
Effective Job-market Mobility Prediction with Attentive
Heterogeneous Knowledge Learning and Synergy
Sida Lin∗

The Chinese University of Hong
Kong, Shenzhen
Shenzhen, China

sidalin1@link.cuhk.edu.cn

Zhouyi Zhang∗
The Hong Kong University of Science

and Technology (Guangzhou)
Guangzhou, China

zzhang932@connect.hkust-gz.edu.cn

Yankai Chen†
Cornell University
Ithaca, United States
yankaichen@acm.org

Chenhao Ma†
The Chinese University of Hong

Kong, Shenzhen
Shenzhen, China

machenhao@cuhk.edu.cn

Yixiang Fang, Shan Dai
The Chinese University of Hong

Kong, Shenzhen
Shenzhen, China

{fangyixiang,daishan}@cuhk.edu.cn

Guangli Lu
School of Management and

Economics and Shenzhen Finance
Institute, The Chinese University of

Hong Kong, Shenzhen
Shenzhen, China

luguangli@cuhk.edu.cn

Abstract
Job-market mobility prediction plays a crucial role in optimizing
human capital usage for both employees and employers. Most con-
ventional methods primarily focus on learning sequential career
sequences while ignoring the sufficient information extraction of
mutual entity correlations in the job market. In this work, we
push forward to exploit the heterogeneous relational knowledge
among the job market structures by proposing a model namely
Attentive Heterogeneous Knowledge Learning and Synergy (AHKLS).
Equipped with the subsequent module of time-aware perception,
AHKLS achieves effective career trajectory encoding for job-market
mobility prediction. To evaluate the AHKLS performance, we con-
duct extensive experiments on three real-world datasets with differ-
ent sizes. The empirical analyses demonstrate not only the perfor-
mance superiority of AHKLS over several competing methods, but
also the module effectiveness and model compatibility with other
methods in enhancing the mobility prediction tasks accordingly.

CCS Concepts
• Information systems → Recommender systems; • Comput-
ing methodologies→ Supervised learning; Neural networks.
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1 Introduction
In the dynamic labor markets, effective mobility prediction and rec-
ommendation play an important role in facilitating convenience for
both individuals and companies. Traditional studies of job-market
mobility prediction primarily focus on discovering the influential
factors from a macro perspective of economics [1, 9] and/or a micro
view of job market matching state analysis [2]. With the rapid de-
velopment of recommendation techniques [5, 7, 24], online talent
acquisition platforms, such as LinkedIn and Indeed, serve as the key
intermediaries to offer unprecedented career opportunities. This
motivates the study of data mining and learning from vast amounts
of career trajectory data and job information [12, 14, 20, 22].

• Technical Challenges. Conventional methods [6, 12, 14]
leverage deep learning architectures, e.g., encoder-decoder struc-
tures, to integrate and learn personal profiles and/or career trajec-
tories to predict the next career positions. Despite the abundant
data usage, these methods may not fully extract the inherent rela-
tional knowledge within these data. This is because their learning
frameworks usually work on individual-level sequential data. Re-
cent recommender work has introduced Graph Neural Networks
(GNNs) [11, 23, 25] to better extract information contained in the
talent flow between companies and jobs at a macro-level. For in-
stance, the state-of-the-art model Ahead [22] proposes to leverage
an attention-based graph embedding framework; The transformer-
based structure is also considered to cooperate with the Dual-GRU
module for further enhancement of Ahead [20]. These efforts di-
rectly follow the meta-path-based methodology [4, 15] to extract
multiple subgraphs for separate learning and subsequent fusion.
However, themajor concern is that they usually split original hetero-
geneous graphs into several subgraphs, according to the manually
selected meta-paths; this may lead to insufficient structural learn-
ing, particularly for large-scale heterogeneous graphs, which thus
limits the model capability for real-world labor market analyses.

• Our Contributions. To address these issues, we introduce the
framework of AHKLS for job-market mobility prediction. Specif-
ically, AHKLS consists of two major designs: (1) Heterogeneous
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Figure 1: Illustration of our proposed AHKLS framework (best view in color).

