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Abstract

Personalized recommender systems have found widespread
applications for effective information filtering. Conventional
models engage in knowledge mining within the static set-
ting to reconstruct singular historical data. Nonetheless, the
dynamics of real-world environments are in a constant state
of flux, rendering acquired model knowledge inadequate for
accommodating emergent trends and thus leading to no-
table recommendation performance decline. Given the typi-
cally prohibitive cost of exhaustive model retraining, it has
emerged to study incremental learning for recommender
systems with ever-growing data. In this paper, we propose
an effective model-agnostic framework, namely INFluential
Exemplar Replay (INFER). INFER facilitates recommender
models in retaining the earlier assimilated knowledge, e.g.,
users’ enduring preferences, while concurrently accommo-
dating evolving trends manifested in users’ new interaction
behaviors. We commence with a vanilla implementation that
centers on identifying the most representative data samples
for effective consolidation of early knowledge. Subsequently,
we propose an advanced solution, namely INFERONCE, to op-
timize the computational overhead associated with the vanilla
implementation. Extensive experiments on four prototypical
backbone models, two classic recommendation tasks, and
four widely used benchmarks consistently demonstrate the
effectiveness of our method as well as its compatibility for
extending to several incremental recommender models.

Introduction
To tackle overwhelming information overload, recom-
mender systems play a crucial role in online services, e.g.,
Web search, news recommendation, and E-commerce adver-
tising. Modern algorithms exploit knowledge mining from
similar user correlations, e.g., collaborative filtering (Ren-
dle et al. 2012; He et al. 2017; Chen et al. 2023c) and social
regularization (Ma et al. 2011), to content-based analysis,
e.g., multimodal understanding (Zheng et al. 2018; Gupta
et al. 2020) and auxiliary knowledge supplement (Wang
et al. 2019a,b; Chen et al. 2022c,b; Zhang et al. 2022a). With
the advancements of deep learning techniques, these recom-
mender models exhibit strong capability in learning complex
and latent features, demonstrating the performance superior-
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Figure 1: Illustration of INFER motivations.

ity for realistic deployment (Covington, Adams, and Sargin
2016; Guo et al. 2017; Ying et al. 2018).

Derived from conventional neural models, these recom-
mender algorithms are mostly crafted within the static set-
ting. In such learning frameworks, models acquire knowl-
edge from singular and fixed training data and subsequently
extrapolate insights to forthcoming data, with the presump-
tion of identical distribution. However, such a “once-for-all”
strategy may prove unsuitable for intricate real-world dy-
namic settings, featuring constantly emerging objects (e.g.,
users and items) and evolving engagements. Consequently,
as shown in Figure 1a, the cessation of learning data updates
impedes recommender models to assimilate new trends and
knowledge (Xu et al. 2020), leading to performance degra-
dation for proper recommendations.

To circumvent the expensive model retraining, incremen-
tal learning has recently exhibited promising advantages
(Zenke, Poole, and Ganguli 2017; Prabhu, Torr, and Dokania
2020; Wang, Zhang, and Coates 2021; He et al. 2023a). Gen-
erally, this learning paradigm enables neural models to con-
tinually adapt to evolving data for new knowledge integra-
tion, with the primary focus to alleviate the tendency of for-
getting previously learned information, a.k.a., catastrophic
forgetting problem (McCloskey and Cohen 1989), during
model incremental updating. Despite the recent progress in
Computer Vision (Hung et al. 2019; Yuan et al. 2021; Boni-
celli et al. 2022; Prabhu, Torr, and Dokania 2020), the explo-
ration of incremental learning for recommender systems re-
mains relatively nascent. The major challenges are twofold.
(1) These methods are for incremental data either with dif-
ferent data classes or for different visual tasks, whereas the
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incremental interaction data flow is for unveiling the shifts
of users’ preferences and hidden intentions. (2) Moreover,
different from images that are essentially isolated objects,
incremental interaction data encompass pairs of users and
items. Incrementally learning such interactive data thereby
affects the feature updating of bipartite parties via the mutual
propagation of collaborative filtering signals for recommen-
dation. Therefore, it has emerged to specifically develop in-
cremental learning for recommender systems with a few re-
cent attempts at graph neural methodologies (Xu et al. 2020;
Wang, Zhang, and Coates 2021; Ahrabian et al. 2021).

