2010, Lisbon, Portugal, April 25-28,
2010. Proceedings, ser. Lecture Notes in Computer Science, vol. 6044.
Springer, 2010, pp. 456–472.

[13] Z. Gyöngyi, P. Berkhin, H. Garcia-Molina, and J. O. Pedersen, “Link
spam detection based on mass estimation,” in VLDB, 2006. ACM,
pp. 439–450.

[14] A. Gionis, F. Junqueira, V. Leroy, M. Serafini, and I. Weber, “Piggy-
backing on social networks,” Proc. VLDB Endow., vol. 6, no. 6, pp.
409–420, 2013.

[15] A. Gionis and C. E. Tsourakakis, “Dense subgraph discovery: KDD
2015 tutorial,” in SIGKDD 2015. ACM, 2015, pp. 2313–2314.

[16] B. A. Prakash, A. Sridharan, M. Seshadri, S. Machiraju, and C. Falout-
sos, “Eigenspokes: Surprising patterns and scalable community chip-
ping in large graphs,” in Advances in Knowledge Discovery and
Data Mining, 14th Pacific-Asia Conference, PAKDD 2010, Hyderabad,
India, June 21-24, 2010. Proceedings. Part II, ser. Lecture Notes in
Computer Science, vol. 6119. Springer, 2010, pp. 435–448.

[17] B. Hooi, H. A. Song, A. Beutel, N. Shah, K. Shin, and C. Faloutsos,
“FRAUDAR: bounding graph fraud in the face of camouflage,” in
Proceedings of the 22nd ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining, San Francisco, CA, USA,
August 13-17, 2016. ACM, 2016, pp. 895–904.

[18] E. Cohen, E. Halperin, H. Kaplan, and U. Zwick, “Reachability and
distance queries via 2-hop labels,” SIAM J. Comput., vol. 32, no. 5,
pp. 1338–1355, 2003.

[19] R. Jin, Y. Xiang, N. Ruan, and D. Fuhry, “3-hop: a high-compression
indexing scheme for reachability query,” in SIGMOD 2009. ACM,
2009, pp. 813–826.

[20] F. Zhao and A. K. H. Tung, “Large scale cohesive subgraphs discovery
for social network visual analysis,” Proc. VLDB Endow., vol. 6, no. 2,
pp. 85–96, 2012.

[21] Y. Zhang and S. Parthasarathy, “Extracting analyzing and visualizing
triangle k-core motifs within networks,” in IEEE 28th International
Conference on Data Engineering (ICDE 2012), Washington, DC, USA
(Arlington, Virginia), 1-5 April, 2012. IEEE Computer Society, 2012,
pp. 1049–1060.

[22] M. Mitzenmacher, J. Pachocki, R. Peng, C. Tsourakakis, and S. C.
Xu, “Scalable large near-clique detection in large-scale networks via
sampling,” in Proceedings of the 21th ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining, 2015, pp. 815–
824.

[23] M. Danisch, T.-H. H. Chan, and M. Sozio, “Large scale density-
friendly graph decomposition via convex programming,” in Proceed-
ings of the 26th International Conference on World Wide Web, 2017,
pp. 233–242.

[24] L. Lü, T. Zhou, Q.-M. Zhang, and H. E. Stanley, “The h-index of
a network node and its relation to degree and coreness,” Nature
communications, vol. 7, no. 1, pp. 1–7, 2016.

[25] A. E. Sariyüce, C. Seshadhri, and A. Pinar, “Local algorithms for
hierarchical dense subgraph discovery,” PVLDB, vol. 12, no. 1, pp.
43–56, 2018.

[26] D. Boob, Y. Gao, R. Peng, S. Sawlani, C. Tsourakakis, D. Wang,
and J. Wang, “Flowless: Extracting densest subgraphs without flow
computations,” in Proceedings of The Web Conference 2020, 2020,
pp. 573–583.

[27] B. Bahmani, A. Goel, and K. Munagala, “Efficient primal-dual graph
algorithms for mapreduce,” in Algorithms and Models for the Web
Graph - 11th International Workshop, WAW 2014, Beijing, China,
December 17-18, 2014, Proceedings, vol. 8882. Springer, 2014, pp.
59–78.

[28] H. Su and H. T. Vu, “Distributed dense subgraph detection and low
outdegree orientation,” in DISC 2020, vol. 179. Schloss Dagstuhl -
Leibniz-Zentrum für Informatik, 2020, pp. 15:1–15:18.