Job-Market Graph Learning.We focus on exploiting the semantic
learning and unification of heterogeneous nodes. Without exhaus-
tive subgraph partition and ensembling, we achieve attentive knowl-
edge aggregation with rich informativeness. This design eventually
enables our model to be easily applicable to large-scale heteroge-
neous graphs. (2) Time-aware Knowledge Synergy. Based on the
learned mutual knowledge of market entities, we move forward to
encode the career trajectories. We explicitly implement the time
information encoding for both company and job transition repre-
sentations, which are of ease for downstream mobility prediction.

• Experimental Findings. To evaluate the model performance,
in this concise work, we include three real-world datasets with
1K to 1M trajectory data. The experimental results show that our
AHKLS achieves performance superiority over competing meth-
ods with 0.30% to 2.99% and 0.78% to 21.20% improvements of the
next job and next company prediction, respectively. Furthermore,
the extensive empirical studies suggest the effectiveness of each
proposed module as well as the compatibility of our method with
several existing models in enhancing their prediction capability.

2 Our Methodology
2.1 Problem Formulation
Career trajectory is denoted by an ordered sequence of job and com-
pany pairs, i.e., {𝑇1,𝑇2, ...,𝑇𝑛}, where 𝑇𝑖 = ( 𝑗𝑖 , 𝑐𝑖 ) with 𝑗𝑖 being the
𝑖-th job and 𝑐𝑖 denoting the affiliated company. Then the problem
to study is, given a user 𝑢’s career trajectory 𝑆𝑢 = {𝑇1,𝑇2, ...,𝑇|𝑆𝑢 | },
we aim to construct a predictive function 𝑓 , which takes the 𝑆𝑢 as
input and outputs the future potential job and company transitions.

2.2 Heterogeneous Job Market Graph Learning
2.2.1 Semantic Projection of Heterogeneous Nodes. Since
node types have distinct semantics, we first use type-specific trans-
formation matrices to project these input node features into a
unified space for computation. Specifically, we use “𝑐” and “ 𝑗” to
distinguish the “company” and “job” type, respectively. Given an
edge from the source node 𝑥𝛼 to the destination node 𝑥𝛽 , where
𝛼, 𝛽 ∈ {𝑐, 𝑗}, we have their initial embeddings as 𝒉𝑠𝑟𝑐𝑥𝛼

∈ R𝑑𝛼 and
𝒉𝑑𝑠𝑡𝑥𝛽

∈ R𝑑𝛽 . 𝑑𝛼 and 𝑑𝛽 denote the type-specific embedding dimen-
sions. We first have the following projection processes:

𝑸𝑠𝑟𝑐
𝑥𝛼

=𝑾𝑠𝑟𝑐
Q𝛼

· 𝒉𝑠𝑟𝑐𝑥𝛼
, 𝑸𝑑𝑠𝑡

𝑥𝛽
=𝑾𝑑𝑠𝑡

Q𝛽
· 𝒉𝑑𝑠𝑡𝑥𝛽

, (1)

𝑽𝑠𝑟𝑐𝑥𝛼
=𝑾𝑠𝑟𝑐

V𝛼
· 𝒉𝑠𝑟𝑐𝑥𝛼

, 𝑽𝑑𝑠𝑡𝑥𝛽
=𝑾𝑑𝑠𝑡

V𝛽
· 𝒉𝑑𝑠𝑡𝑥𝛽

, (2)

where the transformationmatrices are defined as: {𝑾𝑠𝑟𝑐
𝑄𝛼

,𝑾𝑠𝑟𝑐
𝑉𝛼

,𝑾𝑑𝑠𝑡
𝑄𝛼

,

𝑾𝑑𝑠𝑡
𝑉𝛼

} ∈ R𝑑ℎ𝑖𝑑×𝑑𝛼 and {𝑾𝑠𝑟𝑐
𝑄𝛽

,𝑾𝑠𝑟𝑐
𝑉𝛽

,𝑾𝑑𝑠𝑡
𝑄𝛽

,𝑾𝑑𝑠𝑡
𝑉𝛽

} ∈ R𝑑ℎ𝑖𝑑×𝑑𝛽 . Then
we integrate the source and destination node embeddings to have
the combined representations of destination node 𝑥𝛽 as:

𝑸𝑥𝛽
= 𝑸𝑠𝑟𝑐

𝑥𝛼
+ 𝑸𝑑𝑠𝑡

𝑥𝛽
, 𝑽𝑥𝛽 = 𝑽𝑠𝑟𝑐𝑥𝛼

+ 𝑽𝑑𝑠𝑡𝑥𝛽
. (3)

2.2.2 Self-attentive Representation Aggregation. Based on
the destination node, we consider each meta-path 𝜙 of all necessary
meta-paths Φ𝛽 that finally arrive at node 𝑥𝛽 . For each meta-path
𝜙 ∈ Φ, we have its corresponding learnable transformation matrix
𝑲𝜙 ∈ R𝑑ℎ𝑖𝑑 . Then we calculate the normalized attention scores:

𝑤
𝜙

𝛽
= Softmax

(
𝑸
𝜙
𝑥𝛽

· 𝑲𝜙

)
, (4)

where 𝑸𝜙
𝑥𝛽

is meta-path 𝜙 specified representation that follows the

processes from Eqn. (1) to Eqn. (3). Then𝑤𝜙

𝛽
balances the contribu-

tion of path 𝜙 ’s information to aggregate into 𝒉̂𝑥𝛽 :

𝒉̂𝑥𝛽 =
1
|Φ|

|Φ |∑︁
𝜙∈Φ

(
𝑤
𝜙
𝑥𝛽

· 𝑽𝜙𝑥𝛽
)
. (5)

2.3 Time-aware Knowledge Synergy
2.3.1 Career Trajectory Encoding. Given the career trajectory
𝑆𝑢 = {𝑇1,𝑇2, ...,𝑇|𝑆𝑢 | }, its each element, e.g, 𝑥 (𝑖 )

𝛽
∈ 𝑇𝑖 , the element

embedding is 𝒉
𝑥
(𝑖 )
𝛽

. We use 𝛽 to denote either 𝑐 or 𝑗 , generalizing the

node type of {𝑐, 𝑗}, as each trajectory element is a tuple of job and
company nodes. Given the transformation matrix𝑾𝛽 ∈ R𝑑hid×𝑑𝛽 ,
we then introduce the following time-aware encoding:

𝒍
𝑥
(𝑖 )
𝛽

=𝑾𝛽 · 𝒉
𝑥
(𝑖 )
𝛽

+ 𝒕𝒊 . (6)

𝒕𝒊 is the global cosine time embedding of time step 𝑖 encoded
from [18] with the shape of R𝑑𝛽 . Subsequently, 𝒍

𝑥
(𝑖 )
𝛽

∈ R𝑑ℎ𝑖𝑑 syner-

gizes both trajectory element information and time information.

2.3.2 Time-aware Mobility Perception. To capture the market
mobility, we adopt the recent structure Dual-GRU [22]. Further-
more, during its step-by-step forward computation, we additionally
leverage the graph information to adjust the hidden state as follows:
(𝒍

′

𝑥
(𝑡 )
𝑐

, 𝒍
′

𝑥
(𝑡 )
𝑗

) = Dual-GRUCell(𝒉
𝑥
(𝑡−1)
𝑐

,𝒉
𝑥
(𝑡−1)
𝑗

, 𝒍
′′

𝑥
(𝑡−1)
𝑐

, 𝒍
′′

𝑥
(𝑡−1)
𝑗

) . (7)
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In practice, we have the hidden states for both company and job
nodes simultaneously. These hidden states, e.g., 𝒍

′

𝑥
(𝑡 )
𝛽

, 𝒍
′′

𝑥
(𝑡−1)
𝛽

are

initialized by zeros and iteratively updated with:
𝒍
′′

𝑥
(𝑡 )
𝛽

= 𝒍
′

𝑥
(𝑡 )
𝛽

+ 𝒉̂
𝑥
(𝑡−1)
𝛽

. (8)

𝒉̂
𝑥
(𝑡−1)
𝛽

is encoded from Eqn. (5) at the 𝑡-th step. Let 𝑾decode
𝑐 ∈

R𝑑𝑐×𝑑ℎ𝑖𝑑 and 𝑾decode
𝑗

∈ R𝑑 𝑗×𝑑ℎ𝑖𝑑 denote the decoding transfor-
mation matrices, we finally output the trajectory representations
regarding company and job information, denoted by 𝒖𝑐 and 𝒖 𝑗 , as:

𝒖𝑐 =𝑾decode
𝑐 · 𝒍

′′

𝑥
(𝑡 )
𝑐

, 𝒖 𝑗 =𝑾decode
𝑗 · 𝒍

′′

𝑥
(𝑡 )
𝑗

. (9)

2.3.3 Mobility Prediction and Model Optimization. Follow-
ing the recent work [22], we predict mobility for the next job and
the next company, respectively.
• Next Company Prediction.We use the learned latest company
trajectory embedding, e.g., 𝒖𝑐 , to perform the nearest neighbor
searches over all other company representations, e.g., 𝑥 ′𝑐 . The

scoring function is 1 −
𝒖𝒄 ·𝒉T𝑥 ′𝑐
|𝒖𝒄 | |𝒉𝑥 ′𝑐 |

. The loss term is defined as:

L1 =
𝒖𝒄 · 𝒉T𝑥−

𝑐

|𝒖𝒄 | |𝒉𝑥−
𝑐
| −

𝒖𝒄 · 𝒉T𝑥+
𝑐

|𝒖𝒄 | |𝒉𝑥+
𝑐
| , (10)

𝑥+𝑐 , 𝑥−𝑐 denote positive and negative candidates, respectively.
• Next Job Prediction. For future job node prediction, we directly
adopt the classification formulation on the job trajectory repre-
sentation regarding job information, i.e., 𝒖 𝑗 . Let 𝒚𝒊 denote the
ground-truth one-hot vector of job occupation. Then its loss term
is defined with the cross-entropy as follows:

L2 = −𝒚 𝑗 · log(𝒖 𝑗 )T . (11)
Based on L1 and L2, we adopt the following function as final
objective function to optimize our model:

L = L1 + L2 . (12)

3 Experiments
We aim to answer the following research questions:
• RQ1: How does our model perform for Job Mobility Prediction?
• RQ2: How do proposed modules contribute to final performance?
• RQ3: Can our model be compatible with other existing methods?

3.1 Setups
• Datasets.We include three real-world datasets in Table 1. For the
first dataset Ahead-1K, we directly use it from the state-of-the-art
work Ahead [22]. For the others, we collect data from the largest
online employment-focused social media platform LinkedIn, and
follow the data processing steps outlined in Ahead [22]. To evaluate
the model performance under different data sizes, we processed
two datasets and named them LK-31K and LK-1M, respectively.

• Baselines.We compare AHKLS with several representative
models as follows. Firstly, we include two classical sequential mod-
els such as LSTM [17] and GRU [8], and modify them for job mobil-
ity prediction tasks by denoting them as LSTM+ and GRU+. Then
for general heterogeneous graph embedding models, we modify
HAN [16] and HGAT [21] to HAN+ and HGAT+ for comparison.
For the end-to-end job mobility prediction model, we include the
best model Ahead [22] that jointly combines sequential modeling
and GNNs to achieve state-of-the-art performance. Notice that we

Table 1: Dataset statistics. # denotes the number; T, J, C denote
“Trajectory”, “Job”, and “Company”, respectively. We use the
pairwise notation, e.g.,𝐶−𝐶, to represent the specific relation.

Name #T #J #C #C-C #C-J #J-J

Ahead-1K 1,000 2,099 1,381 95,230 57,128 121,522
LK-31K 31,217 2,076 1,385 5,497 23,926 90,388
LK-1M 1,010,501 20,080 20,101 928,181 1,281,200 828,267

exclude other related methods [3, 8, 10, 12, 14, 19], as Ahead [22]
has already presented performance superiority over them.

• Evaluation Metrics. In this work, we randomly split the
data for training and testing with a ratio of 8:2. After five times of
experiments, we use the averaged accuracy (ACC) as the primary
evaluation metric. We respectively assess the model prediction
regarding the target companies and positions and report results of
ACC@1, ACC@15, and ACC@30 accordingly.