While the aforementioned pioneer works rely on graph-
based modeling, in this paper, we propose an effective
model-agnostic incremental learning framework, namely
INFluential Exemplar Replay (INFER), that is compatible
with more recommender backbones. Generally, our method-
ology is rooted in the experience replay strategy (Rebuffi
et al. 2017; Zenke, Poole, and Ganguli 2017), which inter-
leaves a small proportion of early data samples with new
data for incremental model training. By doing so, the up-
dated model gets to revisit and learn from its past expe-
riences, preventing the loss of earlier learned knowledge,
e.g., users’ long-term interests or persistent preferences. In-
tuitively, the core of experience replay lies in finding high-
quality data samples. To provide effective and compact re-
play samples, we propose to retrieve influential exemplars
from historical interaction data. Different from straightfor-
ward strategies (Vitter 1985; Welling 2009; Rebuffi et al.
2017; Prabhu, Torr, and Dokania 2020; Ahrabian et al. 2021)
that infer important samples based on data-level properties,
e.g., frequencies or diversities, as shown in Figure 1b, our
distinctive influential exemplars embody the elements that
directly impact the model-level performance across various
recommendation tasks. Our vanilla implementation, denoted
by INFERVanilla, is underpinned by the influence function of
Robust Statistics (Koh and Liang 2017). We further provide
an advanced solution, i.e., One-step iNfluenCe Estimation
denoted by INFERONCE, to optimize the efficiency and insta-
bility bottlenecks of vanilla influence functions (Basu, Pope,
and Feizi 2021; Epifano et al. 2023) for large recommender
models. In empirical evaluation, we implement our method-
ology into four renowned recommender backbones. Experi-
ments on four real-world benchmarks and two recommenda-
tion tasks consistently showcase the performance superiority
of INFERONCE with desirable generalization and efficiency.
Our principal contributions are summarized as follows:

• To the best of our knowledge, we are the first to incorpo-
rate analytical influence methodology for constructing in-
cremental recommender models, via retrieving replay ex-
emplars directly influential to downstream tasks.

• To deal with the efficiency and instability issues of our
vanilla implementation, we further propose a refined ap-
proach namely INFERONCE with computation approxima-
tion and acceleration.

• Extensive experiments demonstrate the high adaptability
of INFERONCE across several backbone architectures. It
consistently outperforms recent end-to-end incremental
recommender solutions on four public benchmarks.

Related Work
Collaborative Filtering
Collaborative filtering (CF), as one classic paradigm of
recommender algorithms, parameterizes users and items
as embeddings to reconstruct historical interactions (Ying
et al. 2018; Chen et al. 2022a; Zhang et al. 2023b; Chen
et al. 2023b). Early CF models such as matrix factoriza-
tion (Koren, Bell, and Volinsky 2009; Chen et al. 2020) usu-
ally decompose the user-item interaction matrix into low-
dimensional embeddings. More recent neural models like
DeepFM (Guo et al. 2017), TwoTower (Huang et al. 2013)
and NCF (He et al. 2017) further leverage neural networks
to improve modeling capability. Since user-item interac-
tions can be naturally represented by a bipartite graph (Chen
et al. 2023a), Graph Neural Networks (Hamilton, Ying, and
Leskovec 2017; Velickovic et al. 2017; Zhang et al. 2022b,
2023c; Song, Zhang, and King 2023; Ma et al. 2023), as
the neural architectures specifically for graph data (Li et al.
2023; Zhang et al. 2023a), have gained impressive develop-
ment to be a favored formulation for CF algorithms, such
as NGCF (Wang et al. 2019c), LightGCN (He et al. 2020),
and SimGCL (Yu et al. 2022). All these approaches work
in a static setting, where models are designed to be trained
and deployed for the entire snapshot of interaction data.
Our research deviates from this assumption to focus on the
evolving data setting that imitates the real-life environment.
Specifically, our goal is to develop models with the ability to
continuously learn knowledge from new interaction data as
it becomes available.