[29] C. Chekuri, K. Quanrud, and M. R. Torres, “Densest subgraph:
Supermodularity, iterative peeling, and flow,” in Proceedings of the
2022 Annual ACM-SIAM Symposium on Discrete Algorithms (SODA).
SIAM, 2022, pp. 1531–1555.

[30] C. Tsourakakis, “The k-clique densest subgraph problem,” in Proceed-
ings of the 24th international conference on world wide web, 2015,
pp. 1122–1132.

[31] R. Samusevich, M. Danisch, and M. Sozio, “Local triangle-densest
subgraphs,” in 2016 IEEE/ACM International Conference on Advances
in Social Networks Analysis and Mining (ASONAM). IEEE, 2016,
pp. 33–40.

[32] S. Sawlani and J. Wang, “Near-optimal fully dynamic densest sub-
graph,” in Proccedings of the 52nd Annual ACM SIGACT Symposium
on Theory of Computing, STOC 2020, Chicago, IL, USA, June 22-26,
2020. ACM, 2020, pp. 181–193.

[33] L. Qin, R.-H. Li, L. Chang, and C. Zhang, “Locally densest subgraph
discovery,” in Proceedings of the 21th ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining, 2015, pp. 965–
974.

[34] N. Tatti and A. Gionis, “Density-friendly graph decomposition,” in
Proceedings of the 24th International Conference on World Wide Web,
2015, pp. 1089–1099.

[35] E. Galbrun, A. Gionis, and N. Tatti, “Top-k overlapping densest
subgraphs,” Data Mining and Knowledge Discovery, vol. 30, no. 5,
pp. 1134–1165, 2016.

[36] R. Dondi, M. M. Hosseinzadeh, G. Mauri, and I. Zoppis, “Top-k
overlapping densest subgraphs: approximation algorithms and compu-
tational complexity,” Journal of Combinatorial Optimization, vol. 41,
no. 1, pp. 80–104, 2021.

[37] R. Dondi, M. M. Hosseinzadeh, and P. H. Guzzi, “A novel algorithm
for finding top-k weighted overlapping densest connected subgraphs
in dual networks,” Applied Network Science, vol. 6, no. 1, pp. 1–17,
2021.

[38] A. Bhaskara, M. Charikar, E. Chlamtac, U. Feige, and A. Vija-
yaraghavan, “Detecting high log-densities: an o (n 1/4) approximation
for densest k-subgraph,” in Proceedings of the forty-second ACM
symposium on Theory of computing, 2010, pp. 201–210.

[39] A. Bhaskara, M. Charikar, V. Guruswami, A. Vijayaraghavan, and
Y. Zhou, “Polynomial integrality gaps for strong sdp relaxations of
densest k-subgraph,” in Proceedings of the twenty-third annual ACM-
SIAM symposium on Discrete Algorithms. SIAM, 2012, pp. 388–405.

[40] N. Bourgeois, A. Giannakos, G. Lucarelli, I. Milis, and V. T. Paschos,
“Exact and approximation algorithms for densest k-subgraph,” in
International Workshop on Algorithms and Computation. Springer,
2013, pp. 114–125.

[41] R. Sotirov, “On solving the densest k-subgraph problem on large
graphs,” Optimization Methods and Software, vol. 35, no. 6, pp. 1160–
1178, 2020.

[42] F. Bonchi, D. Garcı́a-Soriano, A. Miyauchi, and C. E. Tsourakakis,
“Finding densest k-connected subgraphs,” Discrete Applied Mathemat-
ics, vol. 305, pp. 34–47, 2021.

[43] R. Andersen, “A local algorithm for finding dense subgraphs,” ACM
TALG, vol. 6, no. 4, pp. 1–12, 2010.

[44] B. Hooi, H. A. Song, A. Beutel, N. Shah, K. Shin, and C. Falout-
sos, “Fraudar: Bounding graph fraud in the face of camouflage,” in
SIGKDD, 2016, pp. 895–904.

[45] Z. Zou, “Polynomial-time algorithm for finding densest subgraphs in
uncertain graphs,” in Proceedings of MLG Workshop, 2013.

[46] A. Miyauchi and A. Takeda, “Robust densest subgraph discovery,” in
ICDM. IEEE, 2018, pp. 1188–1193.

[47] V. Jethava and N. Beerenwinkel, “Finding dense subgraphs in rela-
tional graphs,” in ECML PKDD. Springer, 2015, pp. 641–654.