• Experiment Configurations.We implement with Python 3.8
and PyTorch 1.13.1 with non-distributed training. The experiments
are run on a Linux machine with 1 NVIDIA A100 GPU and 6 In-
tel(R) Xeon(R) Platinum 8350C CPU with 2.60GHz. We adhere to all
baselines’ officially reported hyper-parameter settings and conduct
a grid search to models without prescribed configurations. For a fair
comparison, we fix the embedding dimension at 512. The learning
rate is tuned in the range {10−4, 10−3, 10−2}. Optimization for all
models is performed using the default AdamW optimizer [13].

3.2 Overall Performance (RQ1)
Based on the prediction target, we respectively report the results in
Tables 2 and 3. On one hand, for the next job prediction, as shown
in Table 2, we have twofold observations. (1) For different datasets,
the classical sequential models, ie., LSTM+ and GRU+, present sur-
prisingly good performance for the task, indicating their capability
in capturing the knowledge of job mobility in sequential data. In
addition, the state-of-the-art job mobility prediction model Ahead
runs out of computational memory for LK-1M dataset, showing its
limitation of practical usage for large-scale data. (2) While for our
model, AHKLS consistently achieves superior performance across
all datasets over competitive methods with a range of 0.3% to 21.2%
performance gain. On the other hand, for the next company pre-
diction, we notice that the performance of all included competing
methods is more variance on different datasets, where Ahead and
HAN+ are two representative examples. And our model AHKLS is
also competitive on this task, mainly thanks to the design of joint
learning both sequential job transition knowledge and heteroge-
neous relations in the graph format among all these entities.

3.3 Ablation Study (RQ2)
To study the empirical effect of our proposed modules, we conduct
ablation study on the LK-31K dataset and report the results in Ta-
ble 4. Specifically, we respectively disable the design of heterogeneous
relational knowledge learning, denoted by “w/o HRK”, and hidden-
state sharing with dual GRU, denoted by “w/o HS”. We observe
that, the variant of w/o HRK leads to a dramatic performance decay
ranging from 3.30% to 26.31%, showing the importance of learning
heterogeneous relational knowledge to the model. Furthermore,
the performance degradation of variant w/o HS, i.e., from 0.03%
to 4.61%, also demonstrates the effectiveness of our introduced
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Table 2: Performance comparison across different datasets on “Next Job Prediction”. (1) We use the bold and the underline to
denote the best and second-best performance. (2) “OOM” means the model runs out of memory.
Dataset Ahead-1K LK-31K LK-1M
Metrics ACC@1 ACC@15 ACC@30 ACC@1 ACC@15 ACC@30 ACC@1 ACC@15 ACC@30
LSTM+ 0.1233 ± 0.0137 0.2850 ± 0.0264 0.3518 ± 0.0290 0.0995 ± 0.0008 0.3631 ± 0.0040 0.4479 ± 0.0033 0.1353 ± 0.0004 0.3268 ± 0.0008 0.3842 ± 0.0006
GRU+ 0.1225 ± 0.0137 0.2741 ± 0.0363 0.3276 ± 0.0381 0.0984 ± 0.0018 0.3592 ± 0.0039 0.4428 ± 0.0050 0.1372 ± 0.0007 0.3324± 0.0009 0.3890 ± 0.0010
HAN+ 0.0427 ± 0.0093 0.2122 ± 0.0132 0.3161 ± 0.0240 0.0956 ± 0.0008 0.3640 ± 0.0046 0.4501 ± 0.0061 0.1350 ± 0.0054 0.3592 ± 0.0021 0.4179 ± 0.0063
HGAT+ 0.1108 ± 0.0141 0.2926 ± 0.0080 0.3419 ± 0.0134 0.0480 ± 0.0024 0.2554 ± 0.0021 0.3311 ± 0.0046 OOM OOM OOM
Ahead 0.0893 ± 0.0072 0.2479 ± 0.0055 0.3241 ± 0.0220 0.0893 ± 0.0010 0.3444 ± 0.0036 0.4222 ± 0.0040 OOM OOM OOM
AHKLS 0.1255 ± 0.0123 0.2996 ± 0.0230 0.3482 ± 0.0348 0.0998 ± 0.0008 0.3694 ± 0.0036 0.4562 ± 0.0061 0.1413 ± 0.0007 0.3645 ± 0.0011 0.4289 ± 0.0009
Gain 1.78% 2.39% -1.02% 0.30% 1.48% 1.36% 2.99% 1.48% 2.63%