Incremental Learning
Incremental learning (IL), a.k.a., continual learning, enables
intelligence models with continual knowledge acquisition
ability for new environment adaptation (De Lange et al.
2021; Zenke, Poole, and Ganguli 2017; Prabhu, Torr, and
Dokania 2020; Rannen et al. 2017; Aljundi, Chakravarty,
and Tuytelaars 2017). IL-based methods initially garner at-
tention in Computer Vision. The main challenge is avoid-
ing catastrophic forgetting (McCloskey and Cohen 1989),
which is the tendency for models to substantially forget pre-
viously learned information when updated with new data.
There are three major types of IL methodologies. (1) Weight
regularization methods (Rannen et al. 2017; Kirkpatrick
et al. 2017; Wang, Zhang, and Coates 2021) aim to restrict
the overall amount of parameter changes by designing ad-
ditional regularization of loss terms. (2) Parameter isola-
tion methods (Mallya and Lazebnik 2018; Hung et al. 2019;
Yuan et al. 2021) allocate model capacity with specific fo-
cuses on enabling parameter sharing and isolation while also
preventing knowledge leakage during the incremental data
learning. (3) Experience replay methods (Rebuffi et al. 2017;
Prabhu, Torr, and Dokania 2020; Zenke, Poole, and Ganguli
2017; Bonicelli et al. 2022; Zhou and Cao 2021) usually
sample and reuse a subset of previously encountered data
in model updating to avert forgetting issues. However, most
of these methods are designed for image-processing tasks,
while only a few recent attempts have studied the problem
for recommender systems (Xu et al. 2020; Wang, Zhang,
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Figure 2: Training workflow of incremental recommender
models with influential exemplar replay of INFER.

and Coates 2021; Ahrabian et al. 2021; He et al. 2023b;
Wang et al. 2023). In this work, we focus on experience re-
play strategy and are motivated to propose a fundamental
method that is compatible with various recommender back-
bone models.

INFER Methodology
Preliminaries
Problem Formulation. Given a user-item interaction
stream list D with consecutive data segments: D= {D0,D1,
· · · , DT }. At each timestamp t, the incremental data learn-
ing for recommendation accesses segment Dt for model up-
dating, whilst maintaining previous knowledge from {D0,
D1, · · · , Dt−1} to prevent catastrophic forgetting problem.

Experience Replay Strategy. To memorize the early
knowledge, experience replay explicitly maintains a reser-
voir to buffer a small subset of historical data. During in-
cremental training, the buffered data are retrieved and inte-
grated with the new data; then the underlying model is iter-
atively updated to mitigate its tendency to forget previously
learned knowledge, e.g., users’ long-term preferences.

Framework Procedure
For each timestamp t, with the original data segment Dt, we
obtain the incremental train data D∗

t as D∗
t := Pt−1 ∪ Dt

for model updating, where Pt−1 denotes the reservoir con-
structed at previous timestamp t − 1. As for the construc-
tion of reservoir Pt at time t, K samples are filtered out
from D∗

t , which is prepared for the next incremental train-
ing. Notably, the quality of the target data reservoir directly
determines the performance of incremental recommender
models, which motivates us to buffer most influential data
samples, i.e., namely influential exemplars. In this work,
we interpret such a notion of influence as an alteration of
data occurrence that perturbs recommendation performance.
Specifically, our proposed framework can be abstracted by
the function f as follows:

Pt := f(θ̂t|K,D∗
t ). (1)

θ̂t refers to certain optimal parameter settings of the under-
lying recommender system at each timestamp t:

θ̂t := argmin
θt∈Θ

∑

zi∈D∗
t

L(zi, θt), (2)

where Θ is the search space of model parameters, zi is
a user-item interaction from the current data segment, and
L(zi, θt) can be any recommendation loss function at times-
tamp t to measure the disparity against the ground-truth. Our
objective of Eqn. (1) thus is to consistently find the influen-
tial exemplars that further boost the recommendation per-
formance for the future timestamp. A high-level workflow is
depicted in Figure 2.

Vanilla Solution: Influence-based Replay
Specifically, to implement f(·) in Eqn. (1) for sampling the
most influential replay data, we aim to understand the depen-
dence of recommender model predictions on a single user-
item interaction. While a straightforward manner would be
leave-one-out retraining (Basu, You, and Feizi 2020), which
is however computationally infeasible, we incorporate in-
fluence function (Koh and Liang 2017) to avoid this inad-
equacy. Generally, the influence function is an important
concept in Robust Statistics, which measures the effect of
a change in one observation on an estimator. To fill in the
reservoir at this timestamp t, i.e., Pt, for any interaction
candidate zm ∈ D∗

t , our initial idea is to explicitly observe
the impact of upweighting zm by some small perturbation ϵ.
This produces the following new parameter settings:

θ̂t,ϵ,zm := argmin
θt∈Θ

(
ϵL(zm, θt) +

∑

zi∈D∗
t

L(zi, θt)
)
. (3)

Under the strict convexity and second-order differentiability
of the loss function L, the influence of upweighting zm on
parameters θt, i.e., achieving θ̂t,ϵ,zm rather than θ̂t, denoted
by Iparams(zm), can be quantified with the first-order Tay-
lor’s approximation (Scanlon 1996; Koh and Liang 2017):

Iparams(zm) :=
dθ̂t,ϵ,zm

dϵ

∣∣∣∣
ϵ=0

= −H−1

θ̂t
∇θtL(zm, θ̂t), (4)

where ∇ is the first-order differential operator and Hθ̂t
=∑

zi∈D∗
t
∇2

θtL(zi, θ̂t) denotes the Hessian matrix and is pos-
itive definite by assumption.

While the original definition, i.e., Eqn. (4), measures zm’s
influence on the model parameters, in incremental learn-
ing for recommendation, we are however more interested in
measuring zm’s influence on recommendation predictions.
Ideally, such influence on recommendation results should
be measured as completely as possible, which can be for-
mulated as follows:

Irec loss(zm) :=
∑

zi∈D0:t

dL(zi, θ̂t,ϵ,zm)

dϵ

∣∣∣
ϵ=0

. (5)

We use notation D0:t to denote all historical interactions.
Based on the computed values Irec loss from D0:t, we hope
to retrieve the most influential samples such that they make
substantial impacts on all previous data. This actually im-
plies that the retrieved samples are representative to main-
tain the earlier learned knowledge such as users’ long-term
preferences. Noteworthily, in the incremental learning set-
ting, the complete historical data before timestamp t, i.e.,
D0:t−1, is actually unavailable. We thus use the empirical
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Figure 3: Influential exemplar retrieval of INFERONCE.

risk on Pt−1 to approximate the terms derived by the origi-
nal D0:t−1, by presuming a close correlation between them.
Hence, Eqn. (5) is rewritten as follows:

Irec loss(zm) ≈
∑

zi ∈Pt−1∪Dt

dL(zi, θ̂t,ϵ,zm)

dϵ

∣∣∣
ϵ=0

=
∑

zi∈D∗
t

∇θtL(zi, θ̂t)⊤ · Iparams(zm).

(6)

To keep reservoir P informative, we thus pick out those in-
teractions with the most K negative numerical values, which
conversely indicates the most representative data for recom-
mender models to capture users’ long-term preferences.

INFERONCE: One-step Influence Estimation
Limitations of Vanilla Implementation. However, the
vanilla implementation may exhibit practical flaws. Our dis-
cussions are twofold: (1) Intuitively, inverting the Hessian
matrix in Iparams term of Eqn. (6) is computationally in-
tensive, i.e., quadratic to the size of parameters θt of the
downstream recommender backbone. This is unacceptable
as modern recommender systems typically have hundreds of
millions of parameters, particularly for scenarios with lim-
ited computation resources. We detail the time complexity
analysis in the later section. (2) Moreover, as we will em-
pirically elaborate in experiments, such vanilla version may
underperform for large recommender models, which is also
observed by recent research (Basu, Pope, and Feizi 2021;
Epifano et al. 2023).

Fast Influence Estimation. We now formally intro-
duce our advanced method One-step iNfluenCe Estimation
(INFERONCE). Recall in Eqn. (3), to algorithmically com-
pute θ̂t,ϵ,zm , one may adopt gradient-based methods, e.g.,
Stochastic Gradient Descent (SGD), to conduct iterative op-
timization until convergence:

θ
(h+1)
t ← θ

(h)
t − η∇θt(ϵL(zm, θ

(h)
t ) +

∑

zi∈D∗
t

L(zi, θ(h)t )).