[48] E. Galimberti, F. Bonchi, and F. Gullo, “Core decomposition and
densest subgraph in multilayer networks,” in CIKM, 2017, pp. 1807–
1816.

297

[49] E. Galimberti, F. Bonchi, F. Gullo, and T. Lanciano, “Core decom-
position in multilayer networks: theory, algorithms, and applications,”
TKDD, vol. 14, no. 1, pp. 1–40, 2020.

[50] L. Chang and L. Qin, Cohesive subgraph computation over large
sparse graphs: algorithms, data structures, and programming tech-
niques. Springer, 2018.

[51] V. Batagelj and M. Zaversnik, “An o (m) algorithm for cores decom-
position of networks,” arXiv preprint cs/0310049, 2003.

[52] J. Wang and J. Cheng, “Truss decomposition in massive networks,”
Proceedings of the VLDB Endowment, vol. 5, no. 9, 2012.

[53] A. Conte, T. De Matteis, D. De Sensi, R. Grossi, A. Marino, and
L. Versari, “D2k: scalable community detection in massive net-
works via small-diameter k-plexes,” in Proceedings of the 24th ACM
SIGKDD International Conference on Knowledge Discovery & Data
Mining, 2018, pp. 1272–1281.

[54] B. Liu, L. Yuan, X. Lin, L. Qin, W. Zhang, and J. Zhou, “Efficient (α,
β)-core computation in bipartite graphs,” The VLDB Journal, vol. 29,
no. 5, pp. 1075–1099, 2020.

[55] K. Wang, X. Lin, L. Qin, W. Zhang, and Y. Zhang, “Efficient bitruss
decomposition for large-scale bipartite graphs,” in 2020 IEEE 36th
International Conference on Data Engineering (ICDE). IEEE, 2020,
pp. 661–672.

[56] B. Lyu, L. Qin, X. Lin, Y. Zhang, Z. Qian, and J. Zhou, “Maximum
biclique search at billion scale,” Proceedings of the VLDB Endowment,
2020.

[57] L. Chen, C. Liu, R. Zhou, J. Xu, and J. Li, “Efficient exact algo-
rithms for maximum balanced biclique search in bipartite graphs,” in
Proceedings of the 2021 International Conference on Management of
Data, 2021, pp. 248–260.

[58] K. Yu, C. Long, P. Deepak, and T. Chakraborty, “On efficient large

maximal biplex discovery,” IEEE Transactions on Knowledge and
Data Engineering, 2021.

[59] Y. Fang, X. Huang, L. Qin, Y. Zhang, W. Zhang, R. Cheng, and X. Lin,
“A survey of community search over big graphs,” The VLDB Journal,
vol. 29, no. 1, pp. 353–392, 2020.

[60] Y. Fang, K. Wang, X. Lin, and W. Zhang, “Cohesive subgraph
search over big heterogeneous information networks: Applications,
challenges, and solutions,” in Proceedings of the 2021 International
Conference on Management of Data, 2021, pp. 2829–2838.

[61] H. Kabir and K. Madduri, “Parallel k-core decomposition on multi-
core platforms,” in 2017 IEEE International Parallel and Distributed
Processing Symposium Workshops (IPDPSW). IEEE, 2017, pp. 1482–
1491.

[62] R. Wang, S. Wang, and X. Zhou, “Parallelizing approximate single-
source personalized pagerank queries on shared memory,” VLDB J.,
vol. 28, no. 6, pp. 923–940, 2019.

[63] J. Blanusa, R. Stoica, P. Ienne, and K. Atasu, “Parallelizing maximal
clique enumeration on modern manycore processors,” in IEEE IPDPS
Workshops 2020. IEEE, 2020, pp. 211–214.

[64] Y. Akhremtsev, P. Sanders, and C. Schulz, “High-quality shared-
memory graph partitioning,” IEEE Trans. Parallel Distributed
Syst., vol. 31, no. 11, pp. 2710–2722, 2020. [Online]. Available:
https://doi.org/10.1109/TPDS.2020.3001645

[65] S. B. Seidman, “Network structure and minimum degree,” Social
networks, vol. 5, no. 3, pp. 269–287, 1983.

[66] V. Batagelj and M. Zaversnik, “An o(m) algorithm for cores decom-
position of networks,” CoRR, vol. cs.DS/0310049, 2003.

[67] J. E. Hirsch, “An index to quantify an individual’s scientific research
output,” Proc. Natl. Acad. Sci. USA, vol. 102, no. 46, pp. 16 569–
16 572, 2005.

298