Table 3: Performance comparison across different datasets on “Next Company Prediction”.
Dataset Ahead-1K LK-31K LK-1M
Metrics ACC@1 ACC@15 ACC@30 ACC@1 ACC@15 ACC@30 ACC@1 ACC@15 ACC@30
LSTM+ 0.2824 ± 0.0157 0.3729 ± 0.0132 0.3942 ± 0.0097 0.1478 ± 0.0062 0.3037 ± 0.0087 0.3693 ± 0.0076 0.2070 ± 0.0003 0.3182 ± 0.0003 0.3540 ± 0.0025
GRU+ 0.2790 ± 0.0234 0.3672 ± 0.0206 0.3813 ± 0.0203 0.1391 ± 0.0055 0.3033 ± 0.0076 0.3695 ± 0.0076 0.2112 ± 0.0010 0.3224 ± 0.0010 0.3556 ± 0.0025
HAN+ 0.2606 ± 0.0161 0.3919 ± 0.0214 0.4178 ± 0.0451 0.1336 ± 0.0067 0.1818 ± 0.0089 0.2681 ± 0.0069 0.2086 ± 0.0081 0.2236 ± 0.0038 0.3015 ± 0.0011
HGAT+ 0.2872 ± 0.0042 0.3654 ± 0.0051 0.3818 ± 0.0044 0.0244 ± 0.0018 0.1316 ± 0.0060 0.1893 ± 0.0095 OOM OOM OOM
Ahead 0.2826 ± 0.0128 0.3959 ± 0.0287 0.4499 ± 0.0145 0.1352 ± 0.0048 0.2932 ± 0.0091 0.3564 ± 0.0087 OOM OOM OOM
AHKLS 0.3036 ± 0.0191 0.4008 ± 0.0075 0.4534 ± 0.0091 0.1581 ± 0.0066 0.3164 ± 0.0063 0.3832 ± 0.0057 0.2468 ± 0.0030 0.3892 ± 0.0042 0.4310 ± 0.0045
Gain 5.71% 1.24% 0.78% 6.97% 4.18% 3.71% 16.86% 20.72% 21.20%

Figure 2: Compatibility study of integrating AHKLS into the general learning framework for job market mobility prediction.

Table 4: Ablation study results on LK-31K dataset.

Design Job Company
ACC@1 ACC@15 ACC@30 ACC@1 ACC@15 ACC@30

w/o HRK 0.0961 0.3572 0.4402 0.1165 0.2877 0.3582
-3.71% -3.30% -3.52% -26.31% -8.56% -6.53%

w/o HS 0.0952 0.3693 0.4558 0.1529 0.3135 0.3811
-4.61% -0.03% -0.09% -3.29% -0.35% -0.55%

AHKLS 0.0998 0.3694 0.4562 0.1581 0.3146 0.3832

technical designs of sharing hidden-states, especially for the Top-1
metrics of ACC@1 in both Job and Company Mobility Prediction.

3.4 Compatibility Study (RQ3)
In addition to studying the internal modules, we also explore how
our model can be adapted to enhance existing models. Specifically,
we integrate our unique designs with existing models, either supple-
menting or replacing components as necessary. For example, in the
case of HAN+, we replace its heterogeneous graph learningwith our
relational knowledge synergy design and other elements in AHKLS.
We denote such variant as AHKLS𝐻𝐴𝑁+ and visually compare it
with the original HAN+. As shown in Figure 2, the comparison
across five model modifications demonstrates that our methodol-
ogy is highly compatible with these models. More importantly, such
integration significantly boosts their original performance.

4 Conclusion
In this paper, we introduce AHKLS for the job market mobility
prediction tasks. AHKLS is equipped with designs of specific knowl-
edge learning and synergy on heterogeneous graphs. The extensive
experiments on three real-world datasets demonstrate the perfor-
mance superiority of AHKLS over several competing methods and
the module effectiveness and compatibility with other methods.
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