(7)
With a slight notation abuse, we use θ(h)t to specifically refer
to the intermediate status of θt at iteration h. Here η denotes
the learning rate. Then θ̂t,ϵ,zm is defined as the converged
value of θt from Eqn. (7). Since the efficiency bottleneck
of vanilla implementation lies in the exhaustive iterations,

i.e., to implement Eqn. (7), we thus propose to approximate
θ̂t,ϵ,zm with only one-step estimation as follows:

θ̂t,ϵ,zm := θt − λ∇θt(ϵL(zm, θt) +
∑

zi∈D∗
t

L(zi, θt)). (8)

Which significantly reduces the computation cost compared
to Eqn. (7) whilst providing flexibility of tuning approx-
imation rate with hyper-parameter λ. Then we derive our
one-step influence estimation, denoted by I∗rec loss(·), to sim-
ilarly approximate the vanilla one in Eqn. (6) as follows:

I∗rec loss(zm) : =
∑

zi∈D∗
t

dL(zi, θ̂t,ϵ,zm)

dϵ

∣∣∣
ϵ=0

=
∑

zi∈D∗
t

∇θtL(zi, θ̂t)⊤ ·
dθ̂t,ϵ,zm

dϵ

∣∣∣∣
ϵ=0

= −λ
∑

zi∈D∗
t

∇θtL(zi, θ̂t)⊤ · ∇θtL(zm, θt).

(9)

We observe from Eqn.(9) that, for any candidate zm through-
out the whole training data D∗

t , its estimated influence
I∗rec loss(zm) is determined as significant by two manners:
• either, the gradient norm of zm at parameters θt, i.e.,
||∇θtL(zm, θt)||2, is as large as possible that reflects a
substantial marginal impact to the downstream recom-
mendation loss;

• or, the gradient direction of ∇θtL(zm, θt) is as consistent
as possible to the direction of term

∑
zi∈D∗

t
∇θtL(zi, θ̂t)

that regards to the recommendation losses capturing early
model knowledge for all users in D∗

t .
Therefore, these influential exemplars produced by our
INFERONCE are also in line with our intuition. We provide a
visual illustration in Figure 3.

Approximation Discussion of INFERONCE. During
model training at each timestamp t, we encourage θt to
approach θ̂t. Then the estimated influence in Eqn. (9) is
similar to the vanilla one in Eqn. (6), only excluding the
inverse Hessian matrix H−1

θ̂t
. Notice that this covariant-

weighted matrix measures the inter-dependence between
the training samples, as it gauges their “resistance” to other
samples’ perturbations. In recommendation scenarios, such
inter-dependence in underlying interaction data tends to
be complex and noisy, due to the subjective nature of user
behaviors and the sensitivity to external factors. As for our
INFERONCE methodology, we thus omit those high-order
gradients that are extremely expensive to analytically calcu-
late or empirically observe. This provides a straightforward
yet effective way to measure the influence of a single
interaction on model optimization, thus expediting the
convergence with less complexity. We demonstrate this later
in runtime experiments of Section 11. The pseudocodes of
INFERONCE are attached in Algorithm 1.

Complexity Analysis. The time complexity of our vanilla
method INFERVanilla in Eqn. (6) is O(|D∗

t |q2 + q3), where
q is the total number of model parameters and variables. On
the contrary, the time complexity of our advanced solution
INFERONCE in Eqn. (9) is O(|D∗

t |q) with q > |D∗
t |.
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Algorithm 1: Working Procedure of INFERONCE

Input: the sequence of user-item interaction segments
D = {D0,D1, · · · ,DT }; influential exemplar
number K; model parameters θ{0,··· ,T} of the
underlying recommender backbone RecSys.

1 θ0← Initialization;
2 for t = 0 to T do
3 Pt← ∅;
4 if t = 0 then
5 D∗

0 ← D0;

6 else
7 D∗

t ← Dt ∪ Pt−1;

8 Training RecSys with D∗
t starting from setting θt;

9 θ̂t← Optimal parameters of well-trained RecSys;
10 Pt← f(θ̂t|K,D∗

t ) with INFERONCE;
11 θt+1← θ̂t;

Experiments
In this section, we present a series of empirical evaluations
with the aim of addressing the following research questions:

• RQ1: How does INFERONCE plug-and-play for different
backbone models and perform compared to other incre-
mental methodologies?

• RQ2: How close is INFERONCE to the “ideally-optimal”
case of model retraining with complete historical data?

• RQ3: Can INFERONCE possibly further enhance end-to-
end incremental recommender models?

• RQ4: How does INFERONCE optimize over the vanilla
implementation in the recommendation scenario?

• RQ5: How does the reservoir size of INFERONCE influ-
ence the model performance?

Experimental Setups
Evaluation Benchmarks. We incorporate four real-world
benchmarks that vary in size, domain, sparsity, and duration,
as reported in Table 1. Each dataset is partitioned chronolog-
ically into a 50% base segment and five consecutive 10% in-
cremental segments. The base segment is randomly divided
into training, validation, and testing sets in a 6:2:2 ratio. For
incremental segments, to imitate real production scenarios,
we retrieve recommender models trained in the previous step
and assess their performance with the most recent consecu-
tive data. The data is evenly divided into two halves, with
one half used for validation and the other for testing.

Evaluation Metrics. We consider two evaluation tasks:
Click-through rate (CTR) prediction and Top-N recom-
mendation. CTR prediction is evaluated using AUC, while
Top-N recommendation uses Recall@N . For stable repro-
ducibility, we conduct five-fold cross validation. We report
testing results averaged on all incremental updates.

Backbone Models. To demonstrate the generalization of
INFERONCE, we implement it into four renowned neu-
ral recommender models: DeepFM (Guo et al. 2017) and

Lastfm-2k TB2014 Gowalla Foursquare

# Users 1,090 8,844 29,858 51,919
# Items 3,646 39,103 40,988 37,320

# IR (M ) 0.05 0.75 1.03 2.35
# S (m) 13.22 2.17 0.84 1.21
# Time 56yrs 31dys 19mths 22mths

Table 1: Dataset statistics. # IR (M ) represents the number
of interactions in millions (106). # S (m) refers to the spar-
sity in thousandths (10−3).

TwoTower (Huang et al. 2013) for CTR prediction, MF-
BPR (Rendle et al. 2012) and LightGCN (He et al. 2020)
for Top-N recommendation.

Competing Algorithms. Apart from our basic implemen-
tation, INFERVanilla, we additionally include eight compet-
ing methods that are broadly subsumed into three groups.
• Conventional Implementations: (1) Fine-Tune can be

considered as the lower-bound of incremental models
which just fine-tunes the previously trained model solely
on the incremental segment. (2) FD-Retrain entails ex-
haustive full-data retraining at each time of data update.
It can be considered the upper-bound performance based
on all the accumulated data access.

• Experience Replay Methods: (3) Uniform (Vitter 1985;
Ahrabian et al. 2021) is a classic experience replay strat-
egy that uniformly samples a subset of historical data as
the incremental segment. (4) ER-MIR (Rahaf and Lucas
2019) predicts parameter updates to retrieve the pivotal
samples. (5) InvDeg (Ahrabian et al. 2021), taking inspira-
tion from Gdumb (Prabhu, Torr, and Dokania 2020), lever-
ages the graph properties for sampling. We further extend
it to the non-graph-based scenario. For a fair comparison,
we keep the same reservoir size for replay.

• Incremental Recommender Models: (6) GraphSAIL
(Xu et al. 2020), (7) SGCT (Wang, Zhang, and Coates
2021), and (8) LWC-KD (Wang, Zhang, and Coates 2021)
are three state-of-the-art methods that based on graph neu-
ral networks. They employ miscellaneous designs such as
knowledge distillation mechanisms to preserve key model
knowledge that was learned from historical data.

Overall Performance (RQ1)
In this section, we present an overall performance analysis
between INFERONCE and all baselines for tasks of CTR pre-
diction and Top-N recommendation. The results are shown
in Table 2, and our empirical observations are twofold:
• CTR prediction: (1) Our method outperforms Fine-

Tune implementation across all backbone models and
datasets, yielding performance improvements from 0.22%
to 5.12% in terms of AUC. This highlights the efficacy of
INFERONCE in mitigating the forgetting tendency that may
occur when simply fine-tuning a previously trained model.
(2) In comparison to other IL methods, INFERONCE con-
sistently exhibits superior performance on CTR predic-
tion. The only exception is the experiment on Foursquare
using DeepFM as the backbone model.
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Task Method
Backbone Lastfm-2k Taobao2014 Gowalla Foursquare

DeepFM TwoTower DeepFM TwoTower DeepFM TwoTower DeepFM TwoTower

CTR

Fine-Tune 0.6858 0.7054 0.6356 0.6472 0.8403 0.7836 0.9569 0.9000
Uniform 0.6814 0.7091 0.6367 0.6495 0.8450 0.8093 0.9585 0.9057
ER-MIR 0.6823 0.7097 0.6330 0.6510 0.8441 0.8174 0.9587 0.9054
InvDeg 0.6766 0.6951 0.6351 0.6502 0.8448 0.8035 0.9598 0.8993

INFERVanilla 0.6863 0.7099 0.6338 0.6528 0.8432 0.8052 0.9547 0.9062
INFERONCE 0.6884 0.7134 0.6370 0.6551 0.8486 0.8237 0.9595 0.9087

BPR-MF LightGCN BPR-MF LightGCN BPR-MF LightGCN BPR-MF LightGCN

Top-N

Fine-Tune 0.0450 0.0479 0.0066 0.0073 0.0573 0.0752 0.0842 0.1074
Uniform 0.0469 0.0660 0.0063 0.0081 0.0588 0.0838 0.0913 0.1189
ER-MIR 0.0475 0.0668 0.0069 0.0076 0.0587 0.0823 0.0908 0.1089
InvDeg 0.0479 0.0655 0.0067 0.0079 0.0602 0.0845 0.0922 0.1200

GraphSAIL - 0.0553 - 0.0078 - 0.0725 - 0.1042
SGCT - 0.0620 - 0.0080 - 0.0783 - 0.1157

LWC-KD - 0.0674 - 0.0081 - 0.0792 - 0.1194
INFERVanilla 0.0513 0.0695 0.0074 0.0083 0.0591 0.0847 0.0913 0.1163
INFERONCE 0.0508 0.0704 0.0072 0.0086 0.0621 0.0876 0.0944 0.1249

Table 2: (1) Overall performance on tasks of CTR prediction (AUC) and Top-N recommendation (Recall@20) based on five-
fold cross validation. (2) The best results are bold and the second-best values are underlined.

• Top-N recommendation: (1) While INFERVanilla per-
forms well on smaller datasets, i.e., Lastfm-2k and
Taobao2014, it however downgrades on larger ones, i.e.,
Gowalla and Foursquare. This can be attributed that the
vanilla influence function tends to be sensitive to the scale
of network structures or model parameters (most recom-
mender models require explicit size allocation for both
user- and item-embeddings), while the lightweight is more
favorable to produce more accurate and stable perfor-
mance (Basu, Pope, and Feizi 2021). On the contrary, our
INFERONCE performs the best for larger datasets, which
reaffirms its effectiveness for Top-N recommendation.
(2) Moreover, compared to the latest graph-based mod-
els, i.e., GraphSAIL, SGCT, and LWC-KD, INFERONCE
is model-agnostic and can be adapted to the non-graph-
based backbone models, e.g., BPR-MF. This demonstrates
its generalization capability with consistent performance
superiority. The RQ3 section empirically investigates how
INFERONCE further enhances these graph-based models.

INFERONCE v.s. Full-data Retraining (RQ2)
We compare INFERONCE with full-data retraining, which
provides insights into how close our model is to the “opti-
mal” case. We exhaustively repeat the experiments similar
to the evaluation paradigm for RQ1 and plot the stacked-
column charts in Figure 4. We notice that (1) for CTR pre-
diction, INFERONCE is competitive with even slightly better
performance than retraining, e.g., plugged on DeepFM on
Lastfm-2k, Gowalla, and Foursquare datasets. This show-
cases that INFERONCE can well “memorize” users’ prefer-
ences to make correct click identification for recommenda-
tions. (2) While the CTR task can be interpreted as binary
classification, Top-N recommendation could be more diffi-
cult, as the relative item ranking personalized by each user
is of the essence. Consequently, compared to model retrain-
ing with complete historical data, INFERONCE is left with a
discernible gap in terms of Recall@20 metric. However, one
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Figure 4: ONCE v.s. full-data retraining. Due to space lim-
itations, DeepFM, TwoTower, BPR-MF, and LightGCN are
denoted as DF, TT, BM, and LG respectively.

straightforward flaw is that full-data retraining is extremely
expensive, we detail their runtime costs later.

Cross-model Compatibility Analysis (RQ3)
As we mentioned earlier, three state-of-the-art graph-based
models, i.e., GraphSAIL, SGCT, and LWC-KD, incorporate
the knowledge distillation mechanism to reduce the dispar-
ity between their previously-trained and newly-updated ver-
sions. We then apply INFERONCE to enhance them by pro-
viding influential exemplar replay and show the resultant Re-
call@20 metric in Table 3. Notably, the substantial perfor-
mance improvements are reasonable as our replay strategy
is technically orthogonal to their methodologies. More im-
portantly, this indicates that INFERONCE can thus synergis-
tically boost their performance across all datasets.

Empirical Study on INFERONCE (RQ4)
Runtime Efficiency. The first motivation of INFERONCE
to optimize INFERVanilla is for computation acceleration. We
showcase the holistic runtime costs of all models on the
largest dataset Foursquare in Figure 5. We observe that: (1)

The Thirty-Eighth AAAI Conference on Artificial Intelligence (AAAI-24)

9373



Method Lastfm-2k TB2014 Gowalla Foursquare
GraphSAIL 0.0553 0.0078 0.0725 0.1042
+ INFERONCE 0.0708 0.0082 0.0815 0.1195
SGCT 0.0620 0.0080 0.0783 0.1157
+ INFERONCE 0.0722 0.0088 0.0881 0.1284
LWC-KD 0.0674 0.0081 0.0792 0.1194
+ INFERONCE 0.0721 0.0088 0.0902 0.1292

Table 3: Recall@20 of INFERONCE-enhanced models.
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Figure 5: The holistic runtime cost (s) on the Foursquare
dataset including reservoir construction, incremental model
training with early-stop, and evaluation (best view in color).

INFERONCE achieves much less runtime cost compared to
INFERVanilla whilst being on par with incremental learning
methods, i.e., ER-MIR, InvDeg, and Uniform, across vari-
ous backbone models. (2) Compared to recent incremental
recommender models, e.g., GraphSAIL and LWC-KD, our
method exhibits faster convergence speed, showing the effi-
ciency of our one-step estimation design.

Comparison with INFERVanilla. To understand how
INFERONCE approximates INFERVanillawith different model
parameter sizes, we visually compare their calculated results
based on Lastfm-2k and Gowalla datasets. Specifically, for
both of these implementations, we first respectively compute
their influence values and rank them accordingly. Then we
enlarge the recommender model size around 16 times, e.g.,
from 38k to 606k for Lastfm-2k dataset. For each dataset, we
randomly sample 1,000 candidates and compare their rank-
ing differences produced by INFERONCE and INFERVanilla.
Intuitively, for each data candidate, the smaller the rank-
ing difference is, the more similar these two implementa-
tions would be. We plot the ranking difference distributions
with kernel density estimation in Figure 6. We observe the
following trends: (1) Irrespective of the backbone models’
size, these two implementations exhibit substantial overlap
in their distributions, indicating that INFERONCE closely re-
sembles INFERVanilla with not many deviations. (2) With the
model size increasing, we notice that their ranking dispari-
ties slightly rise in central distribution regions which corre-
sponds to the case of minor differences in rankings. How-

(a) Lastfm-2k (b) Gowalla

Figure 6: Distributions of ranking differences between our
two implementations by differing model sizes.
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Figure 7: Results of varying replay ratios.

ever, considering our early empirical findings, we believe
that such small disagreements are acceptable as INFERONCE
essentially has more focus on efficiency consideration.

Parameter Study on Reservoir Size (RQ5)
Lastly, we vary the reservoir size by adjusting the reply ra-
tio, i.e., K/|D|, to investigate the INFERONCE performance.
The reply ratio is altered from 0.05 to 0.35 at intervals of
0.05 and we implement INFERONCE to two backbones, i.e.,
TwoTower and LightGCN, on Gowalla dataset. As shown in
Figure 7, the model performance continually improves with
the increasing ratio from 0.05 to 0.25 (TwoTower) or 0.30
(LightGCN). However, after further expanding the reservoir,
apart from the increasing time costs, we also notice perfor-
mance degradation, e.g., dropping from 0.8247 to 0.8127 of
AUC on TwoTower. The explanation is straightforward as
over-training the historical data may introduce bias that is
not descriptive of new data, which is reasonable in practice
to reflect the user’s preference drifting phenomenon.

Conclusion
In this work, we investigate incremental learning for recom-
mender systems via influential exemplar replay. While our
vanilla implementation finds the most analytically influen-
tial samples, our advanced solution INFERONCE optimizes
toward the efficiency bottleneck. Extensive empirical evalu-
ation demonstrates not only the generalization of our meth-
ods across four backbone models but also the performance
superiority over state-of-the-art incremental recommender
models on four public benchmarks. For future work, we
plan to explore influence functions that encapsulate graph
structural information (Liu et al. 2022; Wu et al. 2022). An-
other promising direction is to devise generative models (Li
et al. 2020; Ho, Jain, and Abbeel 2020) capable of synthe-
sizing user interactions from historical archives, enhancing
the practicality through generative replay.
